Daily-Dose/archive-covid-19/16 February, 2024.html

167 lines
48 KiB
HTML
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="" xml:lang="" xmlns="http://www.w3.org/1999/xhtml"><head>
<meta charset="utf-8"/>
<meta content="pandoc" name="generator"/>
<meta content="width=device-width, initial-scale=1.0, user-scalable=yes" name="viewport"/>
<title>16 February, 2024</title>
<style>
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
span.underline{text-decoration: underline;}
div.column{display: inline-block; vertical-align: top; width: 50%;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
</style>
<title>Covid-19 Sentry</title><meta content="width=device-width, initial-scale=1.0" name="viewport"/><link href="styles/simple.css" rel="stylesheet"/><link href="../styles/simple.css" rel="stylesheet"/><link href="https://unpkg.com/aos@2.3.1/dist/aos.css" rel="stylesheet"/><script src="https://unpkg.com/aos@2.3.1/dist/aos.js"></script></head>
<body>
<h1 data-aos="fade-down" id="covid-19-sentry">Covid-19 Sentry</h1>
<h1 data-aos="fade-right" data-aos-anchor-placement="top-bottom" id="contents">Contents</h1>
<ul>
<li><a href="#from-preprints">From Preprints</a></li>
<li><a href="#from-clinical-trials">From Clinical Trials</a></li>
<li><a href="#from-pubmed">From PubMed</a></li>
<li><a href="#from-patent-search">From Patent Search</a></li>
</ul>
<h1 data-aos="fade-right" id="from-preprints">From Preprints</h1>
<ul>
<li><strong>Viral Automation: The Case of COVID-19</strong> -
<div>
Manuscript of editors introduction to forthcoming special issue for New Media &amp; Society on legacies of the COVID-19 pandemic for automated decision-making.
</div>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://osf.io/preprints/socarxiv/u6fht/" target="_blank">Viral Automation: The Case of COVID-19</a>
</div></li>
<li><strong>UBA1-CDK16: A Sex-Specific Chimeric RNA and Its Role in Immune Sexual Dimorphism</strong> -
<div>
RNA processing mechanisms, such as alternative splicing and RNA editing, have been recognized as critical means to expand the transcriptome. Chimeric RNAs formed by intergenic splicing provide another potential layer of RNA diversification. By analyzing a large set of RNA-Seq data and validating results in over 1,200 blood samples, we identified UBA1-CDK16, a female-specific chimeric transcript. Intriguingly, both parental genes, are expressed in males and females. Mechanistically, UBA1-CDK16 is produced by cis-splicing between the two adjacent X-linked genes, originating from the inactive X chromosome. A female-specific chromatin loop, formed between the junction sites, facilitates the alternative splicing of its readthrough precursor. This unique chimeric transcript exhibits evolutionary conservation, evolving to be female-specific from non-human primates to humans. Furthermore, our investigation reveals that UBA1-CDK16 is enriched in the myeloid lineage and plays a regulatory role in myeloid differentiation. Notably, female COVID-19 patients who tested negative for this chimeric transcript displayed higher counts of neutrophils, highlighting its potential role in disease pathogenesis. These findings support the notion that chimeric RNAs represent a new repertoire of transcripts that can be regulated independently from the parental genes, and a new class of RNA variance with potential implications in sexual dimorphism and immune responses.
</div>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2024.02.13.580120v1" target="_blank">UBA1-CDK16: A Sex-Specific Chimeric RNA and Its Role in Immune Sexual Dimorphism</a>
</div></li>
<li><strong>SARS-CoV-2 serosurvey of healthy, privately owned cats presenting to a New York City animal hospital in the early phase of the COVID-19 pandemic (2020-2021)</strong> -
<div>
Both domestic and non-domestic cats are now established to be susceptible to infection by SARS-CoV-2, the cause of the ongoing COVID-19 pandemic. While serious disease in cats may occur in some instances, the majority of infections appear to be subclinical. Differing prevalence data for SARS-CoV-2 infection of cats have been reported, and are highly context-dependent. Here, we report a retrospective serological survey of cats presented to an animal practice in New York City, located in close proximity to a large medical center that treated the first wave of COVID-19 patients in the US in the Spring of 2020. We sampled 79, mostly indoor, cats between June 2020 to May 2021, the early part of which time the community was under a strict public health lock-down. Using a highly sensitive and specific fluorescent bead-based multiplex assay, we found an overall prevalence of 13/79 (16%) serologically-positive animals for the study period; however, cats sampled in the Fall of 2020 had a confirmed positive prevalence of 44%. For SARS-CoV-2 seropositive cats, we performed viral neutralization test with live SARS-CoV-2 to additionally confirm presence of SARS-CoV-2 specific antibodies. Of the thirteen seropositive cats, 7/13 (54%) were also positive by virus neutralization, and 2 of seropositive cats had previously documented respiratory signs, with high neutralization titers of 1:1024 and 1:4096; overall however, there was no statistically significant association of SARS-CoV-2 seropositivity with respiratory signs, or with breed, sex or age of the animals. Follow up sampling of cats, while limited in scope, showed that positive serological titers were maintained over time. In comparison, we found an overall confirmed positive prevalence of 51% for feline coronavirus (FCoV), an endemic virus of cats, with 30% confirmed negative for FCoV. We demonstrate the impact of SARS-CoV in a defined feline population during the first wave of SARS-CoV-2 infection of humans, and suggest that human-cat transmission was substantial in our study group. Our data provide a new context for SARS-CoV-2 transmission events across species.
</div>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2024.02.13.580068v1" target="_blank">SARS-CoV-2 serosurvey of healthy, privately owned cats presenting to a New York City animal hospital in the early phase of the COVID-19 pandemic (2020-2021)</a>
</div></li>
<li><strong>A single-dose MCMV-based vaccine elicits long-lasting immune protection in mice against distinct SARS-CoV-2 variants</strong> -
<div>
Current vaccines against COVID-19 elicit immune responses that are overall strong but wane rapidly. As a consequence, the necessary booster shots have led to vaccine fatigue. Hence, vaccines that would provide lasting protection against COVID-19 are needed, but are still unavailable. Cytomegaloviruses (CMV) elicit lasting and uniquely strong immune responses. Used as vaccine vectors, they may be attractive tools that obviate the need for boosters. Therefore, we tested the murine CMV (MCMV) as a vaccine vector against COVID-19 in relevant preclinical models of immunization and challenge. We have previously developed a recombinant murine CMV (MCMV) vaccine vector expressing the spike protein of the ancestral SARS-CoV-2 (MCMVS). In this study, we show that the MCMVS elicits a robust and lasting protection in young and aged mice. Notably, S-specific humoral and cellular immunity was not only maintained but even increased over a period of at least 6 months. During that time, antibody avidity continuously increased and expanded in breadth, resulting in neutralization of genetically distant variants, like Omicron BA.1. A single dose of MCMVS conferred rapid virus clearance upon challenge. Moreover, MCMVS vaccination controlled two immune-evading variants of concern (VoCs), the Beta (B.1.135) and the Omicron (BA.1) variants. Thus, CMV vectors provide unique advantages over other vaccine technologies, eliciting broadly reactive and long-lasting immune responses against COVID-19.
</div>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2022.11.25.517953v2" target="_blank">A single-dose MCMV-based vaccine elicits long-lasting immune protection in mice against distinct SARS-CoV-2 variants</a>
</div></li>
<li><strong>Infer metabolic directions and magnitudes from moment differences of mass-weighted intensity distributions</strong> -
<div>
Metabolic pathways are fundamental maps in biochemistry that detail how molecules are transformed through various reactions. Metabolomics refers to the large-scale study of small molecules. High-throughput, untargeted, mass spectrometry-based metabolomics experiments typically depend on libraries for structural annotation, which is necessary for pathway analysis. However, only a small fraction of spectra can be matched to known structures in these libraries and only a portion of annotated metabolites can be associated with specific pathways, considering that numerous pathways are yet to be discovered. The complexity of metabolic pathways, where a single compound can play a part in multiple pathways, poses an additional challenge. This study introduces a different concept: mass spectra distribution, which is the empirical distribution of the intensities times their associated m/z values. Analysis of COVID-19 and mouse brain datasets shows that by estimating the differences of the point estimations of these distributions, it becomes possible to infer the metabolic directions and magnitudes without requiring knowledge of the exact chemical structures of these compounds and their related pathways. The overall metabolic momentum map, named as momentome, has the potential to bypass the current bottleneck and provide fresh insights into metabolomics studies. This brief report thus provides a mathematical framing for a classic biological concept.
</div>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://osf.io/jmgea/" target="_blank">Infer metabolic directions and magnitudes from moment differences of mass-weighted intensity distributions</a>
</div></li>
<li><strong>“Some distance between us:” a mixed methods study exploring experiences of remote care for eating disorders during COIVD-19</strong> -
<div>
Introduction: COVID-19 necessitated a rapid move from face-to-face services to remote care for eating disorders/eating distress (EDs). This study explores the advantages and challenges of remote care, identifying future implications for service provision. Methods: Using a mixed methods approach, data were collected from 211 people with lived experience (PWLE); 27 participating in semi-structured interviews/workshops and 184 via an online survey. Participants reported on their ED status; the impact of the pandemic on symptoms; benefits and challenges of remote care (and type of support accessed); any reasons for not accessing support; and future recommendations. Participation was open to PWLE with and without formal diagnosis. Results: ED symptoms were reported as worsening during the pandemic with contributing factors including isolation, lack of routine, negative emotions, and feeling like the external situation was outside of ones control. Exercise was reported as a coping mechanism (although it is noted that responses did not allow for clarifications of respondents understanding of what constitutes healthy or unhealthy exercise). Remote care was positively attributed to increased flexibility and facilitation of social connection. However, identified barriers to access included a lack of awareness about support availability, digital access and/or literacy, and competing commitments (e.g., childcare). Further challenges included approaches being perceived as too clinical; uncertainty around remote care quality, and concerns that remote platforms may facilitate masking of symptoms. Participants also reflected heavily upon distress caused by default self-view during video calls. Participants expressed a need for more holistic approaches including “real stories” of recovery, and hybrid (online and offline) options for greater flexibility and widening of access choices; complimented by appropriate training to mitigate digital literacy barriers. Discussion: Future recommendations emphasise user-centered holistic, hybrid approaches to ED remote support, supported by training to address digital literacy barriers and facilitate user control of platform functionalities (e.g., self-view). The study underscores the need for continued remote care with a focus on inclusivity and user empowerment.
</div>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://osf.io/5rpg3/" target="_blank">“Some distance between us:” a mixed methods study exploring experiences of remote care for eating disorders during COIVD-19</a>
</div></li>
<li><strong>A Broad-Spectrum Multi-Antigen mRNA/LNP-Based Pan-Coronavirus Vaccine Induced Potent Cross-Protective Immunity Against Infection and Disease Caused by Highly Pathogenic and Heavily Spike-Mutated SARS-CoV-2 Variants of Concern in the Syrian Hamster Model</strong> -
<div>
The first-generation Spike-alone-based COVID-19 vaccines have successfully contributed to reducing the risk of hospitalization, serious illness, and death caused by SARS-CoV-2 infections. However, waning immunity induced by these vaccines failed to prevent immune escape by many variants of concern (VOCs) that emerged from 2020 to 2024, resulting in a prolonged COVID-19 pandemic. We hypothesize that a next-generation Coronavirus (CoV) vaccine incorporating highly conserved non-Spike SARS-CoV-2 antigens would confer stronger and broader cross-protective immunity against multiple VOCs. In the present study, we identified ten non-Spike antigens that are highly conserved in 8.7 million SARS-CoV-2 strains, twenty-one VOCs, SARS-CoV, MERS-CoV, Common Cold CoVs, and animal CoVs. Seven of the 10 antigens were preferentially recognized by CD8+ and CD4+ T-cells from unvaccinated asymptomatic COVID-19 patients, irrespective of VOC infection. Three out of the seven conserved non-Spike T cell antigens belong to the early expressed Replication and Transcription Complex (RTC) region, when administered to the golden Syrian hamsters, in combination with Spike, as nucleoside-modified mRNA encapsulated in lipid nanoparticles (LNP) (i.e., combined mRNA/LNP-based pan-CoV vaccine): (i) Induced high frequencies of lung-resident antigen-specific CXCR5+CD4+ T follicular helper (TFH) cells, GzmB+CD4+ and GzmB+CD8+ cytotoxic T cells (TCYT), and CD69+IFN-g+TNF-a+CD4+ and CD69+IFN-g+TNFa+CD8+ effector T cells (TEFF); and (ii) Reduced viral load and COVID-19-like symptoms caused by various VOCs, including the highly pathogenic B.1.617.2 Delta variant and the highly transmittable heavily Spike-mutated XBB1.5 Omicron sub-variant. The combined mRNA/LNP-based pan-CoV vaccine could be rapidly adapted for clinical use to confer broader cross-protective immunity against emerging highly mutated and pathogenic VOCs.
</div>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2024.02.14.580225v1" target="_blank">A Broad-Spectrum Multi-Antigen mRNA/LNP-Based Pan-Coronavirus Vaccine Induced Potent Cross-Protective Immunity Against Infection and Disease Caused by Highly Pathogenic and Heavily Spike-Mutated SARS-CoV-2 Variants of Concern in the Syrian Hamster Model</a>
</div></li>
<li><strong>Probability Discounting and Adherence to Preventive Behaviors During the COVID-19 Pandemic</strong> -
<div>
This brief communication reports preliminary findings of a study conducted to investigate the relationship between probability discounting and peoples adherence to preventive behaviors recommended during the COVID-19 pandemic. A sample of 112 adults living in Brazil completed an online survey composed of a Probability Discounting Questionnaire (PDQ) and a 10-item assessment of how often they complied with the health authorities recommendations (e.g., wash the hands frequently, practice social distancing, stay at home as much as possible, wear a mask when in public). Data analysis included the participants who showed higher (n = 40) and lower (n = 40) adherence to preventive behaviors. Results revealed that probability discounting measures are related to peoples preventive actions. Participants in the higher adherence group present significantly larger risk aversion indices (i.e., larger h values) than participants in the lower adherence group. Also, participants who showed lower adherence to preventive behaviors were more likely to perform risky choices in the PDQ than participants who demonstrated higher compliance with health authorities recommendations. These preliminary results suggest that probability discounting can play an essential role in peoples self-protective decisions during a global health emergency, such as the COVID-19 pandemic.
</div>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://osf.io/preprints/psyarxiv/p4a76/" target="_blank">Probability Discounting and Adherence to Preventive Behaviors During the COVID-19 Pandemic</a>
</div></li>
<li><strong>Pooled PPIseq: screening the SARS-CoV-2 and human interface with a scalable multiplexed protein-protein interaction assay platform</strong> -
<div>
Protein-Protein Interactions (PPIs) are a key interface between virus and host, and these interactions are important to both viral reprogramming of the host and to host restriction of viral infection. In particular, viral-host PPI networks can be used to further our understanding of the molecular mechanisms of tissue specificity, host range, and virulence. At higher scales, viral-host PPI screening could also be used to screen for small-molecule antivirals that interfere with essential viral-host interactions, or to explore how the PPI networks between interacting viral and host genomes co-evolve. Current high-throughput PPI assays have screened entire viral-host PPI networks. However, these studies are time consuming, often require specialized equipment, and are difficult to further scale. Here, we develop methods that make larger-scale viral-host PPI screening more accessible. This approach combines the mDHFR split-tag reporter with the iSeq2 interaction-barcoding system to permit massively-multiplexed PPI quantification by simple pooled engineering of barcoded constructs, integration of these constructs into budding yeast, and fitness measurements by pooled cell competitions and barcode-sequencing. We applied this method to screen for PPIs between SARS-CoV-2 proteins and human proteins, screening in triplicate &gt;180,000 ORF-ORF combinations represented by &gt;1,000,000 barcoded lineages. Our results complement previous screens by identifying 74 putative PPIs, including interactions between ORF7A with the taste receptors TAS2R41 and TAS2R7, and between NSP4 with the transmembrane KDELR2 and KDELR3. We show that this PPI screening method is highly scalable, enabling larger studies aimed at generating a broad understanding of how viral effector proteins converge on cellular targets to effect replication.
</div>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2024.02.13.580123v1" target="_blank">Pooled PPIseq: screening the SARS-CoV-2 and human interface with a scalable multiplexed protein-protein interaction assay platform</a>
</div></li>
<li><strong>Single-cell Masked Autoencoder: An Accurate and Interpretable Automated Immunophenotyper</strong> -
<div>
High-throughput single-cell cytometry data are crucial for understanding immune system's involvement in diseases and responses to treatment. Traditional methods for annotating cytometry data, specifically manual gating and clustering, face challenges in scalability, robustness, and accuracy. In this study, we propose a single-cell masked autoencoder (scMAE), which offers an automated solution for immunophenotyping tasks including cell type annotation. The scMAE model is designed to uphold user-defined cell type definitions, thereby facilitating easier interpretation and cross-study comparisons. The scMAE model operates on a pre-train and fine-tune approach. In the pre-training phase, scMAE employs Masked Single-cell Modelling (MScM) to learn relationships between protein markers in immune cells solely based on protein expression, without relying on prior information such as cell identity and cell type-specific marker proteins. Subsequently, the pre-trained scMAE is fine-tuned on multiple specialized tasks via task-specific supervised learning. The pre-trained scMAE addresses the shortcomings of manual gating and clustering methods by providing accurate and interpretable predictions. Through validation across multiple cohorts, we demonstrate that scMAE effectively identifies co-occurrence patterns of bound labeled antibodies, delivers accurate and interpretable cellular immunophenotyping, and improves the prediction of subject metadata status. Specifically, we evaluated scMAE for cell type annotation and imputation at the cellular-level and SARS-CoV-2 infection prediction, secondary immune response prediction against COVID-19, and prediction the infection stage in the COVID-19 progression at the subject-level. The introduction of scMAE marks a significant step forward in immunology research, particularly in large-scale and high-throughput human immune profiling. It offers new possibilities for predicting and interpretating cellular-level and subject-level phenotypes in both health and disease.
</div>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2024.02.13.580114v1" target="_blank">Single-cell Masked Autoencoder: An Accurate and Interpretable Automated Immunophenotyper</a>
</div></li>
<li><strong>A spring-loaded and leakage-tolerant synthetic gene switch for in-vitro detection of DNA and RNA</strong> -
<div>
Nucleic acid tests (NATs) are essential for biomedical diagnostics. Traditional NATs, often complex and expensive, have prompted the exploration of Toehold-Mediated Strand Displacement (TMSD) circuits as an economical alternative. However, the wide application of TMSD-based reactions is limited by leakage-the spurious activation of the reaction leading to high background signals and false positives. Here we introduce a new TMSD cascade that recognizes a custom nucleic acid input and generates an amplified output. The system is based on a pair of thermodynamically spring-loaded DNA modules. The binding of a predefined nucleic acid target triggers an intermolecular reaction that activates a T7 promoter, leading to the perpetual transcription of a fluorescent aptamer that can be detected by a smartphone camera. The system is designed to permit the selective depletion of leakage byproducts to achieve high sensitivity and zero-background signal in the absence of the correct trigger. Using Zika virus (ZIKV)- and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-derived nucleic acid sequences, we show that the assay generates a reliable target-specific readout. Native RNA can be directly detected under isothermal conditions, without requiring reverse transcription, with a sensitivity as low as 200 attomole. The modularity of the assay allows easy re-programming for the detection of other targets by exchanging a single sequence domain. This work provides a low-complexity and high-fidelity synthetic biology tool for point-of-care diagnostics and for the construction of more complex biomolecular computations.
</div>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2024.02.12.579921v1" target="_blank">A spring-loaded and leakage-tolerant synthetic gene switch for in-vitro detection of DNA and RNA</a>
</div></li>
<li><strong>Data mining antibody sequences for database searching in bottom-up proteomics</strong> -
<div>
Mass spectrometry (MS)-based proteomics allows identifying and quantifying thousands of proteins but suffers from challenges when measuring human antibodies due to their vast variety. The mainly used bottom-up proteomics approaches rely on database searches that compare experimental values of peptides and their fragments to theoretical values derived from protein sequences in a database. While the human body can produce millions of distinct antibodies, the current databases for human antibodies such as UniProtKB/Swiss-Prot are limited to only 1095 sequences (as of 2024 Jan). This limitation may hinder the identification of new antibodies using mass spectrometry. Therefore, extending the database for mass spectrometry is an important task for discovering new antibodies. Recent genomic studies have compiled millions of human antibody sequences publicly accessible through the Observed Antibody Space (OAS) database. However, this data has yet to be exploited to confirm the presence of these antibodies. In this study, we adopted this extensive collection of antibody sequences for conducting efficient database searches in publicly available proteomics data with a focus on the SARS-CoV-2 disease. Thirty million heavy antibody sequences from 146 SARS-CoV-2 patients in the OAS database were digested in silico to obtain 18 million unique peptides. These peptides were then used to create new databases for bottom-up proteomics. We used those databases for searching new antibody peptides in publicly available SARS-CoV-2 human plasma samples in the Proteomics Identification Database (PRIDE). This approach avoids false positives in antibody peptide identification as confirmed by searching against negative controls (brain samples) and employing different database sizes. We show that the found sequences provide valuable information to distinguish diseased from healthy and expect that the newly discovered antibody peptides can be further employed to develop therapeutic antibodies. The method will be broadly applicable to find characteristic antibodies for other diseases.
</div>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2024.02.13.580076v1" target="_blank">Data mining antibody sequences for database searching in bottom-up proteomics</a>
</div></li>
<li><strong>Emergence and spread of SARS-CoV-2 variants from farmed mink to humans and back during the epidemic in Denmark, June-November 2020.</strong> -
<div>
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has not only caused the COVID-19 pandemic but also had a major impact on farmed mink production in several European countries. In Denmark, the entire population of farmed mink (over 15 million animals) was culled in late 2020. During the period of June to November 2020, mink on 290 farms (out of about 1100 in the country) were shown to be infected with SARS-CoV-2. Genome sequencing identified changes in the virus within the mink and it is estimated that about 4000 people in Denmark became infected with these mink virus variants. Phylogenetic analysis revealed the generation of multiple clusters of the virus within the mink. A detailed analysis of the changes in the virus during replication in mink and, in parallel, in the human population in Denmark, during the same time period, has been performed here. The majority of cases in mink involved variants that had the Y435F substitution and the H69/V70 deletion within the Spike (S) protein; these changes emerged early on during the outbreak. However, further introductions of the virus, with variants lacking these changes, from the human population into mink also occurred. Based on phylogenetic analysis of the available viral genome data, we estimate that there were a minimum of about 17 separate examples of mink to human transmission of the virus in Denmark, using a conservative approach, but up to 60 such events (95% credible interval: (35-77)) were identified using parsimony to count cross-species jumps on transmission trees inferred using a Bayesian method. Using the latter approach, it was estimated that there were 136 jumps (95% credible interval: (112-164)) from humans to mink. Thus, transmission of these viruses from humans to mink, mink to mink, from mink to humans and between humans were all observed.
</div>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2024.02.13.580053v1" target="_blank">Emergence and spread of SARS-CoV-2 variants from farmed mink to humans and back during the epidemic in Denmark, June-November 2020.</a>
</div></li>
<li><strong>Evolving Trends in Neuropsychological Profiles of Post COVID-19 Condition: A 1-Year Follow-up in Individuals with Cognitive Complaints</strong> -
<div>
Background: Cognitive difficulties are reported as lasting sequelae within post COVID-19 condition. However, the chronicity of these difficulties and related factors of fatigue, mood, and perceived health have yet to be fully determined. More longitudinal studies are needed to clarify the trends of cognitive test performance and cognitive domain impairment following COVID-19 onset, and whether hospitalization influences outcomes. Methods: 57 participants who reported subjective cognitive difficulties after confirmed COVID-19 infection were assessed at baseline (~6 months post COVID-19) and follow-up (~15 months later) visits. Assessments included measures across multiple cognitive domains and self-report questionnaires of fatigue, mood, and overall health. Analyses were conducted in three stages: at the test score level (raw and adjusted scores), at the cognitive domain level, and stratified by hospitalization status during infection. Results: Impacts on cognitive test scores remain stable across assessments. Cognitive domain analyses indicate significant reductions in attention and executive functioning impairment, while memory impairment is slower resolve. On self-report measures, there was a significant improvement in overall health ratings at follow-up. Finally, those hospitalized during infection performed worse on timed cognitive measures across visits and accounted for a larger proportion of cases with short-term and working memory impairment at follow-up. Conclusions: Cognitive difficulties persist both at test score and cognitive domain levels in many cases of post COVID-19 condition, but evidence suggests some improvement in global measures of attention, executive functioning and overall self-rated health. An effect of hospitalization on cognitive symptoms post COVID-19 may be more discernible over time.
</div>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://osf.io/bwgx8/" target="_blank">Evolving Trends in Neuropsychological Profiles of Post COVID-19 Condition: A 1-Year Follow-up in Individuals with Cognitive Complaints</a>
</div></li>
<li><strong>The Your COVID-19 Risk Assessment Tool and the Accompanying Open Access Data and Materials Repositories</strong> -
<div>
In March 2020, the Your COVID-19 Risk tool was developed in response to the global spread of SARS-CoV-2. The tool is an online resource based on key behavioural evidence-based risk factors related to contracting and spreading SARS-CoV-2. This article describes the development of the tool, the produced resources, the associated open repository, and initial results. This tool was developed by a multidisciplinary research team consisting of more than 150 international experts. This project leverages knowledge obtained in behavioural science, aiming to promote behaviour change by assessing risk and supporting individuals completing the assessment tool to protect themselves and others from infection. To enable iterative improvements of the tool, tool users can optionally answer questions about behavioural determinants. The data and results are openly shared to support governments and health agencies developing behaviour change interventions. Over 60 000 users in more than 150 countries have assessed their risk and provided data.
</div>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://osf.io/b8n5g/" target="_blank">The Your COVID-19 Risk Assessment Tool and the Accompanying Open Access Data and Materials Repositories</a>
</div></li>
</ul>
<h1 data-aos="fade-right" id="from-clinical-trials">From Clinical Trials</h1>
<ul>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Correlation of Antibody Response to COVID-19 Vaccination in Pregnant Woman and Transplacental Passage Into Cord Blood.</strong> - <b>Conditions</b>: Covid-19 <br/><b>Interventions</b>: Diagnostic Test: COVID-19 Spike Protein IgG Quantitative Antibody (CMIA) <br/><b>Sponsors</b>: Vachira Phuket Hospital <br/><b>Recruiting</b></p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>UNAIR Inactivated COVID-19 Vaccine as Homologue Booster (Immunobridging Study)</strong> - <b>Conditions</b>: COVID-19 Pandemic; COVID-19 Vaccines; COVID-19 Virus Disease <br/><b>Interventions</b>: Biological: INAVAC (Vaksin Merah Putih - UA- SARS CoV-2 (Vero Cell Inactivated) 5 μg <br/><b>Sponsors</b>: Dr. Soetomo General Hospital; Universitas Airlangga; Biotis Pharmaceuticals, Indonesia; Indonesia-MoH <br/><b>Recruiting</b></p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Safety and Immunogenicity of a Sub-unit Protein CD40.RBDv Bivalent COVID-19 Vaccine, Adjuvanted or Not, as a Booster in Volunteers.</strong> - <b>Conditions</b>: COVID-19 <br/><b>Interventions</b>: Drug: CD40.RBDv vaccin (SARS-Cov2 Vaccin) <br/><b>Sponsors</b>: ANRS, Emerging Infectious Diseases; LinKinVax; Vaccine Research Institute (VRI), France <br/><b>Not yet recruiting</b></p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>ADJUVANT TREATMENT TO REDUCE CARDIOVASCULAR RISK IN PATIENTS WITH LONG COVID: HIGH-DEFINITION TRANSCRANIAL DIRECT CURRENT STIMULATION (HD-TDCS) AND CHLORELLA PYREINOIDOSA</strong> - <b>Conditions</b>: Cardiovascular Diseases; Long Covid19 <br/><b>Interventions</b>: Other: High Definition-transcranial Direct Current Stimulation; Dietary Supplement: Chlorella Pyreinodosa <br/><b>Sponsors</b>: Federal University of Paraíba; City University of New York <br/><b>Recruiting</b></p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>SGB for COVID-induced Parosmia</strong> - <b>Conditions</b>: COVID-19-Induced Parosmia <br/><b>Interventions</b>: Drug: Stellate Ganglion Block; Drug: Placebo Sham Injection <br/><b>Sponsors</b>: Washington University School of Medicine <br/><b>Recruiting</b></p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Effects of Physiotherapy Via Video Calls in Patients With COVID-19</strong> - <b>Conditions</b>: COVID-19; Long COVID-19; Cardiopulmonary Function; Physical Function <br/><b>Interventions</b>: Behavioral: Exercise training <br/><b>Sponsors</b>: Chulabhorn Hospital <br/><b>Active, not recruiting</b></p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Investigating the Effectiveness of Vimida</strong> - <b>Conditions</b>: Long COVID; Post COVID-19 Condition <br/><b>Interventions</b>: Behavioral: vimida <br/><b>Sponsors</b>: Gaia AG; Medical School Hamburg; Institut Long-Covid Rostock <br/><b>Not yet recruiting</b></p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Acute Cardiovascular Responses to a Single Exercise Session in Patients With Post-COVID-19 Syndrome</strong> - <b>Conditions</b>: Post-Acute COVID-19 Syndrome <br/><b>Interventions</b>: Behavioral: Exercise session; Behavioral: Control session <br/><b>Sponsors</b>: University of Nove de Julho <br/><b>Not yet recruiting</b></p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Reducing Respiratory Virus Transmission in Bangladeshi Classrooms</strong> - <b>Conditions</b>: SARS-CoV2 Infection; Influenza Viral Infections; Respiratory Viral Infection <br/><b>Interventions</b>: Device: Box Fan; Device: UV Germicidal Irradiation Lamp Unit; Device: Combined: Box Fan and UV Germicidal Irradiation Lamp Units <br/><b>Sponsors</b>: Stanford University; Centers for Disease Control and Prevention; International Centre for Diarrhoeal Disease Research, Bangladesh <br/><b>Not yet recruiting</b></p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>SMILE: Clinical Trial to Evaluate Mindfulness as Intervention for Racial and Ethnic Populations During COVID-19</strong> - <b>Conditions</b>: Anxiety; COVID-19 Pandemic <br/><b>Interventions</b>: Behavioral: Mindfulness <br/><b>Sponsors</b>: University of North Carolina, Chapel Hill; National Institute on Minority Health and Health Disparities (NIMHD); RTI International <br/><b>Not yet recruiting</b></p></li>
</ul>
<h1 data-aos="fade-right" id="from-pubmed">From PubMed</h1>
<ul>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Effect of rifampicin administration on CYP induction in a dermatomyositis patient with vasospastic angina attributable to nilmatrelvir/ritonavir-induced blood tacrolimus elevation: A case report</strong> - Ritonavir (RTV), which is used in combination with nilmatrelvir (NMV) to treat coronavirus disease 2019 (COVID-19), inhibits cytochrome P450 (CYP) 3A, thereby increasing blood tacrolimus (TAC) levels through a drug-drug interaction (DDI). We experienced a case in which a DDI between the two drugs led to markedly increased blood TAC levels, resulting in vasospastic angina (VSA) and acute kidney injury (AKI). Rifampicin (RFP) was administered to induce CYP3A and promote TAC metabolism. A…</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>SARS-CoV-2 spike protein receptor binding domain promotes IL-6 and IL-8 release via ATP/P2Y<sub>2</sub> and ERK1/2 signaling pathways in human bronchial epithelia</strong> - The spike protein of SARS-CoV-2 as well as its receptor binding domain (RBD) has been demonstrated to be capable of activating the release of pro-inflammatory mediators in endothelial cells and immune cells such as monocytes. However, the effects of spike protein or its RBD on airway epithelial cells and mechanisms underlying these effects have not been adequately characterized. Here, we show that the RBD of spike protein alone can induce bronchial epithelial inflammation in a manner of…</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Targeting mevalonate pathway by zoledronate ameliorated pulmonary fibrosis in a rat model: Promising therapy against post-COVID-19 pulmonary fibrosis</strong> - CONCLUSION: ZA in a dose-dependent manner prevented the pathological effect of CCl4 in the lung by targeting mevalonate pathway. It could be promising therapy against PCPF.</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Methotrexate Inhibits the Binding of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Receptor Binding Domain to the Host-Cell Angiotensin-Converting Enzyme-2 (ACE-2) Receptor</strong> - As the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus mutates, finding effective drugs becomes more challenging. In this study, we use ultrasensitive frequency locked microtoroid optical resonators in combination with in silico screening to search for COVID-19 drugs that can stop the virus from attaching to the human angiotensin-converting enzyme 2 (hACE2) receptor in the lungs. We found 29 promising candidates that could block the binding site and selected four of them that…</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Evaluating NSAIDs in SARS-CoV-2: Immunomodulatory mechanisms and future therapeutic strategies</strong> - Non-steroidal anti-inflammatory drugs (NSAIDs) are widely recognized for their analgesic and anti-inflammatory properties. Amidst the SARS-CoV-2 pandemic, the role of NSAIDs in modulating viral and bacterial infections has become a critical area of research, sparking debates and necessitating a thorough review. This review examines the multifaceted interactions between NSAIDs, immune responses, and infections. Focusing on the immunomodulatory mechanisms of NSAIDs in SARS-CoV-2 and their…</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Molecular docking of bioactive compounds extracted and purified from selected medicinal plant species against covid-19 proteins and in vitro evaluation</strong> - Bioactive compounds are secondary metabolites of plants. They offer diverse pharmacological properties. Peganum harmala is reported to have pharmaceutical effects like insecticidal, antitumor, curing malaria, anti-spasmodic, vasorelaxant, antihistaminic effect. Rosa brunonii has medicinal importance in its flower and fruits effective against different diseases and juice of leaf is reported to be applied externally to cure wounds and cuts. Dryopteris ramosa aqueous leaf extract is used to treat…</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Asialoglycoprotein receptor 1 promotes SARS-CoV-2 infection of human normal hepatocytes</strong> - Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes multi-organ damage, which includes hepatic dysfunction, as observed in over 50% of COVID-19 patients. Angiotensin I converting enzyme (peptidyl-dipeptidase A) 2 (ACE2) is the primary receptor for SARS-CoV-2 entry into host cells, and studies have shown the presence of intracellular virus particles in human hepatocytes that express ACE2, but at extremely low levels. Consequently, we asked if hepatocytes might express receptors…</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>SARS-CoV-2 spike protein-ACE2 interaction increases carbohydrate sulfotransferases and reduces N-acetylgalactosamine-4-sulfatase by p38 MAPK</strong> - Immunostaining in lungs of patients who died with COVID-19 infection showed increased intensity and distribution of chondroitin sulfate and decline in N-acetylgalactostamine-4-sulfatase (Arylsulfatase B; ARSB). To explain these findings, human small airway epithelial cells were exposed to the SARS-CoV-2 spike protein receptor binding domain (SPRBD) and transcriptional mechanisms were investigated. Phospho-p38 MAPK and phospho-SMAD3 increased following exposure to the SPRBD, and their inhibition…</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Investigating vulnerability of the conserved SARS-CoV-2 spikes heptad repeat 2 as target for fusion inhibitors using chimeric miniproteins</strong> - Inhibition of SARS-CoV-2 membrane fusion is a highly desired target to combat COVID-19. The interaction between the spikes heptad repeat (HR) regions 1 (HR1) and 2 (HR2) is a crucial step during the fusion process and these highly conserved HR regions constitute attractive targets for fusion inhibitors. However, the relative importance of each subregion of the long HR1-HR2 interface for viral inhibition remains unclear. Here, we designed, produced, and characterized a series of chimeric…</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>TYPE I INTERFERON PATHWAY GENETIC VARIANTS IN SEVERE COVID-19</strong> - Coronavirus Disease 2019 (COVID-19) is an infectious disease caused by SARS-CoV-2. According to the World Health Organization (WHO), there have been over 760 million reported cases and over 6 million deaths caused by this disease worldwide. The severity of COVID-19 is based on symptoms presented by the patient and is divided as asymptomatic, mild, moderate, severe, and critical. The manifestations are interconnected with genetic variations. The innate immunity is the quickest response mechanism…</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Inhibition of CD40L with Frexalimab in Multiple Sclerosis</strong> - CONCLUSIONS: In a phase 2 trial involving participants with multiple sclerosis, inhibition of CD40L with frexalimab had an effect that generally favored a greater reduction in the number of new gadolinium-enhancing T1-weighted lesions at week 12 as compared with placebo. Larger and longer trials are needed to determine the long-term efficacy and safety of frexalimab in persons with multiple sclerosis. (Funded by Sanofi; ClinicalTrials.gov number, NCT04879628.).</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Hyperacetylated microtubules assist porcine deltacoronavirus nsp8 to degrade MDA5 via SQSTM1/p62-dependent selective autophagy</strong> - The microtubule (MT) is a highly dynamic polymer that functions in various cellular processes through MT hyperacetylation. Thus, many viruses have evolved mechanisms to hijack the MT network of the cytoskeleton to allow intracellular replication of viral genomic material. Coronavirus non-structural protein 8 (nsp8), a component of the viral replication transcriptional complex, is essential for viral survival. Here, we found that nsp8 of porcine deltacoronavirus (PDCoV), an emerging…</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>An isothermal calorimetry assay for determining steady state kinetic and enzyme inhibition parameters for SARS-CoV-2 3CL-protease</strong> - This manuscript describes the application of Isothermal Titration Calorimetry (ITC) to characterize the kinetics of 3CL ^(pro) from the Severe Acute Respiratory Syndrome CoronaVirus-2 (SARS-CoV-2) and its inhibition by Ensitrelvir, a known non-covalent inhibitor. 3CL ^(pro) is the main protease that plays a crucial role of producing the whole array of proteins necessary for the viral infection that caused the spread of COVID-19, responsible for millions of deaths worldwide as well as global…</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Identification of new pharmacophore against SARS-CoV-2 spike protein by multi-fold computational and biochemical techniques</strong> - COVID-19 appeared as a highly contagious disease after its outbreak in December 2019 by the virus, named SARS-CoV-2. The threat, which originated in Wuhan, China, swiftly became an international emergency. Among different genomic products, spike protein of virus plays a crucial role in the initiation of the infection by binding to the human lung cells, therefore, SARS-CoV-2s spike protein is a promising therapeutic target. Using a combination of a structure-based virtual screening and…</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Calpain-2 mediates SARS-CoV-2 entry via regulating ACE2 levels</strong> - Since the beginning of the coronavirus disease 2019 (COVID-19) pandemic, much effort has been dedicated to identifying effective antivirals against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A number of calpain inhibitors show excellent antiviral activities against SARS-CoV-2 by targeting the viral main protease (M^(pro)), which plays an essential role in processing viral polyproteins. In this study, we found that calpain inhibitors potently inhibited the infection of a…</p></li>
</ul>
<h1 data-aos="fade-right" id="from-patent-search">From Patent Search</h1>
<script>AOS.init();</script></body></html>