227 lines
53 KiB
HTML
227 lines
53 KiB
HTML
<!DOCTYPE html>
|
||
<html lang="" xml:lang="" xmlns="http://www.w3.org/1999/xhtml"><head>
|
||
<meta charset="utf-8"/>
|
||
<meta content="pandoc" name="generator"/>
|
||
<meta content="width=device-width, initial-scale=1.0, user-scalable=yes" name="viewport"/>
|
||
<title>18 June, 2021</title>
|
||
<style type="text/css">
|
||
code{white-space: pre-wrap;}
|
||
span.smallcaps{font-variant: small-caps;}
|
||
span.underline{text-decoration: underline;}
|
||
div.column{display: inline-block; vertical-align: top; width: 50%;}
|
||
</style>
|
||
<title>Covid-19 Sentry</title><meta content="width=device-width, initial-scale=1.0" name="viewport"/><link href="styles/simple.css" rel="stylesheet"/><link href="../styles/simple.css" rel="stylesheet"/><link href="https://unpkg.com/aos@2.3.1/dist/aos.css" rel="stylesheet"/><script src="https://unpkg.com/aos@2.3.1/dist/aos.js"></script></head>
|
||
<body>
|
||
<h1 data-aos="fade-down" id="covid-19-sentry">Covid-19 Sentry</h1>
|
||
<h1 data-aos="fade-right" data-aos-anchor-placement="top-bottom" id="contents">Contents</h1>
|
||
<ul>
|
||
<li><a href="#from-preprints">From Preprints</a></li>
|
||
<li><a href="#from-clinical-trials">From Clinical Trials</a></li>
|
||
<li><a href="#from-pubmed">From PubMed</a></li>
|
||
<li><a href="#from-patent-search">From Patent Search</a></li>
|
||
</ul>
|
||
<h1 data-aos="fade-right" id="from-preprints">From Preprints</h1>
|
||
<ul>
|
||
<li><strong>Facilitating Informed Decision Making: Determinants of University Students’ COVID-19 Vaccine Uptake</strong> -
|
||
<div>
|
||
Objective: Although several COVID-19 vaccines are available, the current challenge is achieving high vaccine uptake. We aimed to explore university students’ intention to get vaccinated and select the most relevant determinants/beliefs to facilitate informed decision-making around COVID-19 vaccine uptake. Methods: A cross-sectional online survey with students (N = 434) from Maastricht University was conducted in March 2021. The most relevant determinants/beliefs of students’ COVID-19 vaccine intention (i.e., determinants linked to vaccination intention, and with enough potential for change) were visualized using CIBER plots. Results: Students’ intention to get the COVID-19 vaccine is high (80 %). Concerns about safety and side effects of the vaccine and trust in government, quality control, and the pharmaceutical industry are identified as the most relevant determinants of vaccine intention. Other predictors are risk perception, attitude, perceived norm, and self-efficacy beliefs. Conclusion: Our study identified several predictors of COVID-19 vaccine intention (e.g., safety, trust, risk perception, etc.) and helped to select the most relevant determinants/beliefs to target in an intervention to maximize the COVID-19 uptake. Where concerns and trust related to the COVID-19 vaccine are the most important target for future interventions, other determinants that were already positive (i.e., risk perception, attitudes, perceived norms, and self-efficacy) could be further confirmed.
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://psyarxiv.com/u46bm/" target="_blank">Facilitating Informed Decision Making: Determinants of University Students’ COVID-19 Vaccine Uptake</a>
|
||
</div></li>
|
||
<li><strong>Out-of-Pocket Spending for Health Care Within 90 Days of COVID-19 Hospitalization</strong> -
|
||
<div>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
||
INTRODUCTION: Millions of U.S. patients have been hospitalized for coronavirus disease 2019 (COVID-19). After discharge, these patients often have extensive health care needs, but out-of-pocket burden for this care is poorly described. Using national data, we assessed out-of-pocket spending during the 90 days after COVID-19 hospitalization among privately insured and Medicare Advantage patients. METHODS: In May 2021, we conducted a cross-sectional analysis of the IQVIA PharMetrics Plus for Academics Database, a national de-identified claims database. Among privately insured and Medicare Advantage patients hospitalized for COVID-19 between March-June 2020, we calculated mean out-of-pocket spending for care within 90 days of discharge. To contextualize results, we repeated analyses for patients hospitalized for bacterial pneumonia. RESULTS: Among 1,465 COVID-19 patients included, 516 (35.2%) and 949 (64.8%) were covered by private insurance and Medicare Advantage plans. Among these patients, mean (SD) post-discharge out-of-pocket spending was $534 (1,045) and $680 (1,360); spending exceeded $2,000 for 7.0% and 10.3%. Compared with patients with pneumonia, mean post-discharge out-of-pocket spending among COVID-19 patients was higher among the privately insured ($534 vs $445) and lower among Medicare Advantage patients ($680 vs $918). CONCLUSIONS: Out-of-pocket spending for immediate post-discharge care can be substantial for many patients hospitalized for COVID-19. Among Medicare Advantage patients, post-discharge out-of-pocket spending was higher after pneumonia hospitalizations, potentially because insurer cost-sharing waivers fully covered the costs of COVID-19-related readmissions during the study period. As many insurers allowed such waivers to expire in 2021, it is important to repeat analyses among patients more recently hospitalized for COVID-19.
|
||
</p>
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.06.11.21258766v2" target="_blank">Out-of-Pocket Spending for Health Care Within 90 Days of COVID-19 Hospitalization</a>
|
||
</div></li>
|
||
<li><strong>Phylogenomics and population genomics of SARS-CoV-2 in Mexico reveals variants of interest (VOI) and a mutation in the Nucleocapsid protein associated with symptomatic versus asymptomatic carriers</strong> -
|
||
<div>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
||
Understanding the evolution of SARS-CoV-2 virus in various regions of the world during the Covid19 pandemic is essential to help mitigate the effects of this devastating disease. We describe the phylogenomic and population genetic patterns of the virus in Mexico during the pre-vaccination stage, including asymptomatic carriers. A RT-qPCR screening and phylogenomics reconstructions directed a sequence/structure analysis of the Spike glycoprotein, revealing mutation of concern E484K in genomes from central Mexico, in addition to the nationwide prevalence of the imported variant 20C/S:452R (B.1.427/9). Overall, the detected variants in Mexico show Spike protein mutations in the N-terminal domain (i.e., R190M), in the receptor-binding motif (i.e., T478K, E484K), within the S1-S2 subdomains (i.e., P681R/H, T732A), and at the basis of the protein, V1176F, raising concerns about the lack of phenotypic and clinical data available for the variants of interest (VOI) we postulate: 20B/478K.V1 (B.1.1.222 or B.1.1.519) and 20B/P.4 (B.1.1.28.4). Moreover, the population patterns of Single Nucleotide Variants (SNVs) from symptomatic and asymptomatic carriers obtained with a self-sampling scheme confirmed the presence of several fixed variants, and differences in allelic frequencies among localities. We identified the mutation N:S194L of the Nucleocapsid protein associated with symptomatic patients. Phylogenetically, this mutation is frequent in Mexican sub-clades, so we propose an additional VOI, 20A/N:194L.V2 (B.1.243). Our results highlight the dual and complementary role of Spike and Nucleocapsid proteins in adaptive evolution of SARS-CoV-2 to their hosts and provide a baseline for specific follow-up of mutations of concern during the vaccination stage.
|
||
</p>
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.05.18.21256128v2" target="_blank">Phylogenomics and population genomics of SARS-CoV-2 in Mexico reveals variants of interest (VOI) and a mutation in the Nucleocapsid protein associated with symptomatic versus asymptomatic carriers</a>
|
||
</div></li>
|
||
<li><strong>COVID-19 Outcomes and Sequencing of SARS-CoV-2 isolated from Veterans in New England</strong> -
|
||
<div>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
||
Background: Clinical and virologic characteristics of COVID-19 infections in veterans in New England have not been described. Objectives: To evaluate clinical and virologic factors impacting COVID-19 outcomes. Study Design: We reviewed charts and sequenced virus from nasopharyngeal specimens with confirmed SARS-CoV-2 from 426 veterans in six New England states between April and September, 2020. Peak disease severity, hospitalization, and mortality were correlated to clinical, demographic, and virologic factors. Results: Of 426 veterans, 274 had complete and accessible charts. 92.7% were men, 83.2% White, with mean age 63 years. On multivariate regression, significant predictors of hospitalization were age (OR: 1.05) and non-white race (OR: 2.39). Mortality and peak disease severity varied by age (OR 1.06 and 1.07 respectively) and oxygen requirement on admission (OR6.74 and 45.7). Dementia (OR: 3.44) was also associated with mortality. Most (97.3%) of our samples were dominated by the spike protein D614G substitution, and were from SARS-CoV-2 B.1 lineage or one of 37 different B.1 sub-lineages, with none representing more than 8.7% of the cases. Conclusions: In an older cohort of veterans from the six New England states with a high comorbidity burden, age was the largest predictor of hospitalization, peak disease severity, and mortality. Non-white veterans were more likely to be hospitalized, and patients who required oxygen on admission were more likely to have severe disease and higher rates of mortality. Multiple SARS-CoV-2 lineages were distributed in patients in New England early in the COVID-19 era, mostly related to viruses from New York with D614G mutation.
|
||
</p>
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.04.27.21256222v3" target="_blank">COVID-19 Outcomes and Sequencing of SARS-CoV-2 isolated from Veterans in New England</a>
|
||
</div></li>
|
||
<li><strong>Quantifying the Benefits of Targeting for Pandemic Response</strong> -
|
||
<div>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
||
To respond to pandemics such as COVID-19, policy makers have relied on interventions that target specific age groups or activities. Such targeting is potentially contentious, so rigorously quantifying its benefits and downsides is critical for designing effective and equitable pandemic control policies. We propose a flexible modeling framework and algorithms to compute optimally targeted interventions that coordinate across two dimensions of heterogeneity: age of different groups and the specific activities that individuals engage in during the course of a day. We showcase a complete implementation in a case study focused on the COVID-19 epidemic in the Île-de-France region of France, based on hospitalization, community mobility, social contacts and economic data. We find that optimized dual-targeted policies generate substantial complementarities that lead to Pareto improvements, reducing the number of deaths and the economic losses overall and reducing the time in confinement for each age group, compared to less targeted interventions. These policies have a simple and explainable structure. Since dual-targeted policies could lead to increased discrepancies in the confinements faced by distinct groups, we also quantify the impact of requirements that explicitly limit such disparities, and find that satisfactory trade-offs may be achievable through limited targeting.
|
||
</p>
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.03.23.21254155v3" target="_blank">Quantifying the Benefits of Targeting for Pandemic Response</a>
|
||
</div></li>
|
||
<li><strong>Estimation and worldwide monitoring of the effective reproductive number of SARS-CoV-2</strong> -
|
||
<div>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
||
The effective reproductive number Re is a key indicator of the growth of an epidemic. Since the SARS-CoV-2 pandemic started, many methods and online dashboards have sprung up to monitor this number. However, these methods are not always thoroughly tested or are applied only to a limited geographic range. Here, we present a method for near real time monitoring of Re, applied to epidemic data from 170 countries. We thoroughly validate the method on simulated data, and present an intuitive web interface for interactive data exploration. We show that in the majority of countries the estimated Re dropped below 1 only after the introduction of major non-pharmaceutical interventions. For Europe, Asia, and North America we found that the implementation of non-pharmaceutical interventions was associated with reductions in the effective reproductive number. Globally, we found that relaxing non-pharmaceutical interventions did not fully revert Re values to their original levels. Generally, our framework is useful both to inform governments and the general public on the status of the epidemic in their country, as well as a source for detailed comparison between countries and in relation to local public health policies and external covariates such as mobility, behavioural, or weather data.
|
||
</p>
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2020.11.26.20239368v2" target="_blank">Estimation and worldwide monitoring of the effective reproductive number of SARS-CoV-2</a>
|
||
</div></li>
|
||
<li><strong>Implementation of ICT tools to improve the object-oriented distance education in India: A perspective</strong> -
|
||
<div>
|
||
India, being a country with a majority youth population, has a good opportunity to strengthen its economy in the next few decades. However, this could only be possible, if the youth population is trained with the required skill-set for the job market with improved opportunities for higher education. Unfortunately, the percentage of higher education enrolment does not possess encouraging numbers due to various social & economic reasons. The ratio in the coming years can be improved by offering the higher education courses in open & distance learning mode (ODL). Recently University Grants Commission (UGC also eased the norms for the higher educational institutes to offer ODL programs. However, the present ODL programs that are being offered were challenged with (i) lack of quality checks (ii) lack of paradigm shift in the course delivery, which is still through correspondence mode (iii) the degrees offered by the distance mode are not on par with regular courses. In this view, it is time to assess the quality of the present ODL programs and the necessary steps have to be initiated to improve the quality of the program. Due to the COVID 19 pandemic condition, major parts of the world dependent on online classes for the delivery of the regular courses, in this view, various tools for delivery and assessment are being widely used/developed. The integration of these tools with the present corresponding courses shall improve the quality of the courses. Herein, we comprehensively present the above-mentioned problems and solutions to improve the quality of ODL courses in India.
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://osf.io/preprints/socarxiv/6b7su/" target="_blank">Implementation of ICT tools to improve the object-oriented distance education in India: A perspective</a>
|
||
</div></li>
|
||
<li><strong>A Comprehensive Analysis and prognostication of COVID-19 (SARS-Cov-2) Outbreak situation in India</strong> -
|
||
<div>
|
||
Covid-19 is an infectious respiratory disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), first identified in late December 2019 in China and later spread worldwide. The first case of Covid-19 was diagnosed in the last week of January 2020, India. Subsequently, the number of cases drastically rose. As of May 11, 2021, in India, 2,33,40,375 positive cases have been reported, out of which 1,93,76,561 recovered and 2,53,634 death were reported as per covid19india report. To avail in designing better strategies and in making effective decisions, we can use forecasting techniques. These techniques assess the past situation, thereby enabling better prognostications about the situation to occur in the future. Based on these time series modeling, this paper tries to study the prediction of Covid-19 in terms of total substantiated, recovered, and death cases. It also examines the daily infected, active, recovery, and death cases. The correlation coefficients and sarimax forecasting model were applied for prediction and statistical measures used for population variance equality.
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://osf.io/v9n7s/" target="_blank">A Comprehensive Analysis and prognostication of COVID-19 (SARS-Cov-2) Outbreak situation in India</a>
|
||
</div></li>
|
||
<li><strong>Western diet increases COVID-19 disease severity in the Syrian hamster</strong> -
|
||
<div>
|
||
Pre-existing comorbidities such as obesity or metabolic diseases can adversely affect the clinical outcome of COVID-19. Chronic metabolic disorders are globally on the rise and often a consequence of an unhealthy diet, referred to as a Western Diet. For the first time in the Syrian hamster model, we demonstrate the detrimental impact of a continuous high-fat high-sugar diet on COVID-19 outcome. We observed increased weight loss and lung pathology, such as exudate, vasculitis, hemorrhage, fibrin, and edema, delayed viral clearance and functional lung recovery, and prolonged viral shedding. This was accompanied by an increased trend of systemic IL-10 and IL-6, as well as a dysregulated serum lipid response dominated by polyunsaturated fatty acid-containing phosphatidylethanolamine, recapitulating cytokine and lipid responses associated with severe human COVID-19. Our data support the hamster model for testing restrictive or targeted diets and immunomodulatory therapies to mediate the adverse effects of metabolic disease on COVID-19.
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2021.06.17.448814v1" target="_blank">Western diet increases COVID-19 disease severity in the Syrian hamster</a>
|
||
</div></li>
|
||
<li><strong>A stem-loop RNA RIG-I agonist confers prophylactic and therapeutic protection against acute and chronic SARS-CoV-2 infection in mice</strong> -
|
||
<div>
|
||
As SARS-CoV-2 continues to cause morbidity and mortality around the world, there is an urgent need for the development of effective medical countermeasures. Here, we assessed the antiviral capacity of a minimal RIG-I agonist, stem-loop RNA 14 (SLR14), in viral control, disease prevention, post-infection therapy, and cross-variant protection in mouse models of SARS-CoV-2 infection. A single dose of SLR14 prevented viral replication in the lower respiratory tract and development of severe disease in a type I interferon (IFN-I) dependent manner. SLR14 demonstrated remarkable protective capacity against lethal SARS-CoV-2 infection when used prophylactically and retained considerable efficacy as a therapeutic agent. In immunodeficient mice carrying chronic SARS-CoV-2 infection, SLR14 elicited near-sterilizing innate immunity by inducing IFN-I responses in the absence of the adaptive immune system. In the context of infection with variants of concern (VOC), SLR14 conferred broad protection and uncovered an IFN-I resistance gradient across emerging VOC. These findings demonstrate the therapeutic potential of SLR14 as a host-directed, broad-spectrum antiviral for early post-exposure treatment and for treatment of chronically infected immunosuppressed patients.
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2021.06.16.448754v1" target="_blank">A stem-loop RNA RIG-I agonist confers prophylactic and therapeutic protection against acute and chronic SARS-CoV-2 infection in mice</a>
|
||
</div></li>
|
||
<li><strong>Designing a Novel Multi-Epitope Vaccine against SARS-CoV-2; Implication for Viral Binds and Fusion Inhibition through Inducing Neutralizing Antibodies</strong> -
|
||
<div>
|
||
Recently the prevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a pervasive threat to public health so it is an emergency to vaccine development. The SARS-CoV-2 spike (S) glycoprotein plays a vital role in binds and fusion to the angiotensin-converting enzyme 2 (ACE2). The multi-epitope peptide vaccines are capable of inducing the specific humoral or cellular immune responses. In this regard, the RBD and spike cleavage site is the most probable target for vaccine development to inducing binds and fusion inhibitors neutralizing antibodies. In the present study, several immunoinformatics tools are used for analyzing the spike (S) glycoprotein sequence including the prediction of the potential linear B-cell epitopes, B-cell multi-epitope design, secondary and tertiary structures, physicochemical properties, solubility, antigenicity, and allergenicity for the promising vaccine candidate against SARS-CoV-2.
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2021.06.16.448772v1" target="_blank">Designing a Novel Multi-Epitope Vaccine against SARS-CoV-2; Implication for Viral Binds and Fusion Inhibition through Inducing Neutralizing Antibodies</a>
|
||
</div></li>
|
||
<li><strong>The Development of Digital MSME in the Covid-19 Pandemic</strong> -
|
||
<div>
|
||
The global Covid-19 pandemic that has plagued all countries of the world has affect all sectors of people’s lives. In Indonesia, almost all sectors experience impacts, especially the economic ecosystem which has been become the focus of society. Furthermore, the Covid-19 pandemic has made the slowdown in the economic sector in Indonesia with its various derivatives. The Micro, Small and Medium Enterprises (MSME) sector which is part of the most important sector of the economy is very important feel. This is what worried by all parties, because it has made the MSME sector experienced a significant decline. Moreover, currently many MSMEs are experiencing various problems such as: decrease in sales, capital, hampered distribution, difficulty in raw materials, decreased production and the occurrence of many layoffs for workers and hunting which later became a threat to the national economy. MSMEs as a driver of the domestic economy and a middle labor absorber face a decline in productivity which results in a decrease in profits significant. Even based on the related Asian Development Bank (ADB) survey, the impact of the pandemic on MSMEs in Indonesia, 88% of micro businesses run out of cash or savings, and more than 60% of these micro and small enterprises have reduced their workforce work.
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://osf.io/zu3hd/" target="_blank">The Development of Digital MSME in the Covid-19 Pandemic</a>
|
||
</div></li>
|
||
<li><strong>How scientific reasoning correlates with health-related beliefs and behaviors during the COVID-19 pandemic?</strong> -
|
||
<div>
|
||
We examined whether scientific reasoning is associated with health-related beliefs and behaviors over and above general analytic thinking ability in the general public (N = 783, aged 18–84). Health-related beliefs included: anti-vaccination attitudes, COVID-19 conspiracy beliefs, and generic health-related epistemically suspect beliefs. Scientific reasoning correlated with generic pseudoscientific and health-related conspiracy beliefs and COVID-19 conspiracy beliefs. Crucially, scientific reasoning was a stronger independent predictor of unfounded beliefs (including anti-vaccination attitudes) than general analytic thinking was; however, it had a more modest role in health-related behaviors.
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://psyarxiv.com/tfy5q/" target="_blank">How scientific reasoning correlates with health-related beliefs and behaviors during the COVID-19 pandemic?</a>
|
||
</div></li>
|
||
<li><strong>The Development of Digital in the Covid-19 Pandemic</strong> -
|
||
<div>
|
||
The global Covid-19 pandemic that has plagued all countries of the world has affect all sectors of people’s lives. In Indonesia, almost all sectors experience impacts, especially the economic ecosystem which has been become the focus of society. Furthermore, the Covid-19 pandemic has made the slowdown in the economic sector in Indonesia with its various derivatives. The Micro, Small and Medium Enterprises (MSME) sector which is part of the most important sector of the economy is very important feel. This is what worried by all parties, because it has made the MSME sector experienced a significant decline. Moreover, currently many MSMEs are experiencing various problems such as: decrease in sales, capital, hampered distribution, difficulty in raw materials, decreased production and the occurrence of many layoffs for workers and hunting which later became a threat to the national economy. MSMEs as a driver of the domestic economy and a middle labor absorber face a decline in productivity which results in a decrease in profits significant. Even based on the related Asian Development Bank (ADB) survey, the impact of the pandemic on MSMEs in Indonesia, 88% of micro businesses run out of cash or savings, and more than 60% of these micro and small enterprises have reduced their workforce work.
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://osf.io/p6sqg/" target="_blank">The Development of Digital in the Covid-19 Pandemic</a>
|
||
</div></li>
|
||
<li><strong>The Development of Digital in the Covid-19 Pandemic</strong> -
|
||
<div>
|
||
The global Covid-19 pandemic that has plagued all countries of the world has affect all sectors of people’s lives. In Indonesia, almost all sectors experience impacts, especially the economic ecosystem which has been become the focus of society. Furthermore, the Covid-19 pandemic has made the slowdown in the economic sector in Indonesia with its various derivatives. The Micro, Small and Medium Enterprises (MSME) sector which is part of the most important sector of the economy is very important feel. This is what worried by all parties, because it has made the MSME sector experienced a significant decline. Moreover, currently many MSMEs are experiencing various problems such as: decrease in sales, capital, hampered distribution, difficulty in raw materials, decreased production and the occurrence of many layoffs for workers and hunting which later became a threat to the national economy. MSMEs as a driver of the domestic economy and a middle labor absorber face a decline in productivity which results in a decrease in profits significant. Even based on the related Asian Development Bank (ADB) survey, the impact of the pandemic on MSMEs in Indonesia, 88% of micro businesses run out of cash or savings, and more than 60% of these micro and small enterprises have reduced their workforce work.
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://osf.io/djrn6/" target="_blank">The Development of Digital in the Covid-19 Pandemic</a>
|
||
</div></li>
|
||
</ul>
|
||
<h1 data-aos="fade-right" id="from-clinical-trials">From Clinical Trials</h1>
|
||
<ul>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Ivermectin Treatment Efficacy in Covid-19 High Risk Patients</strong> - <b>Condition</b>: COVID-19<br/><b>Intervention</b>: Drug: Ivermectin 0.4mg/kg/day for 5 days<br/><b>Sponsor</b>: Clinical Research Centre, Malaysia<br/><b>Not yet recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>To Evaluate the Safety and Efficacy of TQ Formula in Covid-19 Participants</strong> - <b>Condition</b>: Covid19<br/><b>Intervention</b>: Drug: Black Seed Oil Cap/Tab<br/><b>Sponsor</b>: Novatek Pharmaceuticals<br/><b>Recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Efficacy and Safety of XAV-19 for the Treatment of Moderate-to-severe COVID-19</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Drug: XAV-19; Drug: Placebo<br/><b>Sponsor</b>: Xenothera SAS<br/><b>Recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Intramuscular VIR-7831 (Sotrovimab) for Mild/Moderate COVID-19</strong> - <b>Condition</b>: Covid19<br/><b>Intervention</b>: Biological: VIR-7831<br/><b>Sponsors</b>: Vir Biotechnology, Inc.; GlaxoSmithKline<br/><b>Not yet recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Clinical Trial With N-acetylcysteine and Bromhexine for COVID-19</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Drug: Vitamin C; Drug: N-acetylcysteine (NAC); Drug: NAC + Bromhexine (BMX)<br/><b>Sponsors</b>: Universidade Federal do Ceara; Paulista School of Medicine-EPM, UNIFESP; Health Surveillance Secretariat - SVS; Central Laboratory of Public Health of Ceara - LACEN-CE; Leonardo da Vinci Hospital - HLV; São José Hospital for Infectious Diseases - HSJ; Ceará Health Secretariat - SESA; Municipal Health Secretary - SMS-Fortaleza<br/><b>Not yet recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Augmentation of Immune Response to COVID-19 mRNA Vaccination Through OMT With Lymphatic Pumps</strong> - <b>Condition</b>: Covid19<br/><b>Intervention</b>: Other: Osteopathic Manipulative Treatment (OMT)<br/><b>Sponsors</b>: Western University of Health Sciences; American College of Osteopathic Physicians; American Osteopathic Foundation; Osteopathic Physicians and Surgeons of California; Xavier-Nichols Foundation<br/><b>Recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Nervous System Symptoms Associated With COVID 19</strong> - <b>Condition</b>: Covid19<br/><b>Interventions</b>: Other: NEURO +; Other: NEURO -<br/><b>Sponsor</b>: University Hospital, Toulouse<br/><b>Completed</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Open Label, Single-Center Study Utilizing BIOZEK COVID-19 Antigen Rapid Test</strong> - <b>Condition</b>: Covid-19 Testing<br/><b>Intervention</b>: Diagnostic Test: Biozek Covid-19 Antigen Rapid Test (Saliva)<br/><b>Sponsor</b>: Mach-E B.V.<br/><b>Recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>The Burden of COVID-19 Survivorship</strong> - <b>Condition</b>: Covid19<br/><b>Intervention</b>: Other: Exercise Training<br/><b>Sponsor</b>: Mayo Clinic<br/><b>Not yet recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Community-based Post-exposure Prophylaxis for COVID-19</strong> - <b>Condition</b>: Covid19<br/><b>Interventions</b>: Other: Guduchi Ghanvati; Other: Standard guidelines<br/><b>Sponsors</b>: NMP Medical Research Institute; Aarogyam UK; Dr. Sarvepalli Radhakrishnan Rajasthan Ayurved University; Samta Ayurveda Prakoshtha, India; Padmanabhama Ayurveda Hospital and Research Centre<br/><b>Completed</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Vitamin A Supplementation in Children With Moderate to Severe Covid-19</strong> - <b>Condition</b>: Covid19<br/><b>Intervention</b>: Dietary Supplement: Vitamin A supplement<br/><b>Sponsor</b>: Shiraz University of Medical Sciences<br/><b>Not yet recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Favipiravir +/- Nitazoxanide: Early Antivirals Combination Therapy in COVID-19</strong> - <b>Condition</b>: Covid19<br/><b>Interventions</b>: Drug: Favipiravir; Drug: Nitazoxanide; Other: Nitazoxanide Placebo<br/><b>Sponsors</b>: Coordinación de Investigación en Salud, Mexico; University College, London; Centro de Investigacion y Estudios Avanzados del Instituto Politecnico Nacional (CINVESTAV); Universidad Autonoma de Guadalajara; Siegfried Rhein S.A. de C.V.; Strides Pharma Science Limited; Hakken Enterprise<br/><b>Not yet recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Safety and Efficacy of Dupilumab for Treatment of Hospitalized COVID-19 Patients</strong> - <b>Condition</b>: Covid19<br/><b>Interventions</b>: Biological: Dupilumab; Drug: Placebo<br/><b>Sponsors</b>: University of Virginia; PBM C19 Research, LLC (PBM); Virginia Catalyst, Virginia Biosciences Health Research Corporation (VBHRC)<br/><b>Recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Impact of Moderate Exercise Training on Vitals and Peak VO2 in Different Age Categories of Adult in COVID-19.</strong> - <b>Condition</b>: Covid19<br/><b>Interventions</b>: Other: Moderate Exercise Training (Age Group 1; Young adult 17 -30 years); Other: Moderate Exercise Training (Age Group 2; 31 to 45 years); Other: Moderate Exercise Training (Age Group 3; Above 45 years)<br/><b>Sponsor</b>: Riphah International University<br/><b>Recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Infliximab in the Treatment of Patients With Severe COVID-19 Disease</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Drug: Infliximab; Other: Standard of Care<br/><b>Sponsors</b>: Jena University Hospital; German Federal Ministry of Education and Research; Celltrion<br/><b>Not yet recruiting</b></p></li>
|
||
</ul>
|
||
<h1 data-aos="fade-right" id="from-pubmed">From PubMed</h1>
|
||
<ul>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>An ACE2 Triple Decoy that neutralizes SARS-CoV-2 shows enhanced affinity for virus variants</strong> - The SARS-CoV-2 variants replacing the first wave strain pose an increased threat by their potential ability to escape pre-existing humoral protection. An angiotensin converting enzyme 2 (ACE2) decoy that competes with endogenous ACE2 for binding of the SARS-CoV-2 spike receptor binding domain (S RBD) and inhibits infection may offer a therapeutic option with sustained efficacy against variants. Here, we used Molecular Dynamics (MD) simulation to predict ACE2 sequence substitutions that might…</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Melatonin and other indoles show antiviral activities against swine Coronaviruses in vitro at pharmacological concentrations</strong> - The current coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), highlights major gaps in our knowledge on the prevention control and cross-species transmission mechanisms of animal coronaviruses. Transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), and porcine delta-coronavirus (PDCoV) are three common swine coronaviruses and have similar clinical features. In absence of effective treatments, they…</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Manipulation of the unfolded protein response: A pharmacological strategy against coronavirus infection</strong> - Coronavirus infection induces the unfolded protein response (UPR), a cellular signalling pathway composed of three branches, triggered by unfolded proteins in the endoplasmic reticulum (ER) due to high ER load. We have used RNA sequencing and ribosome profiling to investigate holistically the transcriptional and translational response to cellular infection by murine hepatitis virus (MHV), often used as a model for the Betacoronavirus genus to which the recently emerged SARS-CoV-2 also belongs….</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Phenolic compounds disrupt spike-mediated receptor-binding and entry of SARS-CoV-2 pseudo-virions</strong> - In the pursuit of suitable and effective solutions to SARS-CoV-2 infection, we investigated the efficacy of several phenolic compounds in controlling key cellular mechanisms involved in its infectivity. The way the SARS-CoV-2 virus infects the cell is a complex process and comprises four main stages: attachment to the cognate receptor, cellular entry, replication and cellular egress. Since, this is a multi-part process, it creates many opportunities to develop effective interventions. Targeting…</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Laboratory testing for suspected COVID-19 vaccine-induced (immune) thrombotic thrombocytopenia</strong> - COVID-19 (coronavirus disease 2019) represents a pandemic, and several vaccines have been produced to prevent infection and/or severe sequelae associated with SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection. There have been several reports of infrequent post vaccine associated thrombotic events, in particular for adenovirus-based vaccines. These have variously been termed VIPIT (vaccine-induced prothrombotic immune thrombocytopenia), VITT (vaccine-induced [immune]…</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>An in vitro antiviral activity of iodine complexes against SARS-CoV-2</strong> - Since the emergence of COVID-19 pandemic in China in late 2019, scientists are striving hard to explore non-toxic, viable anti-SARS-CoV-2 compounds or medicines. We determined In vitro anti-SARS-CoV-2 activity of oral formulations (syrup and capsule)of an Iodine-complex (Renessans). First, cell cytotoxicity of Renessans on the Vero cells was determined using MTT assay. Afterwards, the antiviral activity of Renessans was determined using viral inhibition assays and TCID(50). For this, nontoxic…</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Correction to “Synergistic Inhibition of SARS-CoV-2 Replication Using Disulfiram/Ebselen and Remdesivir”</strong> - [This corrects the article DOI: 10.1021/acsptsci.1c00022.].</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Potent Molecular Feature-based Neutralizing Monoclonal Antibodies as Promising Therapeutics Against SARS-CoV-2 Infection</strong> - The 2019-2020 winter was marked by the emergence of a new coronavirus (SARS-CoV-2) related disease (COVID-19), which started in Wuhan, China. Its high human-to-human transmission ability led to a worldwide spread within few weeks and has caused substantial human loss. Mechanical antiviral control approach, drug repositioning, and use of COVID-19 convalescent plasmas (CPs) were the first line strategies utilized to mitigate the viral spread, yet insufficient. The urgent need to contain this…</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Humoral Response after SARS-Cov-2 mRNA Vaccine in a Cohort of Hemodialysis Patients and Kidney Transplant Recipients</strong> - Background Kidney transplant recipients and patients receiving hemodialysis are immunocompromised populations that are prioritized for COVID-19 vaccination but were excluded from clinical trials of SARS-CoV-2 mRNA vaccines. Antibody titers and rates of seroconversion following vaccination are lower among patients with chronic kidney disease and those taking immunosuppressants compared with controls. Data are lacking regarding their humoral response to vaccination to prevent COVID-19. Methods…</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Targeting highly pathogenic coronavirus-induced apoptosis reduces viral pathogenesis and disease severity</strong> - Infection by highly pathogenic coronaviruses results in substantial apoptosis. However, the physiological relevance of apoptosis in the pathogenesis of coronavirus infections is unknown. Here, with a combination of in vitro, ex vivo, and in vivo models, we demonstrated that protein kinase R-like endoplasmic reticulum kinase (PERK) signaling mediated the proapoptotic signals in Middle East respiratory syndrome coronavirus (MERS-CoV) infection, which converged in the intrinsic apoptosis pathway….</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Higher Levels of Harsh Parenting During the COVID-19 Lockdown in the Netherlands</strong> - Previous studies on the impact of COVID-19 indicate that pandemic-related distress increases risks for child maltreatment, although data on the scope of this problem are still scarce. Here, we assessed whether parents with toddlers (n = 206) more often used harsh discipline during the lockdown in the Netherlands compared to a matched parent sample collected prior to the pandemic (n = 1,030). Parents were matched on background characteristics using propensity score matching. We found that harsh…</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Humoral and cellular immune responses against SARS-CoV-2 variants and human coronaviruses after single BNT162b2 vaccination</strong> - CONCLUSION: These results call into question whether neutralizing antibodies significantly contribute to protection against COVID-19 upon single vaccination and suggest that cellular immunity is central for the early defenses against COVID-19.</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Structural Basis and Function of the N Terminus of SARS-CoV-2 Nonstructural Protein 1</strong> - Nonstructural protein 1 (Nsp1) of severe acute respiratory syndrome coronaviruses (SARS-CoVs) is an important pathogenic factor that inhibits host protein translation by means of its C terminus. However, its N-terminal function remains elusive. Here, we determined the crystal structure of the N terminus (amino acids [aa] 11 to 125) of SARS-CoV-2 Nsp1 at a 1.25-Å resolution. Further functional assays showed that the N terminus of SARS-CoVs Nsp1 alone loses the ability to colocalize with ribosomes…</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>alpha(V) beta(6) Integrin: An Intriguing Target for COVID-19 and Related Diseases</strong> - The outbreak of SARS-CoV-2 has been an extraordinary event that constituted a global health emergency. As the novel coronavirus is continuing to spread over the world, the need for therapeutic agents to control this pandemic is increasing. α(V) β(6) Integrin may be an intriguing target not only for the inhibition of SARS-CoV-2 entry, but also for the diagnosis/treatment of COVID-19 related fibrosis, an emerging type of fibrotic disease which will probably affect a significant part of the…</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A comprehensive review of the therapeutic potential of curcumin nanoformulations</strong> - Today, due to the prevalence of various diseases such as the novel coronavirus (SARS-CoV-2), diabetes, central nervous system diseases, cancer, cardiovascular disorders, and so on, extensive studies have been conducted on therapeutic properties of natural and synthetic agents. A literature review on herbal medicine and commercial products in the global market showed that curcumin (Cur) has many therapeutic benefits compared to other natural ingredients. Despite the unique properties of Cur, its…</p></li>
|
||
</ul>
|
||
<h1 data-aos="fade-right" id="from-patent-search">From Patent Search</h1>
|
||
<ul>
|
||
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>폐마스크 밀봉 회수기</strong> - 본 발명은 마스크 착용 후 버려지는 일회용 폐마스크를 비닐봉지에 넣은 후 밀봉하여 배출함으로써, 2차 감염을 예방하고 일반 생활폐기물과 선별 분리 배출하여 환경오염을 방지하는 데 그 목적이 있다. - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=KR325788342">link</a></p></li>
|
||
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>COST EFFECTIVE PORTABLE OXYGEN CONCENTRATOR FOR COVID-19</strong> - - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=AU324964715">link</a></p></li>
|
||
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>METHOD OF IDENTIFYING SEVERE ACUTE RESPIRATORY SYNDROME CORONA VIRUS 2 (SARS-COV-2) RIBONUCLEIC ACID (RNA)</strong> - - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=AU323956811">link</a></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Erweiterbare Desinfektionsvorrichtung</strong> -
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
||
</p><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">Erweiterbare Desinfektionsvorrichtung, umfassend: einen Hauptkörper, der eine umgekehrt U-förmige Basisplatte aufweist, wobei die umgekehrt U-förmige Basisplatte mit einer Öffnung versehen ist und jeweils eine Seitenplatte sich von zwei Seiten der umgekehrt U-förmigen Basisplatte nach außen erstreckt; und mindestens eine Desinfektionslampe, die in den auf zwei Seiten des Hauptkörpers befindlichen Seitenplatten angeordnet ist und eine Lichtemissionseinheit, eine Erfassungseinheit, eine Steuereinheit und eine Stromversorgungseinheit umfasst.</p></li>
|
||
</ul>
|
||
<img alt="embedded image" id="EMI-D00000"/>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"></p>
|
||
<ul>
|
||
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=DE326402480">link</a></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Einfache Sterilisationsvorrichtung</strong> -
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
||
</p><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">Einfache Sterilisationsvorrichtung, mit einem Hauptkörper (11), der in Längsrichtung einen ersten Plattenabschnitt (111) und in Querrichtung einen zweiten Plattenabschnitt (112) aufweist, wobei der erste Plattenabschnitt (111) und der zweite Plattenabschnitt (112) L-förmig miteinander verbunden sind; und einer Sterilisationslampe (12), die an dem Hauptkörper (11) angeordnet ist und eine Lichtemissionseinheit (121), eine Sensoreinheit (122), eine Steuereinheit (123) und eine Stromeinheit (124) aufweist.</p></li>
|
||
</ul>
|
||
<img alt="embedded image" id="EMI-D00000"/>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"></p>
|
||
<ul>
|
||
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=DE326402479">link</a></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Klemmarme aufweisende Desinfektionsvorrichtung</strong> -
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
||
</p><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">Klemmarme aufweisende Desinfektionsvorrichtung, umfassend: einen Hauptkörper; eine Desinfektionslampe, die im Hauptkörper angeordnet ist und eine Lichtemissionseinheit, eine Erfassungseinheit, eine Steuereinheit und eine Stromversorgungseinheit umfasst; einen Klemmabschnitt, der auf einer Seite des Hauptkörpers angeordnet ist, wobei der Klemmabschnitt zwei gegenüberliegende Greifbacken umfasst, wobei mindestens eine der beiden Greifbacken mit einer Schwenkachse versehen ist, wobei ein Klemmraum durch passgenaues Schließen der beiden Greifbacken entsteht und die beiden Greifbacken jeweils mit einem Durchgangsloch versehen sind; einen Befestigungsabschnitt, der durch die Durchgangslöcher der beiden Greifbacken hindurchgeführt ist;und ein Schild, das auf einer Seite des Klemmabschnitts angeordnet und mit einem Aufnahmeloch versehen ist.</p></li>
|
||
</ul>
|
||
<img alt="embedded image" id="EMI-D00000"/>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"></p>
|
||
<ul>
|
||
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=DE326402478">link</a></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Aufhängbare Sterilisationsvorrichtung</strong> -
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
||
</p><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">Aufhängbare Sterilisationsvorrichtung, mit einem Hauptkörper (11); einer Sterilisationslampe (12), die an dem Hauptkörper (11) angeordnet ist und eine Lichtemissionseinheit (121), eine Sensoreinheit (122), eine Steuereinheit (123) und eine Stromeinheit (124) aufweist; einem Klemmabschnitt (13), der an einer Seite des Hautpkörpers (11) angeordnet ist und zwei gegenüberliegend angeordnete Klemmbacken (131) aufweist, wobei mindestens eine der beiden Klemmbacken (131) mit einem Achsbolzen (132) versehen ist, wobei die beiden Klemmbacken (131) beim Schließen einen Klemmraum (134) bilden, und wobei die beiden Klemmbacken (131) jeweils mit einem Durchgangsloch (135) versehen sind; und einem Befestigungselement (14), das durch die Durchgangslöcher (135) der beiden Klemmbacken (131) hindurchgeführt wird.</p></li>
|
||
</ul>
|
||
<img alt="embedded image" id="EMI-D00000"/>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"></p>
|
||
<ul>
|
||
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=DE326402477">link</a></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Sterilisationsvorrichtung zur Verbesserung der Desinfektionswirkung</strong> -
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
||
</p><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">Sterilisationsvorrichtung zur Verbesserung der Desinfektionswirkung, umfassend: einen Hauptkörper, der eine erste Oberfläche, eine von der ersten Oberfläche abgewandte zweite Oberfläche und ein Aufnahmeloch aufweist, wobei die zwei Seiten des Hauptkörpers jeweils mit einem Durchgangsloch versehen sind, wobei die Durchgangslöcher mit dem Aufnahmeloch durchgängig verbunden sind; eine Desinfektionslampe, die auf der zweiten Oberfläche des Hauptkörpers angeordnet ist und eine Lichtemissionseinheit, eine Erfassungseinheit, eine Steuereinheit und eine Stromversorgungseinheit umfasst; und ein Befestigungsteil, das durch die Durchgangslöcher und das Aufnahmeloch des Hauptkörpers hindurchgeführt ist.</p></li>
|
||
</ul>
|
||
<img alt="embedded image" id="EMI-D00000"/>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"></p>
|
||
<ul>
|
||
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=DE326402481">link</a></p></li>
|
||
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>IMPROVEMENTS RELATED TO PARTICLE, INCLUDING SARS-CoV-2, DETECTION AND METHODS THEREFOR</strong> - - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=AU323295937">link</a></p></li>
|
||
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>DEEP LEARNING BASED SYSTEM FOR DETECTION OF COVID-19 DISEASE OF PATIENT AT INFECTION RISK</strong> - The present invention relates to Deep learning based system for detection of covid-19 disease of patient at infection risk. The objective of the present invention is to solve the problems in the prior art related to technologies of detection of covid-19 disease using CT scan image processing. - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=IN324122821">link</a></p></li>
|
||
</ul>
|
||
|
||
|
||
<script>AOS.init();</script></body></html> |