177 lines
41 KiB
HTML
177 lines
41 KiB
HTML
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
|
||
<html xmlns="http://www.w3.org/1999/xhtml"><head>
|
||
<meta content="text/html; charset=utf-8" http-equiv="Content-Type"/>
|
||
<meta content="text/css" http-equiv="Content-Style-Type"/>
|
||
<meta content="pandoc" name="generator"/>
|
||
<title></title>
|
||
<style type="text/css">code{white-space: pre;}</style>
|
||
<title>Covid-19 Sentry</title><meta content="width=device-width, initial-scale=1.0" name="viewport"/><link href="styles/simple.css" rel="stylesheet"/><link href="../styles/simple.css" rel="stylesheet"/><link href="https://unpkg.com/aos@2.3.1/dist/aos.css" rel="stylesheet"/><script src="https://unpkg.com/aos@2.3.1/dist/aos.js"></script></head>
|
||
<body>
|
||
<h1 data-aos="fade-down" id="covid-19-sentry">Covid-19 Sentry</h1>
|
||
<h1 data-aos="fade-right" data-aos-anchor-placement="top-bottom" id="contents">Contents</h1>
|
||
<ul>
|
||
<li><a href="#from-preprints">From Preprints</a></li>
|
||
<li><a href="#from-clinical-trials">From Clinical Trials</a></li>
|
||
<li><a href="#from-pubmed">From PubMed</a></li>
|
||
<li><a href="#from-patent-search">From Patent Search</a></li>
|
||
</ul>
|
||
<h1 data-aos="fade-right" id="from-preprints">From Preprints</h1>
|
||
<ul>
|
||
<li><strong>Creatures of the state? Metropolitan counties compensated for state inaction in initial U.S. response to COVID-19 pandemic</strong> -
|
||
<div>
|
||
Societal responses to crises require coordination at multiple levels of organization. Exploring early efforts to contain COVID-19 in the U.S., we argue that local governments can act to ensure systemic resilience and recovery when higher-level governments fail to do so. Event history analyses show that large, more urban areas experience COVID-19 more intensely due to high population density and denser socioeconomic networks. But metropolitan counties were also among the first to adopt shelter-in-place orders. Analyzing the statistical predictors of when counties moved before their states, we find that the hierarchy of counties by size and economic integration matters for the timing of orders, where both factors predict earlier shelter-in-place orders. In line with sociological theories of urban governance, we also find evidence of an important governance dimension to the timing of orders. Liberal counties in conservative states were more than twice as likely to adopt a policy and implement one earlier in the pandemic, suggesting that tensions about how to resolve collective governance problems are important in the socio-temporal dynamic of responses to COVID-19. We explain this behavior as a substitution effect in which more urban local governments, driven by risk and necessity, step up into the action vacuum left by higher levels of government and become national policy leaders and innovators.
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://osf.io/preprints/socarxiv/b5hj3/" target="_blank">Creatures of the state? Metropolitan counties compensated for state inaction in initial U.S. response to COVID-19 pandemic</a>
|
||
</div></li>
|
||
<li><strong>SARS-CoV-2 spike downregulates tetherin to enhance viral spread</strong> -
|
||
<div>
|
||
The antiviral restriction factor, tetherin, blocks the release of several different families of enveloped viruses, including the Coronaviridae. Tetherin is an interferon-induced protein that forms parallel homodimers between the host cell and viral particles, linking viruses to the surface of infected cells and inhibiting their release. We demonstrate that SARS-CoV-2 downregulates tetherin to aid its release from cells, and investigate potential proteins involved in this process. Loss of tetherin from cells caused an increase in SARS-CoV-2 viral titre. We find SARS-CoV-2 spike protein to be responsible for tetherin downregulation, rather than ORF7a as previously described for the 2002-2003 SARS-CoV. We instead find ORF7a to be responsible for Golgi fragmentation, and expression of ORF7a in cells recapitulates Golgi fragmentation observed in SARS-CoV-2 infected cells.
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2021.01.06.425396v1" target="_blank">SARS-CoV-2 spike downregulates tetherin to enhance viral spread</a>
|
||
</div></li>
|
||
<li><strong>Self-organized stem cell-derived human lung buds with proximo-distal patterning and novel targets of SARS-CoV-2</strong> -
|
||
<div>
|
||
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the global COVID-19 pandemic and the lack of therapeutics hinders pandemic control1-2. Although lung disease is the primary clinical outcome in COVID-19 patients1-3, how SARS-CoV-2 induces tissue pathology in the lung remains elusive. Here we describe a high-throughput platform to generate tens of thousands of self-organizing, nearly identical, and genetically matched human lung buds derived from human pluripotent stem cells (hPSCs) cultured on micropatterned substrates. Strikingly, in vitro-derived human lung buds resemble fetal human lung tissue and display in vivo-like proximo-distal coordination of alveolar and airway tissue differentiation whose 3D epithelial self-organization is directed by the levels of KGF. Single-cell transcriptomics unveiled the cellular identities of airway and alveolar tissue and the differentiation of WNThi cycling alveolar stem cells, a human-specific lung cell type4. These synthetic human lung buds are susceptible to infection by SARS-CoV-2 and endemic coronaviruses and can be used to track cell type-dependent susceptibilities to infection, intercellular transmission and cytopathology in airway and alveolar tissue in individual lung buds. Interestingly, we detected an increased susceptibility to infection in alveolar cells and identified cycling alveolar stem cells as targets of SARS-CoV-2. We used this platform to test neutralizing antibodies isolated from convalescent plasma that efficiently blocked SARS-CoV-2 infection and intercellular transmission. Our platform offers unlimited, rapid and scalable access to disease-relevant lung tissue that recapitulate key hallmarks of human lung development and can be used to track SARS-CoV-2 infection and identify candidate therapeutics for COVID-19.
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2021.01.06.425622v1" target="_blank">Self-organized stem cell-derived human lung buds with proximo-distal patterning and novel targets of SARS-CoV-2</a>
|
||
</div></li>
|
||
<li><strong>Distinct mutations and lineages of SARS-CoV-2 virus in the early phase of COVID-19 global pandemic and subsequent global expansion</strong> -
|
||
<div>
|
||
A novel coronavirus, SARS-CoV-2, has caused over 8538 million cases and over 1.8 1 million deaths worldwide since it occurred twelve months ago in Wuhan, China. Here we first analyzed 4,013 full-length SARS-CoV-2 genomes from different continents over a 14-week timespan since the outbreak in Wuhan, China. 2,954 unique nucleotide substitutions were identified with 31 of the 4,013 genomes remaining as ancestral type, and 952 (32.2%) mutations recurred in more than one genome. A viral genotype from the Seafood Market in Wuhan featured with two concurrent mutations was the dominant genotype (80.9%) of the pandemic. We also identified unique genotypic compositions from different geographic locations, and time-series viral genotypic dynamics in the early phase that reveal transmission routes and subsequent expansion. We also used the same approach to analyze 261,350 full-length SARS-CoV-2 genomes from the world over 12 months since the outbreak (i.e. all the available viral genomes in the GISAID database as of 25 December 2020). Our study indicates the viral genotypes can be utilized as molecular barcodes in combination with epidemiologic data to monitor the spreading routes of the pandemic and evaluate the effectiveness of control measures.
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2021.01.05.425339v1" target="_blank">Distinct mutations and lineages of SARS-CoV-2 virus in the early phase of COVID-19 global pandemic and subsequent global expansion</a>
|
||
</div></li>
|
||
<li><strong>Predicting the COVID-19 epidemic in Algeria using the SIR model</strong> -
|
||
<div>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
||
The aim of this study is to predict the daily infected cases with Coronavirus (COVID-19) in Algeria. We apply the SIR model on data from 25 February 2020 to 24 April 2020 for the prediction. Following Huang et al [12], we develop two SIR models, an optimal model and a model in a worst-case scenario COVID-19. We estimate the parameters of our models by minimizing the negative log likelihood function using the Nelder- Mead method. Based on the simulation of the two models, the epidemic peak of COVID-19 is predicted to attain 24 July 2020 in a worst-case scenario, and the COVID-19 disease is expected to disappear in the period between September 2020 and November 2020 at the latest. We suggest that Algerian authorities need to implement a strict containment strategy over a long period to successfully decrease the epidemic size, as soon as possible.
|
||
</p>
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2020.04.25.20079467v7" target="_blank">Predicting the COVID-19 epidemic in Algeria using the SIR model</a>
|
||
</div></li>
|
||
<li><strong>Natural variants in SARS-CoV-2 S protein pinpoint structural and functional hotspots; implications for prophylaxis strategies</strong> -
|
||
<div>
|
||
The SARS-CoV-2 viral genome mutates incessantly as it spreads in the world and the gene for the Spike (S) protein, critical for viral transmission into humans, is no exception. Analysis of 4,517 variants isolated from humans identified regions with few mutations, thus pinpointing important functional and structural sites in the S protein. This information can guide the development of effective prophylactic agents to arrest the spread of the COVID-19 pandemic.
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2021.01.04.425340v1" target="_blank">Natural variants in SARS-CoV-2 S protein pinpoint structural and functional hotspots; implications for prophylaxis strategies</a>
|
||
</div></li>
|
||
<li><strong>Role of spatial patterning of N-protein interactions in SARS-CoV-2 genome packaging</strong> -
|
||
<div>
|
||
Viruses must efficiently and specifically package their genomes while excluding cellular nucleic acids and viral sub-genomic fragments. Some viruses use specific packaging signals, which are conserved sequence/structure motifs present only in the full-length genome. Recent work has shown that viral proteins important for packaging can undergo liquid-liquid phase separation (LLPS), where one or two viral nucleic acid binding proteins condense with the genome. The compositional simplicity of viral components lends itself well to theoretical modeling compared to more complex cellular organelles. Viral LLPS can be limited to one or two viral proteins and a single genome that is enriched in LLPS-promoting features. In our previous study, we observed that LLPS-promoting sequences of SARS-CoV-2 are located at the 5' and 3' ends of the genome, whereas the middle of the genome is predicted to consist mostly of solubilizing elements. Is this arrangement sufficient to drive single genome packaging, genome compaction, and genome cyclization? We addressed these questions using a coarse-grained polymer model, LASSI, to study the LLPS of nucleocapsid protein with RNA sequences that either promote LLPS or solubilization. With respect to genome compaction and cyclization, we find the most optimal arrangement restricts LLPS-promoting elements to the 5' and 3' ends of the genome, consistent with the native spatial patterning. Single genome packaging is possible for diverse arrangements of LLPS-promoting sequences in the genome, but only in limited conditions at the edge of the phase boundary. These results suggest that many and variably positioned LLPS promoting signals can support packaging in the absence of a singular packaging signal which argues against necessity of such a feature. We hypothesize that this model should be generalizable to multiple viruses as well as cellular organelles like paraspeckles, which enrich specific, long RNA sequences in a defined order.
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2021.01.06.425605v1" target="_blank">Role of spatial patterning of N-protein interactions in SARS-CoV-2 genome packaging</a>
|
||
</div></li>
|
||
<li><strong>SARS-CoV-2 RBD in vitro evolution follows contagious mutation spread, yet generates an able infection inhibitor</strong> -
|
||
<div>
|
||
SARS-CoV-2 is constantly evolving, with more contagious mutations spreading rapidly. Using in vitro evolution to affinity maturate the receptor-binding domain (RBD) of the spike protein towards ACE2, resulted in the more contagious mutations, S477N, E484K, and N501Y to be among the first selected. This includes the British and South-African variants. Plotting the binding affinity to ACE2 of selected RBD mutations against their incidence in the population shows a strong correlation between the two. Further in vitro evolution enhancing binding by 600-fold provides guidelines towards potentially new evolving mutations with even higher infectivity. Yet, the high-affinity RBD is also an efficient drug, inhibiting SARS-CoV-2 infection. The 2.9A Cryo-EM structure of the high-affinity complex, including all rapidly spreading mutations provides structural basis for future drug development.
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2021.01.06.425392v1" target="_blank">SARS-CoV-2 RBD in vitro evolution follows contagious mutation spread, yet generates an able infection inhibitor</a>
|
||
</div></li>
|
||
<li><strong>Zinc-embedded fabrics inactivate SARS-CoV-2 and influenza A virus</strong> -
|
||
<div>
|
||
Infections with respiratory viruses can spread via liquid droplets and aerosols, and cause diseases such as influenza and COVID-19. Face masks and other personal protective equipment (PPE) can act as barriers that prevent the spread of respiratory droplets containing these viruses. However, influenza A viruses and coronaviruses are stable for hours on various materials, which makes frequent and correct disposal of these PPE important. Metal ions embedded into PPE may inactivate respiratory viruses, but confounding factors such as absorption of viruses make measuring and optimizing the inactivation characteristics difficult. Here we used polyamide 6.6 (PA66) fibers that had zinc ions embedded during the polymerisation process and systematically investigated if these fibers can absorb and inactivate pandemic SARS-CoV-2 and influenza A virus H1N1. We find that these viruses are readily absorbed by PA66 fabrics and inactivated by zinc ions embedded into this fabric. The inactivation rate (pfu.gram-1.min-1) exceeds the number of active virus particles expelled by a cough and supports a wide range of viral loads. Moreover, we found that the zinc content and the virus inactivating property of the fabric remain stable over 50 standardized washes. Overall, these results provide new insight into the development of "pathogen-free" PPE and better protection against RNA virus spread.
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2020.11.02.365833v3" target="_blank">Zinc-embedded fabrics inactivate SARS-CoV-2 and influenza A virus</a>
|
||
</div></li>
|
||
<li><strong>Gamma-irradiated SARS-CoV-2 vaccine candidate, OZG-38.61.3, confers protection from SARS-CoV-2 challenge in human ACEII-transgenic mice</strong> -
|
||
<div>
|
||
The SARS-CoV-2 virus caused one of the severest pandemic around the world. The vaccine development for urgent use became more of an issue during the pandemic. An inactivated virus formulated vaccines such as Hepatitis A, inactivated polio, and influenza has been proven to be a reliable approach for immunization for long years. In this pandemic, we produced an inactivated SARS-CoV-2 vaccine candidate by modification of the oldest but the most experienced method that can be produced quickly and tested easily rather than the recombinant vaccines. Here, we optimized an inactivated virus vaccine which includes the gamma irradiation process for the inactivation as an alternative to classical chemical inactivation methods so that there is no extra purification required. Also, we applied the vaccine candidate (OZG-38.61.3) using the intradermal route in mice which decreased the requirement of a higher concentration of inactivated virus for proper immunization unlike most of the classical inactivated vaccine treatments. Thus, the novelty of our vaccine candidate (OZG-38.61.3) is a non-adjuvant added, gamma-irradiated, and intradermally applied inactive viral vaccine. We first determined the efficiency and safety dose (either 1013 or 1014 viral copy per dose) of the OZG-38.61.3 in Balb/c mice. Next, to test the immunogenicity and protective efficacy of the OZG-38.61.3, we immunized human ACE2-encoding transgenic mice and infected them with a dose of infective SARS-CoV-2 virus for the challenge test. We showed that the vaccinated mice showed lowered SARS-CoV-2 viral copy number in oropharyngeal specimens along with humoral and cellular immune responses against the SARS-CoV-2, including the neutralizing antibodies similar to those shown in Balb/c mice without substantial toxicity. This study encouraged us towards a new promising strategy for inactivated vaccine development (OZG-38.61.3) and the Phase 1 clinical trial for the COVID-19 pandemic.
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2020.10.28.356667v2" target="_blank">Gamma-irradiated SARS-CoV-2 vaccine candidate, OZG-38.61.3, confers protection from SARS-CoV-2 challenge in human ACEII-transgenic mice</a>
|
||
</div></li>
|
||
<li><strong>A COVID Moonshot: assessment of ligand binding to the SARS-CoV-2 main protease by saturation transfer difference NMR spectroscopy.</strong> -
|
||
<div>
|
||
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological cause of the coronavirus disease 2019, for which no effective therapeutics are available. The SARS-CoV-2 main protease (Mpro) is essential for viral replication and constitutes a promising therapeutic target. Many efforts aimed at deriving effective Mpro inhibitors are currently underway, including an international open-science discovery project, codenamed COVID Moonshot. As part of COVID Moonshot, we used saturation transfer difference nuclear magnetic resonance (STD-NMR) spectroscopy to assess the binding of putative Mpro ligands to the viral protease, including molecules identified by crystallographic fragment screening and novel compounds designed as Mpro inhibitors. In this manner, we aimed to complement enzymatic activity assays of Mpro performed by other groups with information on ligand affinity. We have made the Mpro STD-NMR data publicly available. Here, we provide detailed information on the NMR protocols used and challenges faced, thereby placing these data into context. Our goal is to assist the interpretation of Mpro STD-NMR data, thereby accelerating ongoing drug design efforts.
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2020.06.17.156679v2" target="_blank">A COVID Moonshot: assessment of ligand binding to the SARS-CoV-2 main protease by saturation transfer difference NMR spectroscopy.</a>
|
||
</div></li>
|
||
<li><strong>Oxygen saturation instability in suspected covid-19 patients; contrasting effects of reduced VA/Q and shunt.</strong> -
|
||
<div>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
||
Patients in the UK at risk of Covid-19 pneumonia, but not needing immediate hospital attention, are to be given pulse oximeters to identify a fall in oxygen saturation (SaO2 or SpO2) at home. A recent finding in Covid-19 pneumonia is a dominant reduction in ventilation to perfused alveoli (VA/Q). A mathematical model of gas exchange was used to predict the effect of shunt or reduced VA/Q on SaO2 stability inferred from the slope of the PIO2 vs SaO2 curve as it intersected the line representing ambient PIO2. A ±1 kPa variation in PIO2 predicted a 1.5% and 8% change in SpO2 with 15% shunt and 0.4 VA/Q respectively. As a consistency check, two patients with pre-existing lung disease and 12 hour continuous SpO2 monitoring breathing air had gas exchange impairment analysed in terms of shunt and reduced VA/Q. The patient with 16% shunt and normal VA/Q had a stable but reduced SpO2 (circa 93±1%) throughout the 12 hr period. The patient with a VA/Q reduced to 0.48 had SpO2 ranging from 75-95% during the same period. SpO2 monitoring in suspected covid-19 patients should focus on SpO2 varying >5% in 30 minutes. Such instability in at risk patients is not diagnostic of Covid -19 pneumonia but this may be suspected from a dominant reduction in VA/Q if episodic hypoxaemia has progressed from a stable SpO2. Key words. Covid-19, Respiratory Measurement, Pneumonia, ARDS, VA/Q, Shunt, Oxygen Saturation.
|
||
</p>
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2020.12.17.20248126v3" target="_blank">Oxygen saturation instability in suspected covid-19 patients; contrasting effects of reduced VA/Q and shunt.</a>
|
||
</div></li>
|
||
<li><strong>Stability of the stroke code during the COVID-19 pandemic in the region of Madrid: a retrospective study</strong> -
|
||
<div>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
||
Acute Stroke (AS) is the most common time-dependent disease attended in the Emergency Medicine Service (EMS) of Madrid (SUMMA 112). Community of Madrid has been one of the most affected regions in Spain by the coronavirus disease 2019 (COVID19) pandemic. A significant reduction in AS hospital admissions has been reported during the COVID-19 pandemic compared to the same period one year before. We aimed to examine the impact of the COVID-19 in stroke codes (SC) in our EMS among three periods of time: the COVID-19 period, the same period the year before, and the 2019-2020 seasonal influenza period. Results: We found no significant reduction in SC during the COVID-19 pandemic. The reduction of hospital admissions might be attributable to patients attending to the hospital by their own means. The maximum SC workload seen during the seasonal influenza has not been reached during the pandemic. We detected a non-significant deviation from the SC protocol, with a slight increase in hospitals9 transfers to non-stroke ready hospitals.
|
||
</p>
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2020.12.10.20246892v2" target="_blank">Stability of the stroke code during the COVID-19 pandemic in the region of Madrid: a retrospective study</a>
|
||
</div></li>
|
||
<li><strong>Probabilistic approaches for classifying highly variable anti-SARS-CoV-2 antibody responses</strong> -
|
||
<div>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
||
Antibody responses vary widely between individuals1, complicating the correct classification of low-titer measurements using conventional assay cut-offs. We found all participants in a clinically diverse cohort of SARS-CoV-2 PCR+ individuals (n=105), and n=33 PCR+ hospital staff, to have detectable IgG specific for pre-fusion-stabilized spike (S) glycoprotein trimers, while 98% of persons had IgG specific for the receptor-binding domain (RBD). However, anti-viral IgG levels differed by several orders of magnitude between individuals and were associated with disease severity, with critically ill patients displaying the highest anti-viral antibody titers and strongest in vitro neutralizing responses. Parallel analysis of random healthy blood donors and pregnant women (n=1,000) of unknown serostatus, further demonstrated highly variable IgG titers amongst seroconverters, although these were generally lower than in hospitalized patients and included several measurements that scored between the classical 3 and 6SD assay cut-offs. Since the correct classification of seropositivity is critical for individual- and population-level metrics, we compared different probabilistic algorithms for their ability to assign likelihood of past infection. To do this, we used tandem anti-S and -RBD IgG responses from our PCR+ individuals (n=138) and a large cohort of historical negative controls (n=595) as training data, and generated an equal-weighted learner from the output of support vector machines and linear discriminant analysis. Applied to test samples, this approach provided a more quantitative way to interpret anti-viral titers over a large continuum, scrutinizing measurements overlapping the negative control background more closely and offering a probability-based diagnosis with potential clinical utility. Especially as most SARS-CoV-2 infections result in asymptomatic or mild disease, these platform-independent approaches improve individual and epidemiological estimates of seropositivity, critical for effective management of the pandemic and monitoring the response to vaccination.
|
||
</p>
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2020.07.17.20155937v5" target="_blank">Probabilistic approaches for classifying highly variable anti-SARS-CoV-2 antibody responses</a>
|
||
</div></li>
|
||
<li><strong>Mathematical Modeling of Coronavirus Reproduction Rate with Policy and Behavioral Effects</strong> -
|
||
<div>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
||
In this paper a modified mathematical model based on the SIR model used which can predict the spreading of the corona virus disease (COVID-19) and its effects on people in the days ahead. This model considers all the death, infected and recovered characteristics of this disease. To determine the extent of the risk posed by this novel coronavirus; the transmission rate (R_0) is utilized for a time period from the beginning of spreading virus. Particularly it includes a novel policy to capture the Ro response in the virus spreading over time. The model estimates the vulnerability of the pandemic according to the method of John H. Cochrane method :with a prediction of new cases by estimating a time-varying R_0 to capture changes in the behavior of SIR model implies to new policy taken at different times and different locations of the world. This modified SIR model with the different values of R_0 can be applied to different country scenario using the real time data report provided by the authorities during this pandemic. The effective evaluation of R_0 can forecast the necessity of lockdown as well as reopening the economy.
|
||
</p>
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2020.06.16.20133330v3" target="_blank">Mathematical Modeling of Coronavirus Reproduction Rate with Policy and Behavioral Effects</a>
|
||
</div></li>
|
||
</ul>
|
||
<h1 data-aos="fade-right" id="from-clinical-trials">From Clinical Trials</h1>
|
||
<ul>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Dendritic Cell Vaccine to Prevent COVID-19</strong> - <b>Condition</b>: COVID-19<br/><b>Intervention</b>: Biological: AV-COVID-19<br/><b>Sponsors</b>: Indonesia-MoH; Aivita Biomedical, Inc.; PT AIVITA Biomedika Indonesia; National Institute of Health Research and Development, Ministry of Health Republic of Indonesia; RSUP Dr. Kariadi Semarang, indonesia; Faculty of Medicine University of Diponegoro, Indonesia<br/><b>Recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A Study to Evaluate MVC-COV1901 Vaccine Against COVID-19 in Adult</strong> - <b>Condition</b>: Covid19 Vaccine<br/><b>Interventions</b>: Biological: MVC-COV1901(S protein with adjuvant); Biological: MVC-COV1901(Saline)<br/><b>Sponsor</b>: Medigen Vaccine Biologics Corp.<br/><b>Recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Effect of Tenofovir/Emtricitabine in Patients Recently Infected With SARS-COV2 (Covid-19) Discharged Home</strong> - <b>Condition</b>: Covid19<br/><b>Intervention</b>: Drug: tenofovir disoproxil and emtricitabine<br/><b>Sponsor</b>: University Hospital, Caen<br/><b>Recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Safety and Immunogenicity of Two Different Strengths of the Inactivated COVID-19 Vaccine ERUCOV-VAC</strong> - <b>Condition</b>: COVID-19 Vaccine<br/><b>Interventions</b>: Biological: ERUCOV-VAC; Other: Placebo Vaccine<br/><b>Sponsors</b>: Health Institutes of Turkey; TC Erciyes University<br/><b>Recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>AZD1222 Vaccine in Combination With rAd26-S (Component of Gam-COVID-Vac Vaccine) for the Prevention of COVID-19</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Biological: AZD1222; Biological: rAd26-S<br/><b>Sponsors</b>: AstraZeneca; R-Pharm; The Russian Direct Investment Fund (RDIF); The Gamaleya National Center of Epidemiology & Microbiology<br/><b>Not yet recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Efficacy of Ramdicivir and Baricitinib for the Treatment of Severe COVID 19 Patients</strong> - <b>Conditions</b>: Covid19; Covid-19 ARDS<br/><b>Interventions</b>: Drug: Remdesivir; Drug: Baricitinib; Drug: Tocilizumab<br/><b>Sponsors</b>: M Abdur Rahim Medical College and Hospital; First affiliated Hospital Xi'an Jiaoting University<br/><b>Recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>The Effect of Deep Breathing Exercise on Dyspnea, Anxiety and Quality of Life in Patients Treated for COVID-19</strong> - <b>Condition</b>: COVID-19<br/><b>Intervention</b>: Behavioral: Deep Breathing Exercise with Triflo<br/><b>Sponsor</b>: Ankara University<br/><b>Not yet recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Study in Adults to Determine the Safety and Immunogenicity of AZD1222, a Non-replicating ChAdOx1 Vector Vaccine, Given in Combination With rAd26-S, Recombinant Adenovirus Type 26 Component of Gam-COVID-Vac Vaccine, for the Prevention of COVID-19.</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Biological: AZD1222; Biological: rAd26-S<br/><b>Sponsors</b>: R-Pharm; AstraZeneca<br/><b>Not yet recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Surgical Face Mask Effects in Patients With COVID-19</strong> - <b>Condition</b>: Covid19<br/><b>Intervention</b>: Other: Sit-To-Stand test<br/><b>Sponsor</b>: Cliniques universitaires Saint-Luc- Université Catholique de Louvain<br/><b>Not yet recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Efficacy of Favipiravir in Treatment of Mild & Moderate COVID-19 Infection in Nepal</strong> - <b>Condition</b>: Covid19<br/><b>Interventions</b>: Drug: Favipiravir; Drug: Placebo; Drug: Remdesivir<br/><b>Sponsor</b>: Nepal Health Research Council<br/><b>Recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Dendritic Cell Vaccine, AV-COVID-19, to Prevent COVID-19 Infection</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Biological: AV-COVID-19; Other: GM-CSF<br/><b>Sponsors</b>: Aivita Biomedical, Inc.; PT AIVITA Biomedika Indonesia; Indonesia Ministry of Health; National Institute of Health Research and Development, Ministry of Health Republic of Indonesia<br/><b>Recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A Clinical Study to Assess the Efficacy and Safety of Amizon® Max in the Treatment of Moderate Covid-19</strong> - <b>Condition</b>: Covid-19 Disease<br/><b>Interventions</b>: Drug: Enisamium Iodide; Drug: Placebo<br/><b>Sponsor</b>: Joint Stock Company "Farmak"<br/><b>Recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>The Safety and Efficacy of SCTA01 Against COVID-19 in Patients Admitted to High Dependence or Intensive Care</strong> - <b>Condition</b>: Covid19<br/><b>Interventions</b>: Biological: SCTA01; Biological: SCTA01 Placebo<br/><b>Sponsor</b>: Sinocelltech Ltd.<br/><b>Not yet recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Feasibility of Remote Evaluation and Monitoring of Acoustic Pathophysiological Signals With External Sensor Technology in Covid-19</strong> - <b>Condition</b>: Covid19<br/><b>Intervention</b>: Device: Senti V1.0 Device<br/><b>Sponsors</b>: Senti Tech Ltd; Liverpool University Hospitals NHS Foundation Trust<br/><b>Not yet recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>RescuE pLAsma eXchange in Severe COVID-19</strong> - <b>Conditions</b>: Therapeutic Plasma Exchange; Covid19<br/><b>Intervention</b>: Other: Therapeutic plasma exchange<br/><b>Sponsor</b>: Heidelberg University<br/><b>Not yet recruiting</b></p></li>
|
||
</ul>
|
||
<h1 data-aos="fade-right" id="from-pubmed">From PubMed</h1>
|
||
<h1 data-aos="fade-right" id="from-patent-search">From Patent Search</h1>
|
||
<ul>
|
||
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Covid 19 - Chewing Gum</strong> - - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=AU313269181">link</a></p></li>
|
||
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A traditional Chinese medicine composition for COVID-19 and/or influenza and preparation method thereof</strong> - - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=AU313300659">link</a></p></li>
|
||
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>STOCHASTIC MODEL METHOD TO DETERMINE THE PROBABILITY OF TRANSMISSION OF NOVEL COVID-19</strong> - The present invention is directed to a stochastic model method to assess the risk of spreading the disease and determine the probability of transmission of severe acute respiratory syndrome corona virus 2 (SARS-CoV-2). - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=IN313339294">link</a></p></li>
|
||
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>The use of human serum albumin (HSA) and Cannabigerol (CBG) as active ingredients in a composition for use in the treatment of Coronavirus (Covid-19) and its symptoms</strong> - - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=AU313251184">link</a></p></li>
|
||
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>The use of human serum albumin (HSA) and Cannabigerol (CBG) as active ingredients in a composition for use in the treatment of Coronavirus (Covid-19) and its symptoms</strong> - - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=AU313251182">link</a></p></li>
|
||
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>抑制病毒受体ACE2的COVID-19防治药物及其应用</strong> - 本发明提供了一种抑制病毒受体ACE2的COVID‑19防治药物及其应用。具体地说,本发明提供了中药鹅不食草在制备调节ACE2表达量的药物中的应用。本发明还提供了中药鹅不食草单独或与其它药物组合在制备COVID‑19防治药物中的应用。本发明发现鹅不食草能够使正常肺上皮细胞中ACE2的表达降低,从而降低新型冠状病毒(SARS‑CoV‑2)感染的风险,发挥预防SARS‑CoV‑2感染及治疗COVID‑19的作用。中药鹅不食草成本低,毒副作用小,疗效显著,为COVID‑19的治疗提供了新策略。 - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=CN313773195">link</a></p></li>
|
||
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>"AYURVEDIC PROPRIETARY MEDICINE FOR TREATMENT OF SEVERWE ACUTE RESPIRATORY SYNDROME CORONAVIRUS 2 (SARS-COV-2."</strong> - AbstractAyurvedic Proprietary Medicine for treatment of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)In one of the aspect of the present invention it is provided that Polyherbal combinations called Coufex (syrup) is prepared as Ayurvedic Proprietary Medicine , Aqueous Extracts Mixing with Sugar Syrup form the following herbal aqueous extract coriandrum sativum was used for the formulation of protek.Further another Polyherbal combination protek as syrup is prepared by the combining an aqueous extract of the medicinal herbs including Emblica officinalis, Terminalia chebula, Terminalia belerica, Aegle marmelos, Zingiber officinale, Ocimum sanctum, Adatoda zeylanica, Piper lingum, Andrographis panivulata, Coriandrum sativum, Tinospora cordiofolia, cuminum cyminum,piper nigrum was used for the formulation of Coufex. - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=IN312324209">link</a></p></li>
|
||
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>제2형 중증급성호흡기증후군 코로나바이러스 감염 질환의 예방 또는 치료용 조성물</strong> - 본 발명은 화학식 1로 표시되는 화합물, 또는 이의 약학적으로 허용가능한 염; 및 글루카곤 수용체 작용제(glucagon receptor agonist), 위 억제 펩타이드(gastric inhibitory peptide, GIP), 글루카곤-유사 펩타이드 1(glucagon-like peptide 1, GLP-1) 및 글루카곤 수용체/위 억제 펩타이드/글루카곤-유사 펩타이드 1(Glucagon/GIP/GLP-1) 삼중 완전 작용제(glucagon receptors, gastric inhibitory peptide and glucagon-like peptide 1 (Glucagon/GIP/GLP-1) triple full agonist)로 이루어진 군으로부터 선택된 1종 이상;을 포함하는 제2형 중증급성호흡기증후군 코로나바이러스 감염 질환 예방 또는 치료용 약학적 조성물을 제공한다. - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=KR313434044">link</a></p></li>
|
||
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Haptens, hapten conjugates, compositions thereof and method for their preparation and use</strong> - A method for performing a multiplexed diagnostic assay, such as for two or more different targets in a sample, is described. One embodiment comprised contacting the sample with two or more specific binding moieties that bind specifically to two or more different targets. The two or more specific binding moieties are conjugated to different haptens, and at least one of the haptens is an oxazole, a pyrazole, a thiazole, a nitroaryl compound other than dinitrophenyl, a benzofurazan, a triterpene, a urea, a thiourea, a rotenoid, a coumarin, a cyclolignan, a heterobiaryl, an azo aryl, or a benzodiazepine. The sample is contacted with two or more different anti-hapten antibodies that can be detected separately. The two or more different anti-hapten antibodies may be conjugated to different detectable labels. - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=AU311608060">link</a></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Mundschutz für Brillenträger und Brillenadapter</strong> -
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
||
</p><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">Mundschutz bestehend aus einem Abdeckteil für den Mund- und gegebenenfalls den Nasenbereich des Gesichts und einem Bandteil mit mindestens einem Halteband, welches mit den Seiten des Abdeckteil verbunden ist und zur Befestigung des Mundschutzes dient, wobei das Halteband am seitlichen Ende des Abdeckteils fixiert ist und eine Schlaufe bildet, dadurch gekennzeichnet, dass an der Schlaufe des Haltebands ein Clip befestigt ist.</p></li>
|
||
</ul>
|
||
<img alt="embedded image" id="EMI-D00000"/>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"></p>
|
||
<ul>
|
||
<li><a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=DE313866570">link</a></li>
|
||
</ul>
|
||
|
||
|
||
<script>AOS.init();</script></body></html> |