191 lines
56 KiB
HTML
191 lines
56 KiB
HTML
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
|
||
<html xmlns="http://www.w3.org/1999/xhtml"><head>
|
||
<meta content="text/html; charset=utf-8" http-equiv="Content-Type"/>
|
||
<meta content="text/css" http-equiv="Content-Style-Type"/>
|
||
<meta content="pandoc" name="generator"/>
|
||
<title></title>
|
||
<style type="text/css">code{white-space: pre;}</style>
|
||
<title>Covid-19 Sentry</title><meta content="width=device-width, initial-scale=1.0" name="viewport"/><link href="styles/simple.css" rel="stylesheet"/><link href="../styles/simple.css" rel="stylesheet"/><link href="https://unpkg.com/aos@2.3.1/dist/aos.css" rel="stylesheet"/><script src="https://unpkg.com/aos@2.3.1/dist/aos.js"></script></head>
|
||
<body>
|
||
<h1 data-aos="fade-down" id="covid-19-sentry">Covid-19 Sentry</h1>
|
||
<h1 data-aos="fade-right" data-aos-anchor-placement="top-bottom" id="contents">Contents</h1>
|
||
<ul>
|
||
<li><a href="#from-preprints">From Preprints</a></li>
|
||
<li><a href="#from-clinical-trials">From Clinical Trials</a></li>
|
||
<li><a href="#from-pubmed">From PubMed</a></li>
|
||
<li><a href="#from-patent-search">From Patent Search</a></li>
|
||
</ul>
|
||
<h1 data-aos="fade-right" id="from-preprints">From Preprints</h1>
|
||
<ul>
|
||
<li><strong>Change in mental and physical health, and social relationships, during highly restrictive lockdown in the COVID-19 pandemic: Evidence from Australia</strong> -
|
||
<div>
|
||
We surveyed a sample of people from the Australian public about their concerns and mental health (n = 1599) during COVID-19 lock-down. When estimating their mental health for the previous year 13% of participants reported more negative than positive emotion, whereas this increased to 41% when participants reflected on their prior month during COVID-19 lock-down. A substantial proportion (39-54%) of participants reported deterioration in mental health, physical health, financial situation, and work productivity. Less impact was apparent for social relationships as participants compensated for decreased face-to-face interaction via increased technology-mediated interaction. We found evidence to suggest a general increase in compassion for others, as participants reported that due to the pandemic they were feeling more concerned about the welfare of people close to them (87%), and people in general (84%). However, the extent of increased concern for others was also found to be negatively associated with mental health. Most participants reported a generally favourable attitude regarding the government pandemic response. This study reveals that even when the public are largely supportive of the government response to a pandemic there can still be large public health implications due to the overall level of disruption to people's lives.
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://psyarxiv.com/zutav/" target="_blank">Change in mental and physical health, and social relationships, during highly restrictive lockdown in the COVID-19 pandemic: Evidence from Australia</a>
|
||
</div></li>
|
||
<li><strong>Analyzing the vast coronavirus literature with CoronaCentral</strong> -
|
||
<div>
|
||
The global SARS-CoV-2 pandemic has caused a surge in research exploring all aspects of the virus and its effects on human health. The overwhelming rate of publications means that human researchers are unable to keep abreast of the research. To ameliorate this, we present the CoronaCentral resource which uses machine learning to process the research literature on SARS-CoV-2 along with articles on SARS-CoV and MERS-CoV. We break the literature down into useful categories and enable analysis of the contents, pace, and emphasis of research during the crisis. These categories cover therapeutics, forecasting as well as growing areas such as "Long Covid" and studies of inequality and misinformation. Using this data, we compare topics that appear in original research articles compared to commentaries and other article types. Finally, using Altmetric data, we identify the topics that have gained the most media attention. This resource, available at https://coronacentral.ai, is updated multiple times per day and provides an easy-to-navigate system to find papers in different categories, focussing on different aspects of the virus along with currently trending articles.
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2020.12.21.423860v1" target="_blank">Analyzing the vast coronavirus literature with CoronaCentral</a>
|
||
</div></li>
|
||
<li><strong>T cell activation, highly armed cytotoxic cells and a sharp shift in monocytes CD300 receptors expression is characteristic of patients with severe COVID-19</strong> -
|
||
<div>
|
||
COVID-19 manifests with a wide diversity of clinical phenotypes characterized by dysfunctional and exaggerated host immune responses. Many results have been described on the status of the immune system of patients infected with SARS-CoV-2, but there are still aspects that have not been fully characterized. In this study, we have analyzed a cohort of patients with mild, moderate and severe disease. We performed flow cytometric studies and correlated the data with the clinical features and clinical laboratory values of patients. Both conventional and unsupervised data analyses concluded that patients with severe disease are characterized, among others, by a higher state of activation in all T cell subsets, higher expression of perforin and granzyme B in cytotoxic cells, expansion of adaptive NK cells and the accumulation of activated and immature dysfunctional monocytes which are identified by a low expression of HLA-DR and an intriguing abrupt change in the expression pattern of CD300 receptors. More importantly, correlation analysis showed a strong association between the alterations in the immune cells and the clinical signs of severity. These results indicate that patients with severe COVID-19 have a broad perturbation of their immune system, and they will help to understand the immunopathogenesis of severe COVID-19 as well as could be of special value for physicians to decide which specific therapeutic options are most effective for their patients.
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2020.12.22.423917v1" target="_blank">T cell activation, highly armed cytotoxic cells and a sharp shift in monocytes CD300 receptors expression is characteristic of patients with severe COVID-19</a>
|
||
</div></li>
|
||
<li><strong>SARS-CoV-2 Genomic Surveillance in Costa Rica: Evidence of a Divergent Population and an Increased Detection of a Spike T1117I Mutation</strong> -
|
||
<div>
|
||
Genome sequencing is a key strategy in the surveillance of SARS-CoV-2, the virus responsible for the COVID-19 outbreak. Latin America is the hardest hit region of the world, accumulating almost 25% of COVID-19 cases worldwide. Costa Rica was first exemplary for the region in its pandemic control, declaring a swift state of emergency on March 16th that led to a low quantity of cases, until measures were lifted in early May. From the first detected case in March 6th to November 30th almost 140 000 cases have been reported in Costa Rica, 99.5% of them from May onwards. We analyzed the genomic variability during the SARS-CoV-2 pandemic in Costa Rica using 138 sequences, 52 from the first months of the pandemic, and 86 from the current wave. Three GISAID clades (G, GH, and GR) and three PANGOLIN lineages (B.1, B.1.1, and B.1.291) are predominant, with phylogenetic relationships that are in line with the results of other Latin American countries suggesting introduction and multiple re-introductions from other regions of the world. The sequences from the first months of the pandemic grouped in lineage B.1 and B.1.5 mainly, suggesting low undetected circulation and re-introductions of new lineages not detected in the country during early stages of the pandemic due to the extreme lockdown measures. The whole-genome variant calling analysis identified a total of 177 distinct variants. These correspond mostly to synonymous mutations (41.2%, 73) but 54.8% correspond to non-synonymous mutations (97). The 177 variants showed an expected distribution of a power-law distribution: 106 single nucleotide mutations were identified in single sequences, only 16 single nucleotide mutations were found in >5% sequences, and only three single nucleotide mutations in >25% genomes. These mutations were distributed all over the genome. However, 61.5% were present in ORF1ab, and 15.0% in Spike gene and 9.6% in the Nucleocapsid. Additionally, the prevalence of worldwide-found variant D614G in the Spike (98.6%), ORF8 L84S (1.5%) is similar to what is been found elsewhere. Interestingly, the prevalence of mutation T1117I in the Spike has increased during the current pandemic wave beginning in May 2020 in Costa Rica, reaching 14.5% detection in the full genome analyses in August 2020. This variant has been observed in less than 1% of the GISAID reported sequences in other countries. Structural modeling of the Spike protein with the T1117I mutation suggest a possible effect on the viral oligomerization. Nevertheless, in-vitro experiments are required to prove this in-silico analyses. In conclusion, genome analyses of the SARS-CoV-2 sequences over the course of COVID-19 pandemic in Costa Rica suggests re-introduction of lineages from other countries as travel bans and measures were lifted, similar to results found in other studies, but the Spike-T1117I variant needs to be monitored and studied in further analyses as part of the surveillance program during the pandemic.
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2020.12.21.423850v1" target="_blank">SARS-CoV-2 Genomic Surveillance in Costa Rica: Evidence of a Divergent Population and an Increased Detection of a Spike T1117I Mutation</a>
|
||
</div></li>
|
||
<li><strong>SARS-CoV-2 testing of 11,884 healthcare workers at an acute NHS hospital trust in England: a retrospective analysis</strong> -
|
||
<div>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
||
Healthcare workers (HCWs) are known to be at increased risk of infection with SARS-CoV-2, although whether these risks are equal across all roles is uncertain. Here we report a retrospective analysis of a large real-world dataset obtained from 10 March to 6 July 2020 in an NHS Foundation Trust in England with 17,126 employees. 3,338 HCWs underwent symptomatic PCR testing (14.4% positive, 2.8% of all staff) and 11,103 HCWs underwent serological testing for SARS-CoV-2 IgG (8.4% positive, 5.5% of all staff). Seropositivity was lower than other hospital settings in England but higher than community estimates. Increased test positivity rates were observed in HCWs from BAME backgrounds and residents in areas of higher social deprivation. A logistic regression model adjusting for these factors showed significant increases in the odds of testing positive in certain occupational groups, most notably domestic services staff, nurses and health-care assistants. PCR testing of symptomatic HCWs appeared to underestimate overall infection levels, probably due to asymptomatic seroconversion. Clinical outcomes were reassuring, with only a small minority of HCWs with COVID-19 requiring hospitalisation (2.3%) or ICU management (0.7%) and with no deaths. Despite a relatively low level of HCW infection compared to other UK cohorts, there were nevertheless important differences in test positivity rates between occupational groups, robust to adjustment for demographic factors such as ethnic background and social deprivation. Quantitative and qualitative studies are needed to better understand the factors contributing to this risk. Robust informatics solutions for HCW exposure data are essential to inform occupational monitoring.
|
||
</p>
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2020.12.22.20242362v1" target="_blank">SARS-CoV-2 testing of 11,884 healthcare workers at an acute NHS hospital trust in England: a retrospective analysis</a>
|
||
</div></li>
|
||
<li><strong>Transcriptional and epi-transcriptional dynamics of SARS-CoV-2 during cellular infection</strong> -
|
||
<div>
|
||
SARS-CoV-2 uses subgenomic (sg)RNA to produce viral proteins for replication and immune evasion. We applied long-read RNA and cDNA sequencing to in vitro human and primate infection models to study transcriptional dynamics. Transcription-regulating sequence (TRS)-dependent sgRNA was upregulated earlier in infection than TRS-independent sgRNA. An abundant class of TRS-independent sgRNA consisting of a portion of ORF1ab containing nsp1 joined to ORF10 and 3prime UTR was upregulated at 48 hours post infection in human cell lines. We identified double-junction sgRNA containing both TRS-dependent and independent junctions. We found multiple sites at which the SARS-CoV-2 genome is consistently more modified than sgRNA, and that sgRNA modifications are stable across transcript clusters, host cells and time since infection. Our work highlights the dynamic nature of the SARS-CoV-2 transcriptome during its replication cycle. Our results are available via an interactive web-app at http://coinlab.mdhs.unimelb.edu.au/.
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2020.12.22.423893v1" target="_blank">Transcriptional and epi-transcriptional dynamics of SARS-CoV-2 during cellular infection</a>
|
||
</div></li>
|
||
<li><strong>In Vitro Safety Clinical Trial of the Cardiac Liability of Hydroxychloroquine and Azithromycin as COVID19 Polytherapy</strong> -
|
||
<div>
|
||
Despite global efforts, there are no effective FDA-approved medicines for the treatment of SARS-CoV-2 infection. Potential therapeutics focus on repurposed drugs, some with cardiac liabilities. Here we report on a preclinical drug screening platform, a cardiac microphysiological system (MPS), to assess cardiotoxicity associated with hydroxychloroquine (HCQ) and azithromycin (AZM) polytherapy in a mock clinical trial. The MPS contained human heart muscle derived from patient-specific induced pluripotent stem cells. The effect of drug response was measured using outputs that correlate with clinical measurements such as QT interval (action potential duration) and drug-biomarker pairing. Chronic exposure to HCQ alone elicited early afterdepolarizations (EADs) and increased QT interval from day 6 onwards. AZM alone elicited an increase in QT interval from day 7 onwards and arrhythmias were observed at days 8 and 10. Monotherapy results closely mimicked clinical trial outcomes. Upon chronic exposure to HCQ and AZM polytherapy, we observed an increase in QT interval on days 4-8. Interestingly, a decrease in arrhythmias and instabilities was observed in polytherapy relative to monotherapy, in concordance with published clinical trials. Furthermore, biomarkers, most of them measurable in patients serum, were identified for negative effects of single drug or polytherapy on tissue contractile function, morphology, and antioxidant protection. The cardiac MPS can predict clinical arrhythmias associated with QT prolongation and rhythm instabilities. This high content system can help clinicians design their trials, rapidly project cardiac outcomes, and define new monitoring biomarkers to accelerate access of patients to safe COVID-19 therapeutics.
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2020.12.21.423869v1" target="_blank">In Vitro Safety Clinical Trial of the Cardiac Liability of Hydroxychloroquine and Azithromycin as COVID19 Polytherapy</a>
|
||
</div></li>
|
||
<li><strong>The Ensembl COVID-19 resource: Ongoing integration of public SARS-CoV-2 data</strong> -
|
||
<div>
|
||
The Ensembl COVID-19 browser (covid-19.ensembl.org) was launched in May 2020 in response to the ongoing pandemic. It is Ensembl's contribution to the global efforts to develop treatments, diagnostics and vaccines for COVID-19, and it supports research into the genomic epidemiology and evolution of the SARS-CoV-2 virus. This freely available resource incorporates a new Ensembl gene set, multiple sets of variants, and alignments of annotation from several resources against the reference assembly for SARS-CoV-2. It represents the first virus to be encompassed within the Ensembl platform. Additional data are being continually integrated via our new rapid release protocols alongside tools such as the Ensembl Variant Effect Predictor. Here we describe the data and infrastructure behind the resource and discuss future work.
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2020.12.18.422865v1" target="_blank">The Ensembl COVID-19 resource: Ongoing integration of public SARS-CoV-2 data</a>
|
||
</div></li>
|
||
<li><strong>Occupational exposures associated with being a COVID-19 case; evidence from three case-control studies</strong> -
|
||
<div>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
||
Background The evidence on risk factors for transmission of SARS-CoV-2 in community settings is sparse, yet this information is key to inform public health action. We investigated factors associated with being a COVID-19 case using data collected through contact tracing. Methods We conducted three retrospective, frequency-matched case-control studies between August 2020 and October 2020 using case data from the NHS Test and Trace programme. Controls were obtained through Market Research Panels. Multivariable analyses provided adjusted odds ratios (aORs) for multiple community exposure settings. We analysed the results in meta-analyses using random effects models to obtain pooled odds ratios (pORs). Results Across all study periods, there was strong statistical evidence that working in healthcare (pOR 2.87, aOR range 2.72-3.08), social care (pOR 4.15, aOR range 2.46-5.41) or hospitality (pOR 2.36, aOR range 2.01-2.63) were associated with increased odds of being a COVID-19 case. There was also evidence that working in warehouse setting was associated with increased odds (pOR 3.86, aOR range 1.06-14.19), with a substantial increase in odds observed over the study periods. A similar pattern was also observed in education and construction. Conclusions The studies indicate that some workplace settings are associated with increased odds of being a case. However, it is not possible to determine how much of the transmission of SARS-CoV-2 took place within the workplace, and how much was associated with social, household or transport exposures.
|
||
</p>
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2020.12.21.20248161v1" target="_blank">Occupational exposures associated with being a COVID-19 case; evidence from three case-control studies</a>
|
||
</div></li>
|
||
<li><strong>Analysis of 46,046 SARS-CoV-2 whole-genomes leveraging principal component analysis (PCA)</strong> -
|
||
<div>
|
||
Since the beginning of the global SARS-CoV-2 pandemic, there have been a number of efforts to understand the mutations and clusters of genetic lines of the SARS-CoV-2 virus. Until now, phylogenetic analysis methods have been used for this purpose. Here we show that Principal Component Analysis (PCA), which is widely used in population genetics, can not only help us to understand existing findings about the mutation processes of the virus, but can also provide even deeper insights into these processes while being less sensitive to sequencing gaps. Here we describe a comprehensive analysis of a 46,046 SARS-CoV-2 genome sequence dataset downloaded from the GISAID database in June of this year.
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2020.12.20.423682v1" target="_blank">Analysis of 46,046 SARS-CoV-2 whole-genomes leveraging principal component analysis (PCA)</a>
|
||
</div></li>
|
||
<li><strong>Detailed disease progression of 213 patients hospitalized with Covid-19 in the Czech Republic: An exploratory analysis</strong> -
|
||
<div>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
||
We collected a multi-centric retrospective dataset of patients (N = 213) who were admitted to ten hospitals in Czech Republic and tested positive for SARS-CoV-2. The dataset contains baseline patient characteristics, breathing support required, pharmacological treatment received and multiple markers on daily resolution. Patients in the dataset were treated with hydroxychloroquine (N = 108), azithromycin (N = 72), favipiravir (N = 9), convalescent plasma (N = 7), dexamethasone (N = 4) and remdesivir (N = 3), often in combination. Most patients were admitted during the first wave of the epidemic. To explore association between treatments and patient outcomes we performed multiverse analysis, observing how the conclusions change between defensible choices of statistical model, predictors included in the model and other analytical degrees of freedom. Weak evidence to constrain the potential efficacy of azithromycin and favipiravir can be extracted from the data. Additionally, we performed external validation of several proposed prognostic models for Covid-19 severity showing that they mostly perform unsatisfactorily on our dataset.
|
||
</p>
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2020.12.03.20239863v2" target="_blank">Detailed disease progression of 213 patients hospitalized with Covid-19 in the Czech Republic: An exploratory analysis</a>
|
||
</div></li>
|
||
<li><strong>CovidRiskCalc: An online app to calculate the risk of COVID infection in a gathering</strong> -
|
||
<div>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
||
CovidRiskCalc is an evidence based online app which calculates the risk of COVID-19 infection for a person coming into contact during a specific event/gathering with a group of individuals, some of whom may be infected (available at CovidRiskCalc.eu). The user is helped in providing a rough estimate of the COVID-19 prevalence rate in the group. She also inputs the size of the group, the number (and duration) of her contacts and the level of precautions (masks, social distancing, etc.). The app calculates the user9s risk of transmission in a single infected contact; her probability of infection during the entire event and the number of new infections within the group. Two numerical examples are given. The tool, designed for both professionals and the general public, thus quantifies the risks of infection in special populations (social gatherings, prisons, etc.), but also in general ones (stores, stadiums, etc.).
|
||
</p>
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2020.12.01.20241646v2" target="_blank">CovidRiskCalc: An online app to calculate the risk of COVID infection in a gathering</a>
|
||
</div></li>
|
||
<li><strong>Immunogenicity and crossreactivity of antibodies to SARS-CoV-2 nucleocapsid protein</strong> -
|
||
<div>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
||
COVID-19 patients elicit strong responses to the nucleocapsid (N) protein of SARS-CoV-2 but binding antibodies are also detected in prepandemic individuals, indicating potential crossreactivity with common cold human coronaviruses (HCoV) and questioning its utility in seroprevalence studies. We investigated the immunogenicity of the full-length and shorter fragments of the SARS-CoV-2 N protein, and the crossreactivity of antibodies with HCoV. We indentified a C-terminus region in SARS-CoV2 N of minimal sequence homology with HCoV that was more specific and highly immunogenic. IgGs to the full-length SARS-CoV-2 N also recognised N229E N, and IgGs to HKU1 N recognised SARS-CoV-2 N. Crossreactivity with SARS-CoV-2 was stronger for alpha- rather than beta-HCoV despite having less sequence identity, revealing the importance of conformational recognition. Higher preexisting IgG to OC43 N correlated with lower IgG to SARS-CoV-2 in rRT-PCR negative individuals, reflecting less exposure and indicating a potential protective association. Antibodies to SARS-CoV-2 N were higher in patients with more severe and longer symptoms and in females. IgGs remained stable for at least 3 months, while IgAs and IgMs declined faster. In conclusion, N is a primary target of SARS-CoV-2-specific and HCoV crossreactive antibodies, both of which may affect the acquisition of immunity to COVID-19.
|
||
</p>
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2020.12.19.20248551v1" target="_blank">Immunogenicity and crossreactivity of antibodies to SARS-CoV-2 nucleocapsid protein</a>
|
||
</div></li>
|
||
<li><strong>Development and Evaluation of Two Rapid Indigenous IgG-ELISA immobilized with ACE-2 Binding Peptides for Detection Neutralizing Antibodies Against SARS-CoV-2</strong> -
|
||
<div>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
||
COVID-19 pandemic situation demands effective serological tests with a view to adopting and developing policy for disease management, determining protective immunity as well as for sero-epidemiological study. Our study aims to develop and evaluate two rapid in-house ELISA assays targeting neutralizing antibodies (IgG) against S1 subunit of spike in SARS-CoV-2 and Receptor Binding Domain (RBD), as well as comparative analysis with nucleocapsid (NCP) ELISA. The assays were conducted with 184 samples in three panels collected from 134 patients. Panel 1 and 2 consist of RT-PCR positive samples collected within two weeks and after two weeks of symptom onset, respectively. Negative samples are included in panel 3 from healthy donors and pre-pandemic dengue patients. The total assay time has been set 30 minutes for both of the ELISA assays. Results show that S1 and RBD ELISA demonstrates 73.68% and 84.21% sensitivities, respectively for samples collected within two weeks, whereas 100% sensitivities were achieved by both for samples that were collected after two weeks of the onset of symptoms. S1-ELISA shows 0% positivity to panel 3 while for RBD-ELISA the figure is 1%. A strong correlation (rs=0.804, p<0.0001)) has been observed between these two assays. When compared with NCP-ELISA, S1 slightly better correlation (rs=0.800, p<0.0001) than RBD (rs=0.740, p<0.0001). Our study suggests S1-ELISA as more sensitive one than the RBD or nucleocapsid ELISA during the later phase of infection, while for overall sero-monitoring RBD specific IgG ELISA is recommended. Moreover, non-reactivity to dengue emphasize the use of these assays for serosurveillance of COVID-19 in the dengue endemic regions.
|
||
</p>
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2020.12.19.20248535v1" target="_blank">Development and Evaluation of Two Rapid Indigenous IgG-ELISA immobilized with ACE-2 Binding Peptides for Detection Neutralizing Antibodies Against SARS-CoV-2</a>
|
||
</div></li>
|
||
<li><strong>Risk Factors Associated with Increased Antibiotic Use in COVID-19 Hospitalized Patients</strong> -
|
||
<div>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
||
Literature suggests that antibiotic prescribing in COVID-19 patients is high, despite low rates of confirmed bacterial infection. There are little data on what drives prescribing habits. This retrospective, multi-center, observational study sought to determine antibiotic prescribing rates and risk factors for antibiotic prescribing in hospitalized patients. Patients admitted from March 1, 2020 to May 31, 2020 and treated for PCR-confirmed COVID-19 were included. The primary endpoint was the rate of antibiotic use during hospitalization. Secondary endpoints included risk factors associated with antibiotic use, risk factors associated with receiving more than one antibiotic course, and rate of microbiologically confirmed infections. A total of 208 encounters (198 patients) were included in the final analysis. Eighty-three percent of patients received at least one course of antibiotics, despite low rates of microbiologically confirmed infection (12%). Almost one-third of patients (30%) received more than one course of antibiotics. There was a low rate of respiratory cultures obtained (32%). Risk factors identified in a univariate analysis for both antibiotic prescribing and receiving more than one course of antibiotics were more serious illness, increased hospital length of stay, ICU admission, mechanical ventilation, and ARDS. This study highlights the need for increased antibiotic stewardship practices in COVID-19 patients. Further studies should be conducted to determine the utility of different stewardship initiatives in COVID-19 patients.
|
||
</p>
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2020.10.21.20217117v2" target="_blank">Risk Factors Associated with Increased Antibiotic Use in COVID-19 Hospitalized Patients</a>
|
||
</div></li>
|
||
</ul>
|
||
<h1 data-aos="fade-right" id="from-clinical-trials">From Clinical Trials</h1>
|
||
<ul>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Evaluating Safety, Pharmacokinetics and Clinical Benefit of Silmitasertib (CX-4945) in Subjects With Moderate COVID-19</strong> - <b>Condition</b>: Covid19<br/><b>Interventions</b>: Drug: Silmitasertib; Drug: SOC<br/><b>Sponsor</b>: Chris Recknor, MD<br/><b>Recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Evaluation of the Efficacy of High Doses of Methylprednisolone in SARS-CoV2 ( COVID-19) Pneumonia Patients</strong> - <b>Condition</b>: Covid19<br/><b>Intervention</b>: Drug: Methylprednisolone, Placebo<br/><b>Sponsor</b>: Azienda Unità Sanitaria Locale Reggio Emilia<br/><b>Not yet recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Use of BCG Vaccine as a Preventive Measure for COVID-19 in Health Care Workers</strong> - <b>Condition</b>: COVID 19 Vaccine<br/><b>Intervention</b>: Biological: BCG vaccine<br/><b>Sponsors</b>: Universidade Federal do Rio de Janeiro; Ministry of Science and Technology, Brazil<br/><b>Recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Changes in Viral Load in COVID-19 After Probiotics</strong> - <b>Condition</b>: COVID-19<br/><b>Intervention</b>: Dietary Supplement: Dietary supplementation in patients with covid disease admitted to hospital<br/><b>Sponsors</b>: Hospital de Sagunto; Biopolis S.L.; Laboratorios Heel España<br/><b>Recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Efficacy and Safety of Ivermectin for Treatment and Prophylaxis of COVID-19 Pandemic</strong> - <b>Condition</b>: Covid19<br/><b>Interventions</b>: Drug: Ivermectin; Drug: Hydroxychloroquine; Behavioral: personal protective Measures<br/><b>Sponsor</b>: Benha University<br/><b>Completed</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Effect of Dalcetrapib in Patients With Confirmed Mild to Moderate COVID-19</strong> - <b>Condition</b>: Covid19<br/><b>Interventions</b>: Drug: Dalcetrapib; Other: Placebo<br/><b>Sponsors</b>: DalCor Pharmaceuticals; The Montreal Health Innovations Coordinating Center (MHICC); Covance<br/><b>Not yet recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Phase 3 Inhaled Novaferon Study in Hospitalized Patients With Moderate to Severe COVID-19</strong> - <b>Condition</b>: Covid19<br/><b>Interventions</b>: Biological: Novaferon; Biological: Placebo<br/><b>Sponsor</b>: Genova Inc.<br/><b>Not yet recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>suPAR-Guided Anakinra Treatment for Management of Severe Respiratory Failure by COVID-19</strong> - <b>Condition</b>: Covid19<br/><b>Interventions</b>: Drug: Anakinra; Drug: Placebo<br/><b>Sponsor</b>: Hellenic Institute for the Study of Sepsis<br/><b>Not yet recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Efficacy and Safety of High-dose Vitamin C Combined With Chinese Medicine Against Coronavirus Pneumonia (COVID-19)</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Drug: Alpha-interferon alpha, abidol, ribavirin, Buzhong Yiqi plus and minus formula, Huhuang Detoxicity Paste, Baimu Qingre Jiedu Paste, fumigation/inhalation of vitamin C; Drug: Alpha-interferon, abidol, ribavirin, Buzhong Yiqi plus and minus formula, Huhuang Detoxicity Paste, Baimu Qingre Jiedu Paste and 5% glucose; Drug: Alpha-interferon, abidol, ribavirin, Buzhong Yiqi plus and minus formula, Huhuang Detoxicity Paste, Baimu Qingre Jiedu Paste and high-dose vitamin C treatment<br/><b>Sponsor</b>: Xi'an International Medical Center Hospital<br/><b>Active, not recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Study on Safety and Clinical Efficacy of AZVUDINE in COVID-19 Patients (SARS-CoV-2 Infected)</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Drug: AZVUDINE; Drug: AZVUDINE placebo<br/><b>Sponsors</b>: HRH Holdngs Limited; GALZU INSTITUTE OF RESEARCH, TEACHING, SCIENCE AND APPLIED TECHNOLOGY, Brazil; SANTA CASA DE MISERICORDIA DE CAMPOS HOSPITAL (SCMCH), Brazil; UNIVERSIDADE ESTADUAL DO NORTE FLUMINENSE (UENF), Brazil<br/><b>Not yet recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Evaluating the Impact of EnteraGam In People With COVID-19</strong> - <b>Condition</b>: Covid19<br/><b>Interventions</b>: Dietary Supplement: Bovine Plasma-Derived Immunoglobulin Concentrate; Other: Standard of care<br/><b>Sponsors</b>: Entera Health, Inc; Lemus Buhils, SL; Clinical Research Unit, IMIM (Hospital del Mar Medical Research Institute)<br/><b>Not yet recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Efficacy and Safety of Remdesivir and Tociluzumab for the Management of Severe COVID-19: A Randomized Controlled Trial</strong> - <b>Conditions</b>: Covid19; Covid-19 ARDS<br/><b>Interventions</b>: Drug: Remdesivir; Drug: Tocilizumab<br/><b>Sponsors</b>: M Abdur Rahim Medical College and Hospital; First affiliated Hospital of Xi'an Jiaoting University<br/><b>Recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Inhaled Ivermectin and COVID-19</strong> - <b>Condition</b>: COVID-19<br/><b>Intervention</b>: Drug: Ivermectin Powder<br/><b>Sponsor</b>: Mansoura University<br/><b>Not yet recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A Clinical Safety Study on AT-100 in Treating Adults With Severe COVID-19 Infection</strong> - <b>Condition</b>: Covid19<br/><b>Intervention</b>: Biological: AT-100<br/><b>Sponsor</b>: Airway Therapeutics, Inc.<br/><b>Not yet recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Anti-COVID19 AKS-452 - ACT Study</strong> - <b>Condition</b>: Covid19<br/><b>Intervention</b>: Biological: AKS-452<br/><b>Sponsors</b>: University Medical Center Groningen; Akston Biosciences Corporation<br/><b>Not yet recruiting</b></p></li>
|
||
</ul>
|
||
<h1 data-aos="fade-right" id="from-pubmed">From PubMed</h1>
|
||
<ul>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Effects of Tocilizumab in COVID-19 patients: a cohort study</strong> - CONCLUSIONS: Majority of patients demonstrated clinical improvement and were successfully discharged alive from the hospital after receiving tocilizumab. We observed a rebound effect with CRP, which may suggest the need for higher or subsequent doses to adequately manage cytokine storm. Based on our findings, we believe that tocilizumab may have a role in the early treatment of COVID-19, however larger randomized controlled studies are needed to confirm this.</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Gallium maltolate has in vitro antiviral activity against SARS-CoV-2 and is a potential treatment for COVID-19</strong> - CONCLUSION: The in vitro activity of GaM against SARS-CoV-2, together with GaM's known anti-inflammatory activity, provide justification for testing GaM in COVID-19 patients.</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Identification of FDA approved drugs and nucleoside analogues as potential SARS-CoV-2 A1pp domain inhibitor: An in silico study</strong> - Coronaviruses are known to infect respiratory tract and intestine. These viruses possess highly conserved viral macro domain A1pp having adenosine diphosphate (ADP)-ribose binding and phosphatase activity sites. A1pp inhibits adenosine diphosphate (ADP)-ribosylation in the host and promotes viral infection and pathogenesis. We performed in silico screening of FDA approved drugs and nucleoside analogue library against the recently reported crystal structure of SARS-CoV-2 A1pp domain. Docking...</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Innate Inhibiting Proteins Enhance Expression and Immunogenicity of Self-Amplifying RNA</strong> - Self-amplifying RNA (saRNA) is a cutting-edge platform for both nucleic acid vaccines and therapeutics. saRNA is self-adjuvanting, as it activates types I and III interferon (IFN), which enhances the immunogenicity of RNA vaccines but can also lead to inhibition of translation. In this study, we screened a library of saRNA constructs with cis-encoded innate inhibiting proteins (IIPs) and determined the effect on protein expression and immunogenicity. We observed that the PIV-5 V and Middle East...</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Structure-Based Screening to Discover New Inhibitors for Papain-like Proteinase of SARS-CoV-2: An In Silico Study</strong> - Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) expresses a multifunctional papain-like proteinase (PLpro), which mediates the processing of the viral replicase polyprotein. Inhibition of PLpro has been shown to suppress the viral replication. This study aimed to explore new anti-PLpro candidates by applying virtual screening based on GRL0617, a known PLpro inhibitor of SARS coronavirus (SARS-CoV). The three-dimensional (3D) structure of SARS-CoV-2 PLpro was built by homology...</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A ligand selection strategy identifies chemical probes targeting the proteases of SARS-CoV-2</strong> - Activity-based probes are valuable tools for chemical biology. However, finding probes that specifically target the active site of an enzyme remains a challenging task. Here we present a ligand selection strategy that allows to rapidly tailor electrophilic probes to a target of choice and showcase its application for the two cysteine proteases of SARS-CoV-2 as proof of concept. The resulting probes were specific for the active site labelling of 3CL pro and PL pro with sufficient selectivity in a...</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Effect of pre-exposure use of hydroxychloroquine on COVID-19 mortality: a population-based cohort study in patients with rheumatoid arthritis or systemic lupus erythematosus using the OpenSAFELY platform</strong> - BACKGROUND: Hydroxychloroquine has been shown to inhibit entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into epithelial cells in vitro, but clinical studies found no evidence of reduced mortality when treating patients with COVID-19. We aimed to evaluate the effectiveness of hydroxychloroquine for prevention of COVID-19 mortality, as opposed to treatment for the disease.</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Spiky nanostructures for virus inhibition and infection prevention</strong> - The outbreak of a novel highly infectious virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has aroused people's concern about public health. The lack of ready-to-use vaccines and therapeutics makes the fight with these pathogens extremely difficult. To this point, rationally designed virus entry inhibitors that block the viral interaction with its receptor can be novel strategies to prevent virus infection. For ideal inhibition of the virus, the virus-inhibitor interaction...</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>The SARS-CoV-2 RNA-protein interactome in infected human cells</strong> - Characterizing the interactions that SARS-CoV-2 viral RNAs make with host cell proteins during infection can improve our understanding of viral RNA functions and the host innate immune response. Using RNA antisense purification and mass spectrometry, we identified up to 104 human proteins that directly and specifically bind to SARS-CoV-2 RNAs in infected human cells. We integrated the SARS-CoV-2 RNA interactome with changes in proteome abundance induced by viral infection and linked interactome...</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Calcium channel blocker amlodipine besylate therapy is associated with reduced case fatality rate of COVID-19 patients with hypertension</strong> - The coronavirus disease (COVID-19) caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has now spread to >200 countries posing a global public health concern. Patients with comorbidity, such as hypertension suffer more severe infection with elevated mortality. The development of effective antiviral drugs is in urgent need to treat COVID-19 patients. Here, we report that calcium channel blockers (CCBs), a type of antihypertensive drug that is widely used in clinics,...</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Beneficial effect of Indigo Naturalis on acute lung injury induced by influenza A virus</strong> - CONCLUSION: The results showed that INAE alleviated IAV induced ALI in mice. The mechanisms of INAE were associated with its anti-influenza, anti-inflammatory and anti-oxidation properties. Indigo Naturalis might have clinical potential to treat ALI induced by IAV.</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Action of dipeptidyl peptidase-4 inhibitors on SARS-CoV-2 main protease</strong> - In a recent publication in this journal Eleftheriou et al. proposed inhibitors of dipeptidyl peptidase-4 (DPP-4) to be functional inhibitors of the main protease (M pro ) of SARS-CoV-2. Their predictions prompted the authors to suggest linagliptin, a DPP-4 inhibitor and approved anti-diabetes drug, as a repurposed drug candidate against the ongoing COVID-19 pandemic. We used an enzymatic assay measuring inhibition of M pro catalytic activity in the presence of four different commercially...</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>"Silent hypoxaemia in COVID-19 patients"</strong> - The clinical presentation of COVID-19 due to infection with SARS-CoV-2 is highly variable with the majority of patients having mild symptoms while others develop severe respiratory failure. The reason for this variability is unclear but is in critical need of investigation. Some COVID-19 patients have been labeled with 'happy hypoxia,' in which patient complaints of dyspnoea and observable signs of respiratory distress are reported to be absent. Based on ongoing debate, we highlight key...</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Recognition of Plausible Therapeutic Agents to Combat COVID-19: An Omics Data Based Combined Approach</strong> - Coronavirus disease-2019 (COVID-19), caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), has become an immense threat to global public health. In this study, more than 67,000 reference sequences including a complete genome sequence of SARS-CoV-2 isolate performed by us and several in silico techniques were merged to propose prospective therapeutics. Through meticulous analysis, several conserved and therapeutically suitable regions of SARS-CoV-2 such as RNA-dependent RNA...</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Understanding the immunopathogenesis of COVID-19: Its implication for therapeutic strategy</strong> - Although 80% of individuals infected with the severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) recover without antiviral treatments, the other 20% progress to severe forms of pulmonary disease, suggesting that the host's immune response to the virus could influence the outcome of coronavirus disease 2019 (COVID-19). SARS-CoV-2 infects alveolar epithelial type 2 cells expressing angiotensin-converting enzyme 2, and these infected epithelial cells recruit dendritic cells, neutrophils...</p></li>
|
||
</ul>
|
||
<h1 data-aos="fade-right" id="from-patent-search">From Patent Search</h1>
|
||
<ul>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Covid 19 - Chewing Gum</strong> -</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A traditional Chinese medicine composition for COVID-19 and/or influenza and preparation method thereof</strong> -</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>STOCHASTIC MODEL METHOD TO DETERMINE THE PROBABILITY OF TRANSMISSION OF NOVEL COVID-19</strong> - The present invention is directed to a stochastic model method to assess the risk of spreading the disease and determine the probability of transmission of severe acute respiratory syndrome corona virus 2 (SARS-CoV-2).</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>The use of human serum albumin (HSA) and Cannabigerol (CBG) as active ingredients in a composition for use in the treatment of Coronavirus (Covid-19) and its symptoms</strong> -</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>The use of human serum albumin (HSA) and Cannabigerol (CBG) as active ingredients in a composition for use in the treatment of Coronavirus (Covid-19) and its symptoms</strong> -</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>"AYURVEDIC PROPRIETARY MEDICINE FOR TREATMENT OF SEVERWE ACUTE RESPIRATORY SYNDROME CORONAVIRUS 2 (SARS-COV-2."</strong> - AbstractAyurvedic Proprietary Medicine for treatment of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)In one of the aspect of the present invention it is provided that Polyherbal combinations called Coufex (syrup) is prepared as Ayurvedic Proprietary Medicine , Aqueous Extracts Mixing with Sugar Syrup form the following herbal aqueous extract coriandrum sativum was used for the formulation of protek.Further another Polyherbal combination protek as syrup is prepared by the combining an aqueous extract of the medicinal herbs including Emblica officinalis, Terminalia chebula, Terminalia belerica, Aegle marmelos, Zingiber officinale, Ocimum sanctum, Adatoda zeylanica, Piper lingum, Andrographis panivulata, Coriandrum sativum, Tinospora cordiofolia, cuminum cyminum,piper nigrum was used for the formulation of Coufex.</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>제2형 중증급성호흡기증후군 코로나바이러스 감염 질환의 예방 또는 치료용 조성물</strong> - 본 발명은 화학식 1로 표시되는 화합물, 또는 이의 약학적으로 허용가능한 염; 및 글루카곤 수용체 작용제(glucagon receptor agonist), 위 억제 펩타이드(gastric inhibitory peptide, GIP), 글루카곤-유사 펩타이드 1(glucagon-like peptide 1, GLP-1) 및 글루카곤 수용체/위 억제 펩타이드/글루카곤-유사 펩타이드 1(Glucagon/GIP/GLP-1) 삼중 완전 작용제(glucagon receptors, gastric inhibitory peptide and glucagon-like peptide 1 (Glucagon/GIP/GLP-1) triple full agonist)로 이루어진 군으로부터 선택된 1종 이상;을 포함하는 제2형 중증급성호흡기증후군 코로나바이러스 감염 질환 예방 또는 치료용 약학적 조성물을 제공한다.</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Haptens, hapten conjugates, compositions thereof and method for their preparation and use</strong> - A method for performing a multiplexed diagnostic assay, such as for two or more different targets in a sample, is described. One embodiment comprised contacting the sample with two or more specific binding moieties that bind specifically to two or more different targets. The two or more specific binding moieties are conjugated to different haptens, and at least one of the haptens is an oxazole, a pyrazole, a thiazole, a nitroaryl compound other than dinitrophenyl, a benzofurazan, a triterpene, a urea, a thiourea, a rotenoid, a coumarin, a cyclolignan, a heterobiaryl, an azo aryl, or a benzodiazepine. The sample is contacted with two or more different anti-hapten antibodies that can be detected separately. The two or more different anti-hapten antibodies may be conjugated to different detectable labels.</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>SARS-CoV-2 RBD共轭纳米颗粒疫苗</strong> - 本发明涉及免疫医学领域,具体而言,涉及一种SARS‑CoV‑2 RBD共轭纳米颗粒疫苗。该疫苗包含免疫原性复合物,所述免疫原性复合物包含:a)与SpyCatcher融合表达的载体蛋白自组装得到的纳米颗粒载体;b)与SpyTag融合表达的SARS‑CoV‑2病毒的RBD抗原;所述载体蛋白选自Ferritin、mi3和I53‑50;所述载体蛋白与所述抗原之间通过SpyCatcher‑SpyTag共价连接。</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Устройство электронного контроля и дистанционного управления аппарата искусственной вентиляции легких</strong> - Полезная модель относится к медицинской технике, а именно к устройствам для воздействия на дыхательную систему пациента смесью различных газов, в частности, к устройствам для проведения искусственной вентиляции легких (ИВЛ). Технический результат предлагаемой полезной модели заключается в решении технической проблемы, состоящей в необходимости расширения арсенала технических средств, предназначенных для электронного контроля и управления ИВЛ, путем реализации возможности дистанционного управления аппаратами ИВЛ в медицинских учреждениях, не оборудованных кабельными вычислительными сетями. Указанный технический результат достигается благодаря тому, что в известное устройство электронного контроля и дистанционного управления аппарата ИВЛ, содержащее центральный микроконтроллер, а также программно-аппаратные средства управления функциями доставки воздушной смеси пациенту и многоуровневой тревожной сигнализации об отклонениях от нормативных условий и технических неполадках в аппарате ИВЛ, введены связанные друг с другом микроконтроллер связи и дистанционного управления и радиомодем, выполненный с возможностью связи с точками доступа радиканальной сети, при этом центральный микроконтроллер устройства выполнен с дополнительными входом/выходом, которые связаны с управляющими выходом/входом микроконтроллера связи и дистанционного управления, а, в зависимости от типа применяемой в медицинском учреждении радиоканальной сети связи и передачи данных, радиомодем может быть выполнен в виде интерфейсного аудиомодуля Bluetooth 4.0 BLE, приемопередающего модуля Wi-Fi либо устройства "малого радиуса действия", работающего по технологии LoRa на нелицензируемых частотах мегагерцового диапазона, например, в диапазоне 868 МГц. 3 з.п. ф-лы, 1 ил.</p></li>
|
||
</ul>
|
||
|
||
|
||
<script>AOS.init();</script></body></html> |