187 lines
45 KiB
HTML
187 lines
45 KiB
HTML
<!DOCTYPE html>
|
||
<html lang="" xml:lang="" xmlns="http://www.w3.org/1999/xhtml"><head>
|
||
<meta charset="utf-8"/>
|
||
<meta content="pandoc" name="generator"/>
|
||
<meta content="width=device-width, initial-scale=1.0, user-scalable=yes" name="viewport"/>
|
||
<title>07 October, 2021</title>
|
||
<style type="text/css">
|
||
code{white-space: pre-wrap;}
|
||
span.smallcaps{font-variant: small-caps;}
|
||
span.underline{text-decoration: underline;}
|
||
div.column{display: inline-block; vertical-align: top; width: 50%;}
|
||
</style>
|
||
<title>Covid-19 Sentry</title><meta content="width=device-width, initial-scale=1.0" name="viewport"/><link href="styles/simple.css" rel="stylesheet"/><link href="../styles/simple.css" rel="stylesheet"/><link href="https://unpkg.com/aos@2.3.1/dist/aos.css" rel="stylesheet"/><script src="https://unpkg.com/aos@2.3.1/dist/aos.js"></script></head>
|
||
<body>
|
||
<h1 data-aos="fade-down" id="covid-19-sentry">Covid-19 Sentry</h1>
|
||
<h1 data-aos="fade-right" data-aos-anchor-placement="top-bottom" id="contents">Contents</h1>
|
||
<ul>
|
||
<li><a href="#from-preprints">From Preprints</a></li>
|
||
<li><a href="#from-clinical-trials">From Clinical Trials</a></li>
|
||
<li><a href="#from-pubmed">From PubMed</a></li>
|
||
<li><a href="#from-patent-search">From Patent Search</a></li>
|
||
</ul>
|
||
<h1 data-aos="fade-right" id="from-preprints">From Preprints</h1>
|
||
<ul>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A Mixed-Studies Systematic Review on the Impact of COVID-19 on Body Image, Disordered Eating, and Eating Disorders</strong> -
|
||
<div>
|
||
Objectives. This review assessed the impact of COVID-19 and restrictions related to the pandemic (e.g., social distancing and lockdown) on body image, disordered eating, and eating disorder outcomes. Method. After registration on PROSPERO, a systematic search was conducted for papers published between 1 December 2019 and 1 August 2021, using the databases PsycINFO, PsycARTICLES, CINAHL Plus, AMED, MEDLINE, ERIC, EMBASE, Wiley, and ProQuest. Results. A final sample of 74 reports, describing 75 studies, was included, and data from qualitative, quantitative, and mixed-methods studies were synthesized using a convergent integrated approach. Four themes were generated: (1) disruptions due to COVID-19;</div></li>
|
||
</ul>
|
||
<ol start="2" type="1">
|
||
<li>variability in the improvement or exacerbation of symptoms; (3) risk and protective factors; and (4) unique challenges for marginalized and underrepresented groups. Findings across studies showed variation in individuals’ responses to, and experiences of, the current pandemic. Discussion. There is large variability in how individuals respond to COVID-19 and limited research exploring the effect of the pandemic on body image, disordered eating, and eating disorder outcomes using longitudinal and experimental study designs. Based on the findings of this review, we recommend that individuals reduce time spent on social media, maintain contact with family and friends, make time for self-care, and keep daily routines. Additionally, researchers should target more diverse participant samples and conduct longitudinal research on risk and protective factors of COVID-19 and long-term outcomes. Finally, clinicians should consider adopting flexible treatment practices, taking into account COVID-19 restrictions, patient preferences, and unique participant needs.
|
||
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://psyarxiv.com/w7xfg/" target="_blank">A Mixed-Studies Systematic Review on the Impact of COVID-19 on Body Image, Disordered Eating, and Eating Disorders</a>
|
||
</div></li>
|
||
</ol>
|
||
<ul>
|
||
<li><strong>Wearing a mint-scented face mask reduces appetite</strong> -
|
||
<div>
|
||
Previous studies have shown that mint scents reduce chocolate craving. However, two questions remain: whether the effect is an artifact of demand characteristics in which participants were aware that the study aimed to examine the effect of mint scent, and whether mint scent reduces appetite for foods generally other than chocolate. The present study took advantage of the fact that wearing face masks in public is becoming a standard norm because of the COVID-19 pandemic, to manipulate scent presentation to participants. We investigated the potential application of mint-scented masks for appetite control. Participants who were deceived that wearing masks were for consumer testing to eliminate demand characteristics rated their perceived wanting to eat for a variety of food images that had been preliminarily rated for perceived wanting while wearing a mint-scented mask (or an unscented control mask). The results showed that wearing a mint-scented compared to an unscented mask reduced perceived wanting for foods regardless of base wanting. The results demonstrate a novel potential application of mint-scented masks, namely appetite control, and replicates and extends the generalizability of past findings by excluding artifacts of demand characteristics.
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://psyarxiv.com/6ks84/" target="_blank">Wearing a mint-scented face mask reduces appetite</a>
|
||
</div></li>
|
||
<li><strong>SARS-CoV-2 hijacks neutralizing dimeric IgA for enhanced nasal infection and injury</strong> -
|
||
<div>
|
||
Robust severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection in nasal turbinate (NT) accounts for high viral transmissibility, yet whether neutralizing IgA antibodies can control it remains unknown. Here, we evaluated receptor binding domain (RBD)-specific monomeric B8-mIgA1 and B8-mIgA2, and dimeric B8-dIgA1 and B8-dIgA2 against intranasal SARS-CoV-2 challenge in Syrian hamsters. These antibodies exhibited comparably potent neutralization against authentic virus by competing with human angiotensin converting enzyme-2 (ACE2) receptor for RBD binding. While reducing viruses in lungs, pre-exposure intranasal B8-dIgA1 or B8-dIgA2 led to 81-fold more infectious viruses and severer damage in NT than placebo. Virus-bound B8-dIgA1 and B8-dIgA2 could engage CD209 as an alternative receptor for entry into ACE2-negative cells and allowed viral cell-to-cell transmission. Cryo-EM revealed B8 as a class II neutralizing antibody binding trimeric RBDs in 3-up or 2-up/1-down conformation. Therefore, RBD-specific neutralizing dIgA engages an unexpected action for enhanced SARS-CoV-2 nasal infection and injury in Syrian hamsters.
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2021.10.05.463282v1" target="_blank">SARS-CoV-2 hijacks neutralizing dimeric IgA for enhanced nasal infection and injury</a>
|
||
</div></li>
|
||
<li><strong>SARS-CoV-2 PLpro whole human proteome cleavage prediction and enrichment/depletion analysis</strong> -
|
||
<div>
|
||
A novel coronavirus (SARS-CoV-2) has caused a pandemic that has killed millions of people, worldwide vaccination and herd immunity are still far away, and few therapeutics are approved by regulatory agencies for widespread use. The coronavirus 3-chymotrypsin-like protease (3CLpro) is a commonly investigated target in COVID-19, however less work has been directed toward the equally important papain-like protease (PLpro). PLpro is less characterized due to its fewer and more diverse cleavages in coronavirus proteomes and the assumption that it mainly modulates host pathways with its deubiquitinating activity. Here, I extend my previous work on 3CLpro human cleavage prediction and enrichment/depletion analysis to PLpro. Using three sets of neural networks trained on different taxonomic ranks of dataset with a maximum of 463 different putative PLpro cleavages, Matthews correlation coefficients of 0.900, 0.948, and 0.966 were achieved for Coronaviridae, Betacoronavirus, and Sarbecovirus, respectively. I predict that more than 1,000 human proteins may be cleaved by PLpro depending on diversity of the training dataset and that many of these proteins are distinct from those previously predicted to be cleaved by 3CLpro. PLpro cleavages are similarly nonrandomly distributed and result in many annotations shared with 3CLpro cleavages including ubiquitination, poly(A) tail and 5’ cap RNA binding proteins, helicases, and endogenous viral proteins. Combining PLpro with 3CLpro cleavage predictions, additional novel enrichment analysis was performed on known substrates of cleaved E3 ubiquitin ligases with results indicating that many pathways including viral RNA sensing are affected indirectly by E3 ligase cleavage independent of traditional PLpro deubiquitinating activity. As with 3CLpro, PLpro whole proteome cleavage prediction revealed many novel potential therapeutic targets against coronaviruses, although experimental verification is similarly required.
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2021.10.04.462902v1" target="_blank">SARS-CoV-2 PLpro whole human proteome cleavage prediction and enrichment/depletion analysis</a>
|
||
</div></li>
|
||
<li><strong>Single-cell profiling in COVID-19 associated acute kidney injury reveals patterns of tubule injury and repair in human</strong> -
|
||
<div>
|
||
The cellular mechanisms of kidney tubule repair are poorly characterized in human. Here, we applied single-nucleus RNA sequencing to analyze the kidney in the first days after acute injury in 5 critically ill patients with COVID-19. We identified abnormal proximal tubule cell states associated with injury, characterized by altered functional and metabolic profiles and by pro-fibrotic properties. Tubule repair involved the plasticity of mature tubule cells in a process of cell de-differentiation and re-differentiation, which displayed substantial similarities between mouse and man. In addition, in man we identified a peculiar tubule reparative response determining the expansion of progenitor- like cells marked by PROM1 and following a differentiation program characterized by the sequential activation of the WNT, NOTCH and HIPPO signaling pathways. Taken together, our analyses reveal cell state transitions and fundamental cellular hierarchies underlying kidney injury and repair in critically ill patients.
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2021.10.05.463150v1" target="_blank">Single-cell profiling in COVID-19 associated acute kidney injury reveals patterns of tubule injury and repair in human</a>
|
||
</div></li>
|
||
<li><strong>Immunogenicity of trimetric spike protein associated to Poly(I:C) plus Alum</strong> -
|
||
<div>
|
||
The SARS-CoV-2 pandemic has had a social and economic impact worldwide, and vaccination is an efficient strategy for diminishing those damages. New adjuvant formulations are required for the high vaccine demands, especially adjuvant formulations that induce a Th1 phenotype. Herein we assess a vaccination strategy using a combination of Alum and polyinosinic:polycytidylic acid (Poly(I:C)) adjuvants plus the SARS-CoV-2 spike protein in a prefusion trimeric conformation by an intradermal (ID) route. We found high levels of IgG anti-spike antibodies in the serum by enzyme linked immunosorbent assay (ELISA) and high neutralizing titers against SARS-CoV-2 in vitro by neutralization assay, after one or two boosts. By evaluating the production of IgG subtypes, as expected, we found that formulations containing Poly(I:C) induced IgG2a whereas Alum did not. The combination of these two adjuvants induced high levels of both IgG1 and IgG2a. In addition, cellular immune responses of CD4+ and CD8+ T cells producing interferon-gamma were equivalent, demonstrating that the Alum + Poly(I:C) combination supported a Th1 profile. Based on the high neutralizing titers, we evaluated B cells in the germinal centers, which are specific for receptor-binding domain (RBD) and spike, and observed that more positive B cells were induced upon the Alum + Poly(I:C) combination. Moreover, these B cells produced antibodies against both RBD and non-RBD sites. We also studied the impact of this vaccination preparation (S Ptn with Alum + Poly(I:C)) in the lungs of mice challenged with inactivated SARS-CoV-2 virus. We found a production of IgG, but not IgA, and a reduction in neutrophil recruitment in the bronchoalveolar lavage fluid (BALF) of mice, suggesting that our immunization scheme reduced lung inflammation. Altogether, our data suggest that Alum and Poly(I:C) together is a possible adjuvant combination for vaccines against SARS-CoV-2 by the intradermal route.
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2021.10.05.461434v1" target="_blank">Immunogenicity of trimetric spike protein associated to Poly(I:C) plus Alum</a>
|
||
</div></li>
|
||
<li><strong>A cell-free assay for rapid screening of inhibitors of hACE2-receptor - SARS-CoV-2-Spike binding</strong> -
|
||
<div>
|
||
We present a cell-free assay for rapid screening of candidate inhibitors of protein binding, focusing on inhibition of the interaction between the SARS-CoV-2 Spike receptor binding domain (RBD) and human angiotensin-converting enzyme 2 (hACE2). The assay has two components: fluorescent polystyrene particles covalently coated with RBD, termed virion- particles (v-particles), and fluorescently-labeled hACE2 (hACE2F) that binds the v-particles. When incubated with an inhibitor, v-particle - hACE2F binding is diminished, resulting in a reduction in the fluorescent signal of bound hACE2F relative to the non-inhibitor control, which can be measured via flow cytometry or fluorescence microscopy. We determine the amount of RBD needed for v-particle preparation, v-particle incubation time with hACE2F, hACE2F detection limit, and specificity of v-particle binding to hACE2F. We measure the dose response of the v-particles to a known inhibitor. Finally, we demonstrate that RNA-hACE2F granules trap v-particles effectively, providing a basis for potential RNA-hACE2F therapeutics.
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2021.10.06.462907v1" target="_blank">A cell-free assay for rapid screening of inhibitors of hACE2-receptor - SARS-CoV-2-Spike binding</a>
|
||
</div></li>
|
||
<li><strong>Clinical and immunological signatures of severe COVID-19 in previously healthy patients with clonal hematopoiesis</strong> -
|
||
<div>
|
||
Identifying additional risk factors for COVID-19 severity in numerous previously healthy patients without canonical clinical risk factors remains challenging. In this study, we investigate whether clonal hematopoiesis of indeterminate potential (CHIP), a common aging-related process that predisposes various inflammatory responses, may exert COVID-19 severity. We examine the clinical impact of CHIP in 143 laboratory-confirmed COVID-19 patients. Both stratified analyses and logistic regression including the interaction between canonical risk factors and CHIP show that CHIP is an independent risk factor for severe COVID-19, especially in previously healthy patients. Analyses of 60,310 single-cell immune transcriptome profiles identify distinct immunological signatures for CHIP (+) severe COVID-19 patients, particularly in classical monocytes, with a marked increase in pro-inflammatory cytokine responses and potent IFN-{gamma} mediated hyperinflammation signature. We further demonstrate that enhanced expression of CHIP (+) specific IFN-{gamma} response genes is attributed to the CHIP mutation-dependent epigenetic reprogramming of poised or bivalent cis-regulatory elements. Our results highlight a unique immunopathogenic mechanism of CHIP in the progression of severe COVID-19, which could be extended to elucidate how CHIP contributes to a variety of human infectious diseases.
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2021.10.05.463271v1" target="_blank">Clinical and immunological signatures of severe COVID-19 in previously healthy patients with clonal hematopoiesis</a>
|
||
</div></li>
|
||
<li><strong>How does temperature affect the dynamics of SARS-CoV-2 M proteins? Insights from Molecular Dynamics Simulations</strong> -
|
||
<div>
|
||
Enveloped viruses, in general, have several transmembrane proteins and glycoproteins, which assist the virus in entry and attachment onto the host cells. These proteins also play a significant role in determining the shape and size of the newly formed virus particles. Thelipid membrane and the embedded proteins affect each other in non-trivial ways during the course of the viral life cycle. Unravelling the nature of the protein-protein and protein-lipid interactions, under various environmental and physiological conditions, could therefore prove to be crucial in development of therapeutics. Here, we study the M protein of SARS-CoV-2 to understand the effect of temperature on the properties of the protein-membrane system. The membrane embedded dimeric M proteins were studied using atomistic and coarse-grained molecular dynamics simulations at temperatures ranging between 10and 50 {ring}C. While temperature induced fluctuations should be monotonic, we observe a steady rise in the protein dynamics up to 40 {ring}C, beyond which it surprisingly reverts back to the low temperature behaviour. Detailed investigation reveals disordering of the membrane lipids in the presence of the protein, which induces additional curvature around the transmembrane region. Coarse-grained simulations indicate temperature dependent aggregation of M protein dimers. Our study clearly indicates that the dynamics of membrane lipids and integral M protein of SARS-CoV-2 enables it to better associate and aggregate only at a certain temperature range (i.e., ~30 to 40 {ring}C). This can have important implications in the protein aggregation and subsequent viral budding/fission processes.
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2021.10.05.463008v1" target="_blank">How does temperature affect the dynamics of SARS-CoV-2 M proteins? Insights from Molecular Dynamics Simulations</a>
|
||
</div></li>
|
||
<li><strong>SARS-CoV-2 causes human BBB injury and neuroinflammation indirectly in a linked organ chip platform</strong> -
|
||
<div>
|
||
COVID-19 is a multi-system disease affecting many organs outside of the lungs, and patients generally develop varying degrees of neurological symptoms. Whereas, the pathogenesis underlying these neurological manifestations remains elusive. Although in vitro models and animal models are widely used in studies of SARS-CoV-2 infection, human organ models that can reflect the pathological alterations in a multi-organ context are still lacking. In this study, we propose a new strategy to probe the effects of SARS-CoV-2 on human brains in a linked alveolus-BBB organ chip platform. The new multi-organ platform allows to recapitulate the essential features of human alveolar-capillary barrier and blood-brain barrier in a microfluidic condition by co-culturing the organ-specific cells. The results reveal direct SARS-CoV-2 exposure has no obvious effects on BBB chip alone. While, infusion of endothelial medium from infected alveolus chips can cause BBB dysfunction and neuroinflammation on the linked chip platform, including brain endothelium disruption, glial cell activation and inflammatory cytokines release. These new findings suggest that SARS-CoV-2 could induce neuropathological alterations, which might not result from direct viral infection through hematogenous route, but rather likely from systemic inflammation following lung infection. This work provides a new strategy to study the virus-host interaction and neuropathology at an organ-organ context, which is not easily obtained by other in vitro models. This will facilitate to understand the neurological pathogenesis in SARS-CoV-2 and accelerate the development of new therapeutics.
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2021.10.05.463205v1" target="_blank">SARS-CoV-2 causes human BBB injury and neuroinflammation indirectly in a linked organ chip platform</a>
|
||
</div></li>
|
||
<li><strong>Vaccine effectiveness and duration of protection of Comirnaty, Vaxzevria and Spikevax against mild and severe COVID-19 in the UK</strong> -
|
||
<div>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
||
Background COVID-19 vaccines have been used for 9 months in the UK. Real world data have demonstrated the vaccines to be highly effective against COVID-19, severe disease and death. Here, we estimate vaccine effectiveness over time since the second dose of Comirnaty, Vaxzevria and Spikevax in England. Methods We used a test-negative case- control design to estimate vaccine effectiveness against symptomatic disease, hospitalisation and mortality by age, comorbidity status and over time after the second dose to investigate waning separately for Alpha and Delta variants. Results Vaccine effectiveness against symptomatic disease peaked in the early weeks after the second dose and then fell to 47.3 (95% CI 45 to 49.6) and 69.7 (95% CI 68.7 to 70.5) by 20+ weeks against the Delta variant for Vaxzevria and Comirnaty, respectively. Waning of vaccine effectiveness was greater for 65+ year-olds compared to 40-64 year-olds. Vaccine effectiveness fell less against hospitalisations to 77.0 (70.3 to 82.3) and 92.7 (90.3 to 94.6) beyond 20 weeks post-vaccination and 78.7 (95% CI 52.7 to 90.4) and 90.4 (95% CI 85.1 to 93.8) against death for Vaxzevria and Comirnaty, respectively. Greater waning was observed among 65+ year-olds in a clinically extremely vulnerable group and 40-64-year olds with underlying medical conditions compared to healthy adults. Conclusions We observed limited waning in vaccine effectiveness against hospitalisation and death more than 20 weeks post-vaccination with Vaxzevria or Comirnaty. Waning was greater in older adults and those in a clinical risk group, suggesting that these individuals should be prioritised for booster doses.
|
||
</p>
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.09.15.21263583v2" target="_blank">Vaccine effectiveness and duration of protection of Comirnaty, Vaxzevria and Spikevax against mild and severe COVID-19 in the UK</a>
|
||
</div></li>
|
||
<li><strong>SARS-CoV-2 specific T cells and antibodies in COVID-19 protection: a prospective study</strong> -
|
||
<div>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
||
Background: Coronavirus disease COVID-19 has spread worldwide extremely rapidly. Although many individuals have been infected and have cleared the virus, developing virus-specific antibodies and effector/memory T cells, an important question still to be answered is what levels of T cell and antibody responses are sufficient to protect from the infection. Methods: In 5,340 Moscow residents, we evaluated the anti-SARS-CoV-2 IgM/IgG titers and the frequencies of the T cells specific to the nucleocapsid, membrane, and spike proteins of SARS-CoV-2, using IFNy; ELISpot, and we also evaluated the fractions of virus-specific CD4+ and CD8+ T cells using intracellular staining of IFNy; and IL2 followed by flow cytometry. Furthermore, we analyzed the post-inclusion COVID-19 rates as a function of the assessed antibody and T cell responses using the Kaplan-Meyer estimator method. Results: We showed that T cell and antibody responses are closely interconnected and commonly are induced concurrently. Individuals positive for both antibody and T cell immunities demonstrated the highest levels of protectivity against the SARS-CoV-2 infection, indistinguishably from individuals with antibody response only. Meanwhile, individuals with T cell response only demonstrated slightly higher protectivity than individuals without both types of immunity, as measured from N-protein-specific or CD4+IL2+ T cells. However, these individuals were characterized by higher IgG titers than individuals without any immunity, although the titers were below the seropositivity cut-off. Conclusions: The results of the study indicated the advantage of serology testing over the analysis of T cell responses for the prediction of SARS-CoV-2 infection rates on a populational level.
|
||
</p>
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.08.19.21262278v2" target="_blank">SARS-CoV-2 specific T cells and antibodies in COVID-19 protection: a prospective study</a>
|
||
</div></li>
|
||
<li><strong>CoSIR: Optimal control of SIR epidemic dynamics by mapping to Lotka-Volterra System</strong> -
|
||
<div>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
||
Shaping an epidemic with an adaptive contact restriction policy that balances the disease and socioeconomic impact has been the holy grail during the COVID-19 pandemic. Most of the existing work on epidemiological models focuses on scenario-based forecasting via simulation but techniques for explicit control of epidemics via an analytical framework are largely missing. In this paper, we consider the problem of determining the optimal control policy for transmission rate assuming SIR dynamics, which is the most widely used epidemiological paradigm. We first demonstrate that the SIR model with infectious patients and susceptible contacts (i.e., product of transmission rate and susceptible population) interpreted as predators and prey respectively reduces to a Lotka-Volterra (LV) predator-prey model. The modified SIR system (LVSIR) has a stable equilibrium point, an “energy” conservation property, and exhibits bounded cyclic behaviour similar to an LV system. This mapping permits a theoretical analysis of the control problem supporting some of the recent simulation-based studies that point to the benefits of periodic interventions. We use a control- Lyapunov approach to design adaptive control policies (CoSIR) to nudge the SIR model to the desired equilibrium that permits ready extensions to richer compartmental models. We also describe a practical implementation of this transmission control method by approximating the ideal control with a finite, but a time-varying set of restriction levels. We provide experimental results comparing with periodic lockdowns on few different geographical regions (India, Mexico, Netherlands) to demonstrate the efficacy of this approach.
|
||
</p>
|
||
</div>
|
||
<div class="article-link article-html- link">
|
||
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2020.11.10.20211995v3" target="_blank">CoSIR: Optimal control of SIR epidemic dynamics by mapping to Lotka-Volterra System</a>
|
||
</div></li>
|
||
<li><strong>Social assistance beneficiaries’ access to social services in a digitalised and centralised social assistance system</strong> -
|
||
<div>
|
||
The digitalisation of public services has become topical particularly during the COVID-19 pandemic when due to the social distancing restrictions, face-to-face services were limited or non-existent. Using statistical data on red flag notifications in the SA system (2017-2020) and survey data on social work professionals from 2021, we assess the ability of the Finnish SA system to identify clients in need of other than financial support and the clients’ access to social work in a system where cash and care are separated. Our findings show that the red flag system primarily identified need for social counselling in case of financial problems while social and health problems were often not recognised. We argue that the SA reform separating last resort benefits from social services changed not only the way citizens apply for social assistance benefits but also created pressure for new forms of social work.
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://osf.io/preprints/socarxiv/rku9y/" target="_blank">Social assistance beneficiaries’ access to social services in a digitalised and centralised social assistance system</a>
|
||
</div></li>
|
||
<li><strong>Clinical utility of Elecsys Anti-SARS-CoV-2 S assay in COVID-19 vaccination: An exploratory analysis of the mRNA-1273 phase 1 trial</strong> -
|
||
<div>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
||
Background The ability to quantify an immune response after vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is essential. This study assessed the clinical utility of the quantitative Roche Elecsys® Anti-SARS-CoV-2 S assay (ACOV2S) using samples from the 2019-nCoV vaccine (mRNA-1273) phase 1 trial (NCT04283461). Methods Samples from 30 healthy participants, aged 18-55 years, who received two injections with mRNA-1273 at a dose of 25 μg (n=15) or 100 μg (n=15), were collected at Days 1 (first vaccination), 15, 29 (second vaccination), 43 and 57. ACOV2S results (shown in U/mL - equivalent to BAU/mL per the first WHO international standard) were compared with results from ELISAs specific to antibodies against the Spike protein (S-2P) and the receptor binding domain (RBD) as well as neutralization tests including nanoluciferase (nLUC80), live-virus (PRNT80), and a pseudovirus neutralizing antibody assay (PsVNA50). Results RBD-specific antibodies were already detectable by ACOV2S at the first time point of assessment (d15 after first vaccination), with seroconversion before in all but 2 participants (25 μg dose group); all had seroconverted by Day 29. Across all post-baseline visits, geometric mean concentration of antibody levels were 3.27-7.48-fold higher in the 100 μg compared with the 25 μg dose group. ACOV2S measurements were highly correlated with those from RBD ELISA (Pearson9s r=0.938; p<0.0001) and S-2P ELISA (r=0.918; p<0.0001). For both ELISAs, heterogeneous baseline results and smaller increases in antibody levels following the second vs first vaccination compared with ACOV2S were observed. ACOV2S showed absence of any baseline noise indicating high specificity detecting vaccine-induced antibody response. Moderate-strong correlations were observed between ACOV2S and neutralization tests (nLUC80 r=0.933; PsVNA50, r=0.771; PRNT80, r=0.672; all p≤0.0001). Conclusion The Elecsys Anti-SARS-CoV-2 S assay (ACOV2S) can be regarded as a highly valuable method to assess and quantify the presence of RBD-directed antibodies against SARS-CoV-2 following vaccination, and may indicate the presence of neutralizing antibodies. As a fully automated and standardized method, ACOV2S could qualify as the method of choice for consistent quantification of vaccine-induced humoral response.
|
||
</p>
|
||
</div>
|
||
<div class="article-link article- html-link">
|
||
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.10.04.21264521v3" target="_blank">Clinical utility of Elecsys Anti-SARS-CoV-2 S assay in COVID-19 vaccination: An exploratory analysis of the mRNA-1273 phase 1 trial</a>
|
||
</div></li>
|
||
</ul>
|
||
<h1 data-aos="fade-right" id="from-clinical-trials">From Clinical Trials</h1>
|
||
<ul>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Prophylaxis of COVID-19 Disease With Ivermectin in COVID-19 Contact Persons [German: Prophylaxe Der COVID-19-Erkrankung Mit Ivermectin Bei COVID-19 Kontaktpersonen]</strong> - <b>Condition</b>: Covid19<br/><b>Interventions</b>: Drug: Ivermectin; Drug: Placebo<br/><b>Sponsors</b>: <br/>
|
||
Infectopharm Arzneimittel GmbH; GKM Gesellschaft für Therapieforschung mbH<br/><b>Not yet recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Evaluating Safety, Tolerability, and Potential Efficacy of Intranasal AD17002 in Adults With Mild COVID-19</strong> - <b>Condition</b>: Covid19<br/><b>Interventions</b>: Biological: AD17002; Biological: Placebo (Formulation buffer)<br/><b>Sponsor</b>: Advagene Biopharma Co. Ltd.<br/><b>Not yet recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Lymphatic Osteopathic Manipulative Medicine to Enhance Coronavirus (COVID-19) Vaccination Efficacy</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Other: Lymphatic OMM; Other: Light Touch<br/><b>Sponsor</b>: Rowan University<br/><b>Not yet recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>“Efesovir” (FS-1) for COVID-19, Phase 2</strong> - <b>Condition</b>: Covid19<br/><b>Intervention</b>: Drug: Efesovir<br/><b>Sponsor</b>: Scientific Center for Anti-infectious Drugs, Kazakhstan<br/><b>Not yet recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A Study of AZD1222, a Vaccine for the Prevention of COVID-19 in Immunocompromised Adults</strong> - <b>Condition</b>: COVID-19, SARS-CoV-2<br/><b>Intervention</b>: Biological: AZD1222<br/><b>Sponsor</b>: <br/>
|
||
AstraZeneca<br/><b>Not yet recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>SARS-CoV-2 Infection in COVID-19 Vaccinated Patients</strong> - <b>Condition</b>: COVID-19<br/><b>Intervention</b>: Diagnostic Test: COVID-19 vaccinated people<br/><b>Sponsor</b>: Hospices Civils de Lyon<br/><b>Recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A Ph 2 Trial With an Oral Tableted COVID-19 Vaccine</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Drug: VXA-CoV2-1.1-S; Other: Placebo Tablets<br/><b>Sponsor</b>: Vaxart<br/><b>Recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Efficacy and Safety of Baricitinib in Patients With Moderate and Severe COVID-19</strong> - <b>Condition</b>: Covid19<br/><b>Interventions</b>: Drug: Baricitinib; Drug: Placebo<br/><b>Sponsor</b>: <br/>
|
||
Incepta Pharmaceuticals Ltd<br/><b>Not yet recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>The Development of a COVID19 Oral Vaccine Consisting of Bacillus Subtilis Spores</strong> - <b>Condition</b>: COVID-19 Pneumonia<br/><b>Intervention</b>: Biological: Bacillus subtilis<br/><b>Sponsor</b>: DreamTec Research Limited<br/><b>Recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Randomized Trial of COVID-19 Booster Vaccinations (Cobovax Study)</strong> - <b>Condition</b>: COVID-19 Vaccination<br/><b>Interventions</b>: Biological: BNT162b2; Biological: CoronaVac<br/><b>Sponsor</b>: The University of Hong Kong<br/><b>Not yet recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Phase I/II of the Safety and Immunogenicity of SARS-CoV-2 Protein Subunit Recombinant Vaccine in Healthy Populations</strong> - <b>Condition</b>: Covid19<br/><b>Interventions</b>: Biological: SARS-CoV-2 Protein Subunit Recombinant Vaccine; Biological: SARS-CoV-2 Inactivated Vaccine<br/><b>Sponsors</b>: PT Bio Farma; Fakultas Kedokteran Universitas Indonesia; National Institute of Health Research and Development, Ministry of Health Republic of Indonesia<br/><b>Not yet recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>FLuticasone in cOvid Treatment (FLOT)</strong> - <b>Condition</b>: Covid19<br/><b>Intervention</b>: Drug: Fluticasone Propionate<br/><b>Sponsor</b>: <br/>
|
||
University of Medicine and Pharmacy at Ho Chi Minh City<br/><b>Recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Third Dose of mRNA Vaccination to Boost COVID-19 Immunity</strong> - <b>Condition</b>: COVID 19 Vaccine<br/><b>Intervention</b>: Biological: BNT162b2<br/><b>Sponsor</b>: <br/>
|
||
The University of Hong Kong<br/><b>Recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Clinical Trial on Sequential Immunization of Recombinant COVID-19 Vaccine (CHO Cells,NVSI-06-08) and Inactivated COVID-19 Vaccine (Vero Cells) in Population Aged 18 Years and Above</strong> - <b>Conditions</b>: COVID-19 Pneumonia; Coronavirus Infections<br/><b>Interventions</b>: Biological: Recombinant COVID-19 Vaccine (CHO cell,NVSI-06-08); Biological: COVID-19 vaccine (Vero cells); Biological: 3 doses Recombinant COVID-19 Vaccine (CHO cell,NVSI-06-08)<br/><b>Sponsors</b>: National Vaccine and Serum Institute, China; China National Biotec Group Company Limited; Lanzhou Institute of Biological Products Co., Ltd<br/><b>Not yet recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Safety, Tolerability and Efficacy of Uproleselan (GMI-1271) in Patients With COVID-19 Pneumonia</strong> - <b>Condition</b>: COVID-19 Pneumonia<br/><b>Intervention</b>: Drug: Uproleselan<br/><b>Sponsors</b>: <br/>
|
||
Lena Napolitano, MD; GlycoMimetics Incorporated<br/><b>Not yet recruiting</b></p></li>
|
||
</ul>
|
||
<h1 data-aos="fade-right" id="from-pubmed">From PubMed</h1>
|
||
<h1 data-aos="fade-right" id="from-patent-search">From Patent Search</h1>
|
||
<ul>
|
||
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>스몰 RNA 검출 방법</strong> - 본 발명은 스몰(small) RNA의 분석 및 검출 방법에 관한 것이다. 특히, 본 발명은 짧은 염기서열의 RNA까지 분석이 가능하면서도 높은 민감도 및 정확도로 정량적 검출까지 가능하여 감염증, 암 등 여러 질환의 진단 용도로도 널리 활용될 수 있다. - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=KR336674313">link</a></p></li>
|
||
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>健康智能检测方法、装置、电子设备及可读存储介质</strong> - 本申请公开了一种健康智能检测方法、装置、电子设备及可读存储介质,其方法包括获取音频信号,并对所述音频信号进行预处理,得到检测信号;将所述检测信号转化为矩阵数字矩阵;将得到的矩阵数字矩阵作为检测样本,输入健康智能检测模型中,以获取检测结果;其中,所述健康智能检测模型是采用迁移学习和卷积神经网络对训练样本进行训练得到的。本申请由于卷积神经网络各组件或部分组件基于迁移学习进行了重新训练,显著提升了对人们健康检测的准确度;且本申请中的健康智能检测模型为分类模型,计算量小,可将其部署于人们的移动终端中,使用方便,极大程度上提升了用户的使用感受。 - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=CN337672106">link</a></p></li>
|
||
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>MACHINE LEARNING TECHNIQUE TO ANALYSE THE CONDITION OF COVID-19 PATIENTS BASED ON THEIR SATURATION LEVELS</strong> - - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=AU335054861">link</a></p></li>
|
||
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>单克隆抗体32C7及其制备方法和用途</strong> - 本发明公开了单克隆抗体32C7及其制备方法和用途。本发明通过制备针对于新冠病毒RBD结构域的中和抗体32C7,在体外通过表面等离子共振检测抗体32C7可以有效地与新冠病毒的S蛋白的RBD结构域结合,通过转基因小鼠感染模型验证了抗体32C7的中和能力,测定了中和抗体32C7对于新冠感染后的肺部病毒滴度和相关炎症因子的抑制效果,结果显示该中和抗体能够明显的抑制病毒在体内的复制并降低炎症因子的产生和肺部炎症浸润。单克隆中和抗体32C7抑制新冠病毒的进入宿主细胞,达到新冠病毒中和抗体的治疗作用,可有效用于治疗或者预防新冠病毒感染引起的呼吸系统损伤。 - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=CN336730149">link</a></p></li>
|
||
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>单克隆抗体35B5及其制备方法和用途</strong> - 本发明公开了单克隆抗体35B5及其制备方法和用途。本发明通过制备针对于新冠病毒RBD结构域的中和抗体35B5,在体外通过表面等离子共振检测抗体35B5可以有效地与新冠病毒的S蛋白的RBD结构域结合,通过转基因小鼠感染模型验证了抗体35B5的中和能力,测定了中和抗体35B5对于新冠感染后的肺部病毒滴度和相关炎症因子的抑制效果,结果显示该中和抗体能够明显的抑制病毒在体内的复制并降低炎症因子的产生和肺部炎症浸润。单克隆中和抗体35B5抑制新冠病毒的进入宿主细胞,达到新冠病毒中和抗体的治疗作用,可有效用于治疗或者预防新冠病毒感染引起的呼吸系统损伤。 - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=CN336730150">link</a></p></li>
|
||
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A HERB BASED COMPOSITION ANTI VIRAL MEDICINE FOR TREATMENT OF SARS COV 2 AND A METHOD FOR TREATING A PERSON INFECTED BY THE SARS COV 2 VIRUS</strong> - A Herbal composition, viz., PONNU MARUNTHU essentially comprising of ALLUIUM CEPA extract. [concentrated to 30%] 75%, SAPINDUS MUKOROSSI - extract [Optimised] 10%, CITRUS X LIMON - extract in its natural form 05 TRACYSPERMUM AMMI (L) – extract 07%,ROSA HYBRIDA - extract 03%, PONNU MARUNTHU solution 50 ml, or as a capsulated PONNU MARUNTHU can be given to SARS cov2 positive Patients, three times a day that is ½ an hour before food; continued for 3 days to 5 days and further taking it for 2 days if need be there; It will completely cure a person. When the SARS cov2 test shows negative this medicine can be discontinued. This indigenous medicine and method for treating a person inflicted with SARS COV 2 viral infection is quite effective in achieving of much needed remedy for the patients and saving precious lives from the pangs of death and ensuring better health of people. - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=IN334865051">link</a></p></li>
|
||
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>治疗或预防新冠病毒的靶点</strong> - 本发明提供一种蛋白片段,是如下至少一种:A1)氨基酸酸序列如SEQ ID NO.1所示;A2)氨基酸序列如SEQ ID NO.1第12位‑34位所示;A3)将A1)的蛋白片段的第18、19、28和29位中的任意一个或几个氨基酸残基经过一个或几个氨基酸残基的取代、缺失、添加得到的与A1)所示的蛋白片段具有90%以上的同一性的蛋白片段;A4)氨基酸酸序列如SEQ ID NO.2所示;A5)氨基酸序列如SEQ ID NO.2第32‑41位所示;A6)将A4)的蛋白片段的第35和36位中的任意1个或2个氨基酸残基经过一个或几个氨基酸残基的取代、缺失、添加得到的与A4)所示的蛋白片段具有90%以上的同一性的蛋白片段。 - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=CN336197499">link</a></p></li>
|
||
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>以痘苗病毒为载体的新冠疫苗</strong> - 本申请涉及一种基于经过基因工程改造的痘苗病毒为载体的新型冠状病毒南非突变株疫苗。所述疫苗以A46R缺陷的痘苗病毒为载体携带新冠病毒南非突变株S基因核酸序列,所述痘苗病毒载体还可以携带IL‑21,该疫苗在免疫小鼠后可以产生针对新冠病毒南非突变株的抗体。 - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=CN337671415">link</a></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>氧化钛负载银单原子的材料在病毒消杀中的应用</strong> - 本发明属于生物医药领域,尤其涉及一种负载银单原子的材料在病毒消杀中的应用,所述氧化钛负载银单原子材料具有以下的结构:银单原子以单分散的形式,稳定地锚定于氧化钛的表面和/或骨架中,键合方式为Ti‑O‑Ag;银单原子的嵌合使Ag单原子和氧化钛的电子结构带隙范围为2.9‑3.2</p></li>
|
||
</ul>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">eV;氧化钛负载银单原子材料具有较银纳米颗粒更加优异的催化活性,具有过氧化物酶活性,利用羟基自由基可高效破坏核酸和蛋白质的原理来实现广谱消杀病毒,银单原子的嵌合使Ag单原子和氧化钛的电子结构带隙变小,对可见光的敏感性更强,可将光照射下的光催化诱导光动力杀伤病毒。 - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=CN337671299">link</a></p>
|
||
<ul>
|
||
<li><strong>Anti-Sars-Cov-2 Neutralizing Antibodies</strong> - - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=AU333857732">link</a></li>
|
||
</ul>
|
||
|
||
|
||
<script>AOS.init();</script></body></html> |