203 lines
57 KiB
HTML
203 lines
57 KiB
HTML
<!DOCTYPE html>
|
||
<html lang="" xml:lang="" xmlns="http://www.w3.org/1999/xhtml"><head>
|
||
<meta charset="utf-8"/>
|
||
<meta content="pandoc" name="generator"/>
|
||
<meta content="width=device-width, initial-scale=1.0, user-scalable=yes" name="viewport"/>
|
||
<title>26 January, 2022</title>
|
||
<style type="text/css">
|
||
code{white-space: pre-wrap;}
|
||
span.smallcaps{font-variant: small-caps;}
|
||
span.underline{text-decoration: underline;}
|
||
div.column{display: inline-block; vertical-align: top; width: 50%;}
|
||
</style>
|
||
<title>Covid-19 Sentry</title><meta content="width=device-width, initial-scale=1.0" name="viewport"/><link href="styles/simple.css" rel="stylesheet"/><link href="../styles/simple.css" rel="stylesheet"/><link href="https://unpkg.com/aos@2.3.1/dist/aos.css" rel="stylesheet"/><script src="https://unpkg.com/aos@2.3.1/dist/aos.js"></script></head>
|
||
<body>
|
||
<h1 data-aos="fade-down" id="covid-19-sentry">Covid-19 Sentry</h1>
|
||
<h1 data-aos="fade-right" data-aos-anchor-placement="top-bottom" id="contents">Contents</h1>
|
||
<ul>
|
||
<li><a href="#from-preprints">From Preprints</a></li>
|
||
<li><a href="#from-clinical-trials">From Clinical Trials</a></li>
|
||
<li><a href="#from-pubmed">From PubMed</a></li>
|
||
<li><a href="#from-patent-search">From Patent Search</a></li>
|
||
</ul>
|
||
<h1 data-aos="fade-right" id="from-preprints">From Preprints</h1>
|
||
<ul>
|
||
<li><strong>Legal hunting for conservation of highly threatened species: The case of African rhinos</strong> -
|
||
<div>
|
||
Legal hunting of highly threatened species – and especially the recreational practice of ‘trophy hunting’ – is controversial with selected ethical objections being increasingly voiced. Less attention has been paid to how hunting (even of threatened species) can be useful as a conservation tool, and likely outcomes if this was stopped. As case studies, we examine the regulated legal hunting in South Africa and Namibia of two African rhino species. Counter- intuitively, removing a small number of specific males can enhance population demography and genetic diversity, encourage range expansion, and generate meaningful socio-economic benefits to help fund effective conservation (facilitated by appropriate local institutional arrangements). Legal hunting of these species has been sustainable, as very small proportions of the populations of both species are hunted each year, and numbers of both today are higher in these countries than when controlled recreational hunting began. Terminating this management option and funding source could have negative consequences at a time when rhinos are being increasingly viewed as liabilities and COVID-19 has significantly impacted revenue generation for wildlife areas. Provided that there is appropriate governance and management, conservation of certain highly threatened species can be supported by cautiously selective and limited legal hunting.
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://osf.io/preprints/socarxiv/q79pc/" target="_blank">Legal hunting for conservation of highly threatened species: The case of African rhinos</a>
|
||
</div></li>
|
||
<li><strong>Global Economic Crisis, Energy Use, CO2 Emissions and Policy Roadmap amid COVID-19</strong> -
|
||
<div>
|
||
The COVID-19 pandemic has emerged as one of the deadliest infectious diseases on the planet. Millions of people and businesses have been placed in lockdown where the main aim is to stop the spread of the virus. As an extreme phenomenon, the lockdown has triggered a global economic shock at an alarming pace, conveying sharp recessions for many countries. In the meantime, the lockdowns caused by the COVID-19 pandemic have drastically changed energy consumption patterns and reduced CO2 emissions throughout the world. Recent data released by the International Monetary Fund and International Energy Agency for 2020 further forecast that emissions will rebound in 2021. Still, the full impact of COVID-19 in terms of how long the crisis will be and how the consumption pattern of energy and the associated levels of CO2 emissions will be affected are unclear. This review aims to steer policymakers and governments of nations toward a better direction by providing a broad and convincing overview on the observed and likely impacts of the pandemic of COVID-19 on the world economy, world energy demand, and world energy-related CO2 emissions that may well emerge in the next few years. Indeed, given that immediate policy responses are required with equal urgency to address three things—pandemic, economic downturn, and climate crisis. This study outlines policy suggestions that can be used during these uncertain times as a guide.
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://osf.io/69kje/" target="_blank">Global Economic Crisis, Energy Use, CO2 Emissions and Policy Roadmap amid COVID-19</a>
|
||
</div></li>
|
||
<li><strong>Establishment of human post-vaccination SARS-CoV-2 standard reference sera</strong> -
|
||
<div>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
||
As SARS-CoV-2 variants emerge, there is a critical need to understand the effectiveness of serum elicited by different SARS-CoV-2 vaccines. A reference reagent comprised of post-vaccination sera from recipients of different vaccines allows evaluation of in vitro variant neutralization, and provides a reference for comparing assay results across laboratories. We prepared and pooled >1 L serum from donors who received the SARS-CoV-2 mRNA vaccines (BNT162b2, Pfizer and mRNA-1273, Moderna), a replication-incompetent adenovirus type 26 vaccine (Ad26.COV2.S, Johnson and Johnson), or recombinant spike protein expressed by baculovirus incorporated into a nanoparticle vaccine plus Matrix-M adjuvant (NVX-CoV2373, Novavax). Twice frozen sera were aliquoted and are available for distribution to the research community (BEI Resources). The calculated WHO titer of pooled sera to spike protein was 1,312, 1,447, 1,936, and 587 and the reciprocal RBD binding to ACE-2 IC90-titers were 60, 64, 118, and 46 for BNT162b2, mRNA1273, Ad26.CoV2373, and NVX-CoV2373 sera, respectively.
|
||
</p>
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2022.01.24.22269773v1" target="_blank">Establishment of human post-vaccination SARS-CoV-2 standard reference sera</a>
|
||
</div></li>
|
||
<li><strong>Projection of Healthcare Demand in Germany and Switzerland Urged by Omicron Wave (January-March 2022)</strong> -
|
||
<div>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
||
After the implementation of broad vaccination programs, there is an urgent need to understand how the population immunity affects the dynamics of the COVID-19 pandemic in presence of the protection waning and of the emergence of new variants of concern. In the current Omicron wave that is propagating across Europe, assessing the risk of saturation of the healthcare systems is crucial for pandemic management, as it allows us to support the transition towards the endemic course of SARS-CoV-2 and implement more refined mitigation strategies that shield the most vulnerable groups and protect the healthcare systems. We investigated the current pandemic dynamics by means of compartmental models that describe the age-stratified social-mixing, and consider vaccination status, vaccine types, and their waning efficacy. Our goal is to provide insight into the plausible scenarios that are likely to be seen in Switzerland and Germany in the coming weeks and help take informed decisions. Despite the huge numbers of new positive cases, our results suggest that the current wave is unlikely to create an overwhelming healthcare demand: owing to the lower hospitalization rate of the novel variant and the effectiveness of the vaccines. Our findings are robust with respect to the plausible variability of the main parameters that govern the severity and the progression of the Omicron infection. In a broader context, our framework can be applied also to future endemic scenarios, offering quantitative support for refined public health interventions in response to recurring COVID-19 waves.
|
||
</p>
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2022.01.24.22269676v1" target="_blank">Projection of Healthcare Demand in Germany and Switzerland Urged by Omicron Wave (January-March 2022)</a>
|
||
</div></li>
|
||
<li><strong>Lung Perfusion Disturbances Detected with MRI in Non-Hospitalized Post-COVID-19 Individuals with Dyspnea 3 -13 Months after the Acute Disease</strong> -
|
||
<div>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
||
Background Dyspnea is a prevalent symptom in the post-COVID-19 condition, though its mechanisms are largely unknown. Lung perfusion abnormalities have been reported in acute COVID-19 and could be suspected in patients with lingering dyspnea after the acute phase. Objectives To detect pulmonary perfusion disturbances in non-hospitalized post- COVID condition with persistent dyspnea 4-13 months after the disease onset. Methods Non-hospitalized individuals reporting persistent dyspnea after COVID-19 and matched healthy controls were prospectively recruited between October 2020 and May 2021 to undergo pulmonary dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), six-minute walk test, and self-reported scales questionnaires on dyspnea and physical activity. The DCE-MRI perfusion images were quantified into two parametric values: mean time-to-peak (TTP) and TTP ratio. Results Twenty-eight persons with post- COVID condition and persistent dyspnea (mean age 46.5+/-8.0 years, 75% women) and 22 healthy controls (mean age 44.1+/-10.8 years, 73% women) were included. The post-COVID group had higher mean pulmonary TTP (0.43+/-0.04 vs. 0.41+/-0.03, P=0.011) and higher TTP ratio (0.096+/-0.052 vs. 0.068+/-0.027, P=0.032). Notably, post-COVID males had the highest values (mean TTP 0.47+/-0.02, TTP ratio 0.160+/-0.039, P<0.001 for both values compared to male controls and post-COVID females). Correlation between dyspnea and perfusion parameters was demonstrated in the males (r=0.83, P<0.001 for mean TTP; r=0.76, P=0.003 for TTP ratio), but not in females. Conclusions Lung perfusion disturbances were detected in males reporting post-COVID dyspnea using perfusion parameters from DCE-MRI. The distinct sex difference has implications for understanding the perplexing post-COVID pathophysiology and warrants future studies. DCE-MRI could provide helpful biomarkers for such studies.
|
||
</p>
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2022.01.25.22269717v1" target="_blank">Lung Perfusion Disturbances Detected with MRI in Non-Hospitalized Post-COVID-19 Individuals with Dyspnea 3 -13 Months after the Acute Disease</a>
|
||
</div></li>
|
||
<li><strong>Dynamics of infection-elicited SARS-CoV-2 antibodies in children over time</strong> -
|
||
<div>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
||
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection elicits an antibody response that targets several viral proteins including spike (S) and nucleocapsid (N); S is the major target of neutralizing antibodies. Here, we assess levels of anti-N binding antibodies and anti-S neutralizing antibodies in unvaccinated children compared with unvaccinated older adults following infection. Specifically, we examine neutralization and anti-N binding by sera collected up to 52 weeks following SARS-CoV-2 infection in children and compare these to a cohort of adults, including older adults, most of whom had mild infections that did not require hospitalization. Neutralizing antibody titers were lower in children than adults early after infection, but by 6 months titers were similar between age groups. The neutralizing activity of the children9s sera decreased modestly from one to six months; a pattern that was not significantly different from that observed in adults. However, infection of children induced much lower levels of anti-N antibodies than in adults, and levels of these anti-N antibodies decreased more rapidly in children than in adults, including older adults. These results highlight age-related differences in the antibody responses to SARS-CoV-2 proteins and, as vaccines for children are introduced, may provide comparator data for the longevity of infection-elicited and vaccination-induced neutralizing antibody responses.
|
||
</p>
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2022.01.14.22269235v1" target="_blank">Dynamics of infection- elicited SARS-CoV-2 antibodies in children over time</a>
|
||
</div></li>
|
||
<li><strong>Massive covidization of research citations and the citation elite</strong> -
|
||
<div>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
||
Massive scientific productivity accompanied the COVID-19 pandemic. We evaluated the citation impact of COVID-19 publications relative to all scientific work published in 2020-2021 and assessed the impact on scientist citation profiles. Using Scopus data until August 1, 2021, COVID-19 items accounted for 4% of papers published, 20% of citations received to papers published in 2020-2021 and >30% of citations received in 36 of the 174 disciplines of science (up to 79.3% in General and Internal Medicine). Across science, 98 of the 100 most-cited papers published in 2020-2021 were related to COVID-19. 110 scientists received >=10,000 citations for COVID-19 work, but none received >=10,000 citations for non-COVID-19 work published in 2020-2021. For many scientists, citations to their COVID-19 work already accounted for more than half of their total career citation count. Overall, these data show a strong covidization of research citations across science with major impact on shaping the citation elite.
|
||
</p>
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2022.01.24.22269775v1" target="_blank">Massive covidization of research citations and the citation elite</a>
|
||
</div></li>
|
||
<li><strong>A Novel Barrier Device and Method for Protection against Airborne Pathogens During Endotracheal Intubation</strong> -
|
||
<div>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
||
Background The risk of SARS-CoV-2 transmission to healthcare workers increases during aerosol-generating procedures such as endotracheal intubation. Objectives We tested the effectiveness of a novel barrier mouthpiece in reducing clinician exposure to aerosols and droplets during endotracheal intubation. Design A prospective case control study was carried out, with a single operator performing eight simulated intubations with and without the device on two different high-fidelity manikin models which produced aerosols and droplets. Setting The study was performed during June 2020, at the Clinical Skills Development Service, Brisbane, Australia. Interventions Simulated scenarios included 1) intubation during cardiopulmonary resuscitation 2) intubation while pre-oxygenating via high flow nasal cannula. Photographic images were obtained during each intubation and digitally analyzed using ImageJ v2.1.0/1.53c. Patients Not applicable. Main outcome measures Aerosol and droplets were quantified using pixel counts. Overall results were expressed as means (± SD), with comparisons between groups made using a two-tailed Student9s T-test under the assumption of unequal variances. A P value of ≤ 0.05 was considered as statistically significant. Results First pass intubation was achieved in all scenarios, with and without the barrier device. Pixel counts demonstrated significant overall reduction in aerosol and droplet exposure when the barrier device was used during intubation [Mean (SD) count:509 (860) vs 10169 (11600); P=0.014]. The highest exposure risk to airborne particles was observed during simulated induction, prior to laryngoscopy and intubation. Conclusions The novel barrier device was effective in reducing environmental exposure to aerosols and droplets during intubation without negatively affecting first pass intubation. The highest risk of exposure to airborne particles was during induction, before intubation takes place. Clinical trials are indicated to further test the feasibility and efficacy of this device. Trial registration Not applicable. Keywords: Endotracheal intubation, SARS-CoV-2, COVID-19, Prevention, Safety
|
||
</p>
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2022.01.24.22269341v1" target="_blank">A Novel Barrier Device and Method for Protection against Airborne Pathogens During Endotracheal Intubation</a>
|
||
</div></li>
|
||
<li><strong>The MU Study of Seropositivity and Risk for SARS-CoV-2 and COVID-19: Crucial Behavioral and Immunological Data from Midwestern College Students</strong> -
|
||
<div>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
||
Objective. We describe our Fall 2020 study of college students9 COVID-19 related behaviors, attitudes, and antibody test results. Participants. The study included 1,446 randomly selected and self-enrolled undergraduate and graduate students from a midwestern university. Methods. An online survey was distributed to a sample of students, between September and December 2020. A sub-group also participated in a SARS-CoV-2 antibody blood draw. Results. Nearly half of students reported a prior COVID-19 test with 22% indicating a positive test, which represents an 11% positivity rate across all student participants. Of those who participated in antibody testing, 15.1% tested positive for SARS- CoV-2 antibodies. Seventy-seven percent of participants said they would get vaccinated. One-third of students reported moderate to severe generalized anxiety disorder and 13% reported moderate to severe depression. Conclusions. This study informed campus decisions in Fall 2020. The importance of effective public health messaging on campus should continue in the future. Keywords: behavior; COVID-19; immunology; students; transdisciplinary research
|
||
</p>
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2022.01.24.22269758v1" target="_blank">The MU Study of Seropositivity and Risk for SARS-CoV-2 and COVID-19: Crucial Behavioral and Immunological Data from Midwestern College Students</a>
|
||
</div></li>
|
||
<li><strong>Structural insight into antibody evasion of SARS-CoV-2 omicron variant</strong> -
|
||
<div>
|
||
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to mutate and evolve with the emergence of omicron (B.1.1.529) as the new variant of concern. The rapid spread of this variant regionally and globally could be an allusion to increased infectivity, transmissibility, and antibody resistance. The omicron variant has a large set of mutations in its spike protein, specifically in the receptor binding domain (RBD), reflecting their significance in ACE2 interaction and antibody recognition. We have carried out the present study to understand how these mutations structurally impact the binding of the antibodies to their target epitope. We have computationally evaluated the binding of different classes of RBD targeted antibodies, namely, CB6 (etesevimab), REGN10933 (casirivimab), S309 (sotrovimab), and S2X259 to the omicron mutation-induced RBD. Molecular dynamics simulations and binding free energy calculations unveil the binding affinity and stability of the antibody-RBD complexes. All the four antibodies show reduced binding affinity towards the omicron RBD. The therapeutic antibody CB6 aka etesevimab was substantially affected due to numerous omicron mutations occurring in its target epitope. This study provides a structural insight into the reduced efficacy of RBD targeting antibodies against the SARS-CoV-2 omicron variant.
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2022.01.25.477671v1" target="_blank">Structural insight into antibody evasion of SARS-CoV-2 omicron variant</a>
|
||
</div></li>
|
||
<li><strong>mRNA-1273 Vaccine-elicited Neutralization of SARS-CoV-2 Omicron in Adolescents and Children</strong> -
|
||
<div>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
||
Background The highly transmissible severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) Omicron variant is a global concern. This study assessed the neutralization activity of two-dose regimens of mRNA-1273 vaccination against Omicron in adults, adolescents and children. Methods Neutralizing activity against the Omicron variant was evaluated in serum samples from adults (≥18 years) in the phase 3, Coronavirus Efficacy (COVE) and from adolescents (12-17 years) in the TeenCOVE trials following a two-dose regimen of 100 Background The highly transmissible severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) Omicron variant is a global concern. This study assessed the neutralization activity of two-dose regimens of mRNA-1273 vaccination against Omicron in adults, adolescents and children. Methods Neutralizing activity against the Omicron variant was evaluated in serum samples from adults (≥18 years) in the phase 3, Coronavirus Efficacy (COVE) and from adolescents (12-17 years) in the TeenCOVE trials following a two-dose regimen of 100 μg mRNA-1273 and from children (6-<12 years) in the KidCOVE trial administered two doses of 50 μg mRNA-1273. Neutralizing antibody geometric mean ID50 titers (GMT) were measured using a lentivirus-based pseudovirus neutralizing assay at day 1 and 4 weeks (day 57) following the second mRNA-1273 dose, compared with wild- type (D614G). Results At 4 weeks following a second dose of mRNA-1273 (100 μg), the GMT was reduced 28.8-fold compared with D614G in adults (≥18 years). In adolescents (12-17 years), the GMT was 11.8-fold lower than D614G, 4 weeks after a second dose of mRNA-1273 (100 μg), and compared with adults, were 1.5- and 3.8-fold higher for D614G and the Omicron variant, respectively. In children (6-<12 years), 4 weeks post-second dose of 50 μg mRNA-1273, Omicron GMTs were reduced 22.1-fold versus D614G and were 2.0-fold higher for D614G and 2.5-fold higher for Omicron compared with adults. Conclusions A two-dose regimen of 100 μg mRNA-1273 in adolescents and of 50 μg in children elicited neutralization responses against the Omicron variant that were reduced compared with the wild-type D614G, and numerically higher than those in adults.
|
||
</p>
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2022.01.24.22269666v1" target="_blank">mRNA-1273 Vaccine-elicited Neutralization of SARS-CoV-2 Omicron in Adolescents and Children</a>
|
||
</div></li>
|
||
<li><strong>Rapid emergence of SARS-CoV-2 Omicron variant is associated with an infection advantage over Delta in vaccinated persons</strong> -
|
||
<div>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
||
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continues to shape the coronavirus disease 2019 (Covid-19) pandemic. The detection and rapid spread of the SARS-CoV-2 Omicron variant (lineage B.1.1.529) in Botswana and South Africa became a global concern because it contained 15 mutations in the spike protein immunogenic receptor binding domain and was less neutralized by sera derived from vaccinees compared to the previously dominant Delta variant. To investigate if Omicron is more likely than Delta to cause infections in vaccinated persons, we analyzed 37,877 nasal swab PCR tests conducted from 12-26 December 2021 and calculated the test positivity rates for each variant by vaccination status. We found that the positivity rate among unvaccinated persons was higher for Delta (5.2%) than Omicron (4.5%). We found similar results in persons who received a single vaccine dose. Conversely, our results show that Omicron had higher positivity rates than Delta among those who received two doses within five months (Omicron = 4.7% vs. Delta = 2.6%), two doses more than five months ago (4.2% vs. 2.9%), and three vaccine doses (2.2% vs. 0.9%). Our estimates of Omicron positivity rates in persons receiving one or two vaccine doses were not significantly lower than unvaccinated persons but were 49.7% lower after three doses. In comparison, the reduction in Delta positivity rates from unvaccinated to 2 vaccine doses was 45.6-49.6% and to 3 vaccine doses was 83.2%. Despite the higher positivity rates for Omicron in vaccinated persons, we still found that 91.2% of the Omicron infections in our study occurred in persons who were eligible for 1 or more vaccine doses at the time of PCR testing. In conclusion, escape from vaccine-induced immunity likely contributed to the rapid rise in Omicron infections.
|
||
</p>
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2022.01.22.22269660v1" target="_blank">Rapid emergence of SARS-CoV-2 Omicron variant is associated with an infection advantage over Delta in vaccinated persons</a>
|
||
</div></li>
|
||
<li><strong>Emergence of glycogen synthase kinase-3 interaction domain enhances phosphorylation of SARS-CoV-2 nucleocapsid protein</strong> -
|
||
<div>
|
||
A structural protein of SARS-CoV-2, nucleocapsid (N) protein is abundantly expressed during viral replication. The N protein is phosphorylated by glycogen synthase kinase (GSK)-3 on the serine/arginine (SR) rich motif located in disordered regions. Although phosphorylation by GSK-3{beta} constitutes a critical event for viral replication, the molecular mechanism underlying N phosphorylation is not well understood. In this study, we found the putative alpha- helix L/FxxxL/AxxRL motif known as the GSK-3 interacting domain (GID), commonly found in many endogenous GSK-3{beta} binding proteins, such as Axins, FRATs, WWOX and GSKIP. Indeed, N interacts with GSK-3{beta} similarly to Axin, and Leu to Glu substitution of the GID abolished the interaction, with loss of N phosphorylation. Unlike with endogenous GID proteins, the N interaction neither disturbs endogenous GSK-3 activity nor regulates subsequent canonical Wnt activity and the Snail-EMT program. Notably, N abundance in SARS-CoV-2 is incomparably high compared to other coronaviruses, such as 229E, OC43 and HKU1. Compared to other coronaviruses, N harbors a CDK1 primed phosphorylation site and Gly-rich linker for enhanced phosphorylation by GSK-3{beta}. Furthermore, we found that the S202R mutant found in Delta and R203K/G204R mutant found in the Omicron variant allows increased abundance and hyper-phosphorylation of N. Our observations suggest that the emergence of GID and mutations for increased phosphorylation in N may have contributed to the emergence of SARS-CoV-2 and evolution of variants, respectively. Further study, especially in a BSL3-equipped facility, is required to elucidate the functional importance of GID and N phosphorylation in SARS-CoV-2 and variants.
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2022.01.24.477037v1" target="_blank">Emergence of glycogen synthase kinase-3 interaction domain enhances phosphorylation of SARS-CoV-2 nucleocapsid protein</a>
|
||
</div></li>
|
||
<li><strong>The effect of COVID-19 mRNA vaccine on respiratory system: human lung carcinoma cells by means of Raman spectroscopy and imaging.</strong> -
|
||
<div>
|
||
The paper presents the effect of COVID-19 mRNA (Pfizer/BioNTech) vaccine on human lung carcinoma epithelial cells (A549) studied by means of Raman spectroscopy and imaging. The paper will also focus on Raman imaging as a tool to explore apoptosis and oxidative phosphorylation in mitochondrial dysfunctions. The presented Raman results show alterations in the reduction-oxidation pathways associated with cytochrome c. We found that the COVID-19 mRNA vaccine modulates the concentration of cytochrome c upon incubation with tumorous lung cells. Concentration of oxidized form of cytochrome c in mitochondria of lung cells has been shown to decrease upon incubation the mRNA vaccine. Lower concentration of oxidized cytochrome c in mitochondria indicates lower effectiveness of oxidative phosphorylation (respiration), reduced apoptosis and lessened ATP production. Moreover, mRNA vaccine increases significantly de novo lipids synthesis in lipid droplets and alterations in biochemical composition that suggest the increasing role of signaling. mRNA vaccine does not produce statistically significant changes in cell nucleus. The observed alterations in biochemical profiles upon incubation with mRNA vaccine in the specific organelles of the tumorous lung cells are similar to those we observe for other types of cancer, particularly brain glial cells.
|
||
</div>
|
||
<div class="article-link article- html-link">
|
||
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2022.01.24.477476v1" target="_blank">The effect of COVID-19 mRNA vaccine on respiratory system: human lung carcinoma cells by means of Raman spectroscopy and imaging.</a>
|
||
</div></li>
|
||
<li><strong>Structural Ramifications of Spike Protein D614G Mutation in SARS-CoV-2</strong> -
|
||
<div>
|
||
A single mutation from aspartate to glycine at position 614 has dominated all circulating variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). D614G mutation induces structural changes in the Spike (S) protein that strengthen the virus infectivity. Here, we use molecular dynamics simulations to dissect the effects of mutation and 630-loop rigidification on wild-type structure. The introduction of mutation with ordered 630-loop induces structural changes toward S-G614 Cryo-EM structure. An ordered 630-loop weakens the stabilizing interactions of the anionic D614, suggesting its disorder in wild-type. The mutation allosterically alters the receptor binding domain (RBD) forming an asymmetric and mobile Down conformation, which facilitate Up transition. The loss of D614_K854 salt-bridge upon mutation, generally stabilize S-protein protomer, including the fusion peptide proximal region that mediates membrane fusion. Understanding of the molecular basis of D614G is crucial as it dominates in all variants of concern including Delta and Omicron.
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2022.01.24.477651v1" target="_blank">Structural Ramifications of Spike Protein D614G Mutation in SARS-CoV-2</a>
|
||
</div></li>
|
||
</ul>
|
||
<h1 data-aos="fade-right" id="from-clinical-trials">From Clinical Trials</h1>
|
||
<ul>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Quantifying Viral Load in Respiratory Particles That Are Generated by Children and Adults With COVID-19 Infection</strong> - <b>Condition</b>: COVID-19<br/><b>Intervention</b>: Device: COVID-19 Aerosol Collection<br/><b>Sponsor</b>: <br/>
|
||
Massachusetts General Hospital<br/><b>Recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A Study to Evaluate the Safety and Immunogenicity of Booster With AZD1222, mRNA-1273, or MVC-COV1901 Against COVID-19</strong> - <b>Condition</b>: COVID-19 Vaccine<br/><b>Interventions</b>: Biological: Half dose of MVC-COV1901; Biological: Full dose of MVC-COV1901; Biological: AZD1222; Biological: Half dose of mRNA-1273<br/><b>Sponsors</b>: Medigen Vaccine Biologics Corp.; Coalition for Epidemic Preparedness Innovations<br/><b>Not yet recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Efficacy of Breathox Device Inhalation Therapy in the Treatment of Acute Symptoms Associated With COVID-19 and in the Prevention of the Use of Health Resources</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Drug: BREATHOX 5 sessions; Drug: BREATHOX 10 sessions<br/><b>Sponsors</b>: UPECLIN HC FM Botucatu Unesp; Liita Holdings LTD<br/><b>Recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Exercise Fatigue Parameters and Endothelial Function in Pediatric Patients With a History of COVID-19 Infection or MIS-C</strong> - <b>Conditions</b>: COVID-19; MIS-C Associated With COVID-19<br/><b>Interventions</b>: <br/>
|
||
Device: Cardiopulmonary exercise test (CPET); Device: Peripheral Arterial Tonography (PAT) using the EndoPAT™ device; Diagnostic Test: Endothelin<br/><b>Sponsors</b>: Rambam Health Care Campus; The Baruch Padeh Medical Center, Poriya<br/><b>Recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Immunogenicity of an Inactivated COVID-19 Vaccine</strong> - <b>Condition</b>: COVID-19<br/><b>Intervention</b>: Biological: Inactivated COVID-19 Vaccine<br/><b>Sponsor</b>: Sinovac Research and Development Co., Ltd.<br/><b>Recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Non-inferiority Trial on Monoclonal Antibodies in COVID-19</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Drug: Bamlanivimab Etesevimab; Drug: Sotrovimab; Drug: Casirivimab-Imdevimab<br/><b>Sponsors</b>: Azienda Ospedaliera Universitaria Integrata Verona; Agenzia Italiana del Farmaco; Azienda Sanitaria-Universitaria Integrata di Udine<br/><b>Recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A Prospective, Phase II Study to Evaluate Safety of 101-PGC-005 (’005) for Moderate to Severe COVID-19 Disease Along With Standard of Care</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Drug: 101-PGC-005 (’005) + SOC; Drug: Placebo + SOC<br/><b>Sponsor</b>: 101 Therapeutics<br/><b>Recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>To Evaluate Safety & Immunogenicity of DelNS1-2019-nCoV-RBD-OPT1 for COVID-19 in Healthy Adults Received 2 Doses of BNT162b2</strong> - <b>Condition</b>: Covid19<br/><b>Interventions</b>: Biological: DelNS1-2019-nCoV-RBD-OPT1; Biological: Matching placebo<br/><b>Sponsor</b>: The University of Hong Kong<br/><b>Not yet recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Increasing COVID-19 Testing in Chicago’s African American Testing Desserts</strong> - <b>Condition</b>: COVID-19 Pandemic<br/><b>Intervention</b>: Behavioral: COVID-19 Testing<br/><b>Sponsor</b>: Rush University Medical Center<br/><b>Recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Immunogenicity and Safety Study of a SCB-2019 Vaccine Booster Dose to Adults Who Previously Received Primary Series of Selected COVID-19 Vaccines</strong> - <b>Condition</b>: COVID-19<br/><b>Intervention</b>: Biological: Candidate vaccine, SCB-2019<br/><b>Sponsor</b>: Clover Biopharmaceuticals AUS Pty Ltd<br/><b>Not yet recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Efficacy of Synchronous and Asynchronous Telerehabilitation in COVID-19 Discharges</strong> - <b>Conditions</b>: COVID-19; Telerehabilitation<br/><b>Interventions</b>: <br/>
|
||
Other: Synchronous telerehabilitation programme; Other: Asynchronous telerehabilitation programme<br/><b>Sponsors</b>: Bitlis Eren University; Marmara University<br/><b>Recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Intranasal Heparin Treatment to Reduce Transmission Among Household Contacts of COVID 19 Positive Adults and Children</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Drug: unfractionated heparin; Drug: 0.9%sodium chloride<br/><b>Sponsors</b>: Murdoch Childrens Research Institute; University of Melbourne; Northern Hospital, Australia; Monash University; The Peter Doherty Institute for Infection and Immunity; St Vincent’s Hospital Melbourne<br/><b>Not yet recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Study of F-652 in Subjects With Corona Virus Disease 2019 (COVID-19) Pneumonia</strong> - <b>Condition</b>: COVID-19 Pneumonia<br/><b>Interventions</b>: Biological: F-652; Biological: Placebo<br/><b>Sponsor</b>: EVIVE Biotechnology<br/><b>Not yet recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Telehealth Exercise Training in Post-COVID Patients</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Device: Home-based telehealth exercise training program; Behavioral: Education and self-exercise<br/><b>Sponsor</b>: Tri-Service General Hospital<br/><b>Recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Respiratory Physiotherapy and Neurorehabilitation in Patients With Post-covid19 Sequelae.</strong> - <b>Condition</b>: COVID-19 Pandemic<br/><b>Intervention</b>: Other: respiratory treatment<br/><b>Sponsor</b>: Universidad Católica de Ávila<br/><b>Not yet recruiting</b></p></li>
|
||
</ul>
|
||
<h1 data-aos="fade-right" id="from-pubmed">From PubMed</h1>
|
||
<ul>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Brilacidin, a COVID-19 Drug Candidate, demonstrates broad-spectrum antiviral activity against human coronaviruses OC43, 229E and NL63 through targeting both the virus and the host cell</strong> - Brilacidin, a mimetic of host defense peptides (HDPs), is currently in phase 2 clinical trial as an antibiotic drug candidate. A recent study reported that brilacidin has antiviral activity against SARS-CoV-2 by inactivating the virus. In this work, we discovered an additional mechanism of action of brilacidin by targeting heparan sulfate proteoglycans (HSPGs) on host cell surface. Brilacidin, but not acetyl brilacidin, inhibits the entry of SARS-CoV-2 pseudovirus into multiple cell lines, and…</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Efficacy of Combination Therapy with the JAK Inhibitor Baricitinib in the Treatment of COVID-19</strong> - Coronavirus disease-19 (COVID-19), resulting from infection with SARS-CoV-2, spans a wide spectrum of illness. In severely ill patients, highly elevated serum levels of certain cytokines and considerable cytolytic T cell infiltrates in the lungs have been observed. These same patients may bear low to negligible viral burdens suggesting that an overactive immune response, often termed cytokine storm, contributes to the severity of COVID-19. We report the safety and efficacy of baricitinib…</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Extracellular vimentin is an attachment factor that facilitates SARS-CoV-2 entry into human endothelial cells</strong> - SARS-CoV-2 entry into host cells is a crucial step for virus tropism, transmission, and pathogenesis. Angiotensin- converting enzyme 2 (ACE2) has been identified as the primary entry receptor for SARS-CoV-2; however, the possible involvement of other cellular components in the viral entry has not yet been fully elucidated. Here we describe the identification of vimentin (VIM), an intermediate filament protein widely expressed in cells of mesenchymal origin, as an important attachment factor for…</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>ERDRP-0519 inhibits feline coronavirus in vitro</strong> - CONCLUSIONS: These findings confirm that ERDRP is highly effective against a CoV. Experiments will be necessary to assess whether ERDRP is suitable for treatment of FIPV in vivo.</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Taking leads out of nature, can nano deliver us from COVID-like pandemics?</strong> - The COVID-19 crisis has alerted the research community to re-purpose scientific tools that can effectively manage emergency pandemic situations. Researchers were never so desperate to discover a ‘magic bullet’ that has significant clinical benefits with minimal or no side effects. At the beginning of the pandemic, due to restricted access to traditional laboratory techniques, many research groups delved into computational screening of thousands of lead molecules that could inhibit SARS-CoV-2 at…</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>4’-Modified Nucleosides for Antiviral Drug Discovery: Achievements and Perspectives</strong> - ConspectusModified nucleosides show therapeutic promise for antiviral therapies. However, issues including the emergence of drug resistance, toxicity, and coinfections have posed new challenges for nucleoside-based antiviral drug discovery, particularly in the era of the coronavirus disease 2019 (COVID-19) pandemic. Chemical manipulation could impact the antiviral potency, safety, and drug resistance of nucleosides. Generally, modified nucleosides are difficult to recognize by intracellular…</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Quaternary Phosphonium Compounds: An Examination of Non-Nitrogenous Cationic Amphiphiles That Evade Disinfectant Resistance</strong> - Quaternary ammonium compounds (QACs) serve as mainstays in the formulation of disinfectants and antiseptics. However, an over-reliance and misuse of our limited QAC arsenal has driven the development and spread of resistance to these compounds, as well as co-resistance to common antibiotics. Extensive use of these compounds throughout the COVID-19 pandemic thus raises concern for the accelerated proliferation of antimicrobial resistance and demands for next- generation antimicrobials with…</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Emergency Department Management of Hypertension in the Context of COVID-19</strong> - PURPOSE OF REVIEW: This review describes the relationship between COVID-19 and hypertension (HTN), and considerations for emergency medicine providers in the management of hypertensive patients during the COVID-19 pandemic.</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Platelets modulate CD4(+) T Cell function in Covid-19 Through A PD-L1 Dependent Mechanism</strong> - Severe COVID-19 is associated with a systemic inflammatory response and progressive CD4^(+) T cell lymphopenia and dysfunction. We evaluated whether platelets might contribute to CD4^(+) T cell dysfunction in COVID-19. We observed a high frequency of CD4^(+) T cell-platelet aggregates in COVID-19 inpatients that inversely correlated with lymphocyte counts. Platelets from COVID-19 inpatients but not from healthy donors (HD) inhibited the up-regulation of CD25 expression and TNF-α production by…</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Anti-inflammatory and anti-COVID-19 effect of a novel polyherbal formulation (Imusil) via modulating oxidative stress, inflammatory mediators and cytokine storm</strong> - In the current scenario, most countries are affected by COVID-19, a pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that has a massive impact on human health. Previous studies showed that some traditionally used medicinal herbs and their combinations showed synergistic anti-viral and anti-inflammatory activity against SARS-CoV-2 type infections. Therefore, the goal of this study is to demonstrate the anti-viral and anti- inflammatory effects of a novel…</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Dynamical demeanour of SARS-CoV-2 virus undergoing immune response mechanism in COVID-19 pandemic</strong> - COVID-19 is caused by the increase of SARS-CoV-2 viral load in the respiratory system. Epithelial cells in the human lower respiratory tract are the major target area of the SARS-CoV-2 viruses. To fight against the SARS-CoV-2 viral infection, innate and thereafter adaptive immune responses be activated which are stimulated by the infected epithelial cells. Strong immune response against the COVID-19 infection can lead to longer recovery time and less severe secondary complications. We proposed a…</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Vaccine booster efficiently inhibits entry of SARS-CoV-2 omicron variant</strong> - No abstract</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>The structure of a novel antibody against the spike protein inhibits Middle East respiratory syndrome coronavirus infections</strong> - Middle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic virus, responsible for outbreaks of a severe respiratory illness in humans with a fatality rate of 30%. Currently, there are no vaccines or United States food and drug administration (FDA)-approved therapeutics for humans. The spike protein displayed on the surface of MERS-CoV functions in the attachment and fusion of virions to host cellular membranes and is the target of the host antibody response. Here, we provide a…</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>SARS-CoV-2 NSP5 and N protein counteract the RIG-I signaling pathway by suppressing the formation of stress granules</strong> - As a highly pathogenic human coronavirus, SARS-CoV-2 has to counteract an intricate network of antiviral host responses to establish infection and spread. The nucleic acid-induced stress response is an essential component of antiviral defense and is closely related to antiviral innate immunity. However, whether SARS-CoV-2 regulates the stress response pathway to achieve immune evasion remains elusive. In this study, SARS-CoV-2 NSP5 and N protein were found to attenuate antiviral stress granule…</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Virtual Screening and Molecular Docking to Study the Mechanism of Chinese Medicines in the Treatment of Coronavirus Infection</strong> - BACKGROUND Heat-clearing and detoxifying herbs (HDHs) play an important role in the prevention and treatment of coronavirus infection. However, their mechanism of action needs further study. This study aimed to explore the anti- coronavirus basis and mechanism of HDHs. MATERIAL AND METHODS Database mining was performed on 7 HDHs. Core ingredients and targets were screened according to ADME rules combined with Neighborhood, Co-occurrence, Co-expression, and other algorithms. GO enrichment and KEGG…</p></li>
|
||
</ul>
|
||
<h1 data-aos="fade-right" id="from-patent-search">From Patent Search</h1>
|
||
<ul>
|
||
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>IDENTIFICATION AND ALARM SYSTEM FOR FACIAL CORONA MASK USING CNN BASED IMAGE PROCESSING</strong> - tThe covid-19 epidemic is the world’s largest wake-up call for people to pay attention to their own and society’s health. One thing to keep in mind is that there is a segment of the population that has been exposed to the covid-19 virus and has generated antibodies without developing any significant illnesses and is continuing to be healthy. This indicates that a significant section of the population, even excluding the elderly, lacks the necessary bodily immunity to combat a Viral infection. As terrible as covid-19 is on a global scale, developing personal health standards and preventative measures for any pathogenic virus as a community would have spared many lives. In’this work, a camera is combined with an image processing system to recognise facial masks, which may be improved in a variety of ways. First and foremost, this method is meant to identify masks on a single person’s face. While this method is efficient in identifying someone has a mask, it does not ensure that they will wear it all of the time. The most effective update for this task is to install a camera with a wide field of view so that many individuals can be seen in the frame, and the faces of those who aren’t wearing markings can be identified, as well as the number of people and the timing. - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=IN346889253">link</a></p></li>
|
||
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>ANTIMICROBIAL SANITIZING FORMULATION</strong> - An antimicrobial sanitizing formulation, comprising, i) isopropyl alcohol in the range of 0.1%- 80% w/w, ii) an emollient in the range of 0.1%-15% w/w, iii) hydrogen peroxide in the range of 0.1 0.13% w/w, iv) citric acid in the range of 0.1% to 2.0% w/w, v) silver nitrate in the range of 0.1% to 0.5% w/w, and vi) a fragrance imparting agent in the range of 0.1% to 2.0% w/w. - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=IN346888094">link</a></p></li>
|
||
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A HEALTH BAND WITH A BIOMETRIC MODULE AND WORKING METHOD THEREOF</strong> - The present invention discloses a health band with a biometric module and method thereof. The assembly includes, but not limited to, a plurality of sensors configured to gather health data associated with a predefined symptom of a medical condition of a user; a memory unit configured to store the data and an interface, which is configured to determine the medical condition using the data;a processing unit configured to execute the application; and a notification facility configured to provide a notification upon receiving from the interface an instruction associated with the notification, wherein the notification is associated with a drug reminder and the like. - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=IN346889061">link</a></p></li>
|
||
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>RNA 검출 방법</strong> - 본 발명은 RNA의 분석 및 검출 방법에 관한 것이다. 특히, 본 발명은 특히, 본 발명은 짧은 염기서열의 RNA까지 분석이 가능하면서도 높은 민감도 및 정확도로 정량적 검출까지 가능하여 감염증, 암 등 여러 질환의 진단 용도로도 널리 활용될 수 있다. - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=KR346026620">link</a></p></li>
|
||
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>REUNION OF PHOTOTHERMAL THERAPY WITH MXENE ADSORBED UREMIC TOXINS AND CYTOKINES: A SHILED FOR COVID-19 PATENTS</strong> - The COVID-19 pandemic has created havoc throughout the world. The disease has proved to be more fatalfor patients having comorbidities like diabetics, lungs and kidney infections, etc. In the case of COVID-19 patientsI having kidney injury, the. removal of uremic toxins from the blood is hindered and there is a rapid surge in the levelj of cytokine hormone resulting in the death of the patient in a short interval of time. To resolve this issue,iI; researchers have examined that the immediate removal of these toxins can improve the condition of the patient to a |greater extent. Studies have also found the presence of SARS CoV-2 viral RNAs in the blood of COVID-19patients, which risks their life as well as impacts the blood transfusion process, especially in the case ofasymptomatic patients. Hence it is required to control the surge of cytokines and uremic toxins as well as disinfectthe blood of the patient from the virus. MXenes, having a foam-like porous structure and hydrophilic negativesurface functionalization have greater adsorption efficiency as well as superior photothermal activity. Utilizingthese properties of MXenes, the MXene membranes can be used in the dialyzer that can help in the efficient andBiuick removal of the uremic toxins, cytokines, and other impurities from the blood. Along with this the greaterTJAdsorption efficiency of MXenes to amino acids result in the trapping of the SARS CoV-2 viruses on the surface J)3>f the MXene. Many researchers as well as the WHO have proved the efficient reduction of the viral copy numbersjjvith the increase of temperature. Hence, followed by the trapping of the viruses, the implementation of"Zphotothermal Therapy can result in the inactivation and denaturation of the viruses and their respective viral RNAsBJlby the produced heat. The same process can be repeated several times to get better results. This whole process canr>oQ-esult in impurity-free and infection-free blood, that can be returned back to the body of the patient or can be!— I Sitilized for the blood transfusion process without any risk of infection.IM - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=IN346889224">link</a></p></li>
|
||
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>REDUCING AND STOPPING OXYGEN WASTAGE IN HOSPITAL</strong> - In an aspect, the present invention discloses a system (200) for prevention and reduction of oxygen wastage from oxygen mask (202). The system (200) includes the oxygen mask (202) having straps; a tension sensor (204), the tension sensor being sensitive towards tension produced in the straps as the oxygen gets leakage through sides of the mask (202); a processor configured in alignment with the tension sensor (204); and a buzzer (206) in alignment with processor. - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=IN346042219">link</a></p></li>
|
||
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>编码SARS-COV-2病毒C.37突变株抗原的DNA分子、DNA疫苗及应用</strong> - 本发明涉及生物技术领域,具体而言,提供了一种编码SARS‑COV‑2病毒C.37突变株抗原的DNA分子、DNA疫苗及应用。本发明提供的SEQ ID NO:1核酸序列在真核表达系统中能够高效转录和表达,而且具有免疫原性,表现在体液免疫和细胞免疫应答中,以此作为活性成分的核酸疫苗同样具有良好的免疫原性。 - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=CN347705379">link</a></p></li>
|
||
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>SARS-COV-2病毒B.1.617.2突变株DNA疫苗及应用</strong> - 本发明涉及生物技术领域,具体而言,提供了一种编码SARS‑COV‑2病毒B.1.617.2突变株抗原的DNA分子、DNA疫苗及应用。本发明提供的SEQ ID NO:1核酸序列在真核表达系统中能够高效转录和表达,而且具有免疫原性,表现在体液免疫和细胞免疫应答中,以此作为活性成分的核酸疫苗同样具有良好的免疫原性。 - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=CN347705359">link</a></p></li>
|
||
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Hung Thanh Phan COVID-19 NEW SOLUTION</strong> - - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=AU344983394">link</a></p></li>
|
||
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A METHOD TO REVEAL MOTIF PATTERNS OF COVID-19 USING MULTIPLE SEQUENCE ALIGNMENT</strong> - This present invention consists of different levels of computation and work in a pipeline manner i.e., input of one will be output of another and it is sequential process. Input data given in form of nucleotide sequence (DNA) of different COVID-19 patients (1). Using these nucleotide sequence perform mutation if possible and arrange them in a sequential order (2). Arrange number of nucleotide sequences of different patients in row wise and also compute number of characters in each row. (3). Compute frequency of occurrence of character in column wise and create a matrix having 4 rows and maximum sequence length will be the column size (4). Find the character like A, T, C, and G which one has maximum score and similarly find for each column to produce a final sequence (5). - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=IN346039750">link</a></p></li>
|
||
</ul>
|
||
|
||
|
||
<script>AOS.init();</script></body></html> |