Daily-Dose/archive-covid-19/09 February, 2022.html

219 lines
60 KiB
HTML
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="" xml:lang="" xmlns="http://www.w3.org/1999/xhtml"><head>
<meta charset="utf-8"/>
<meta content="pandoc" name="generator"/>
<meta content="width=device-width, initial-scale=1.0, user-scalable=yes" name="viewport"/>
<title>09 February, 2022</title>
<style type="text/css">
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
span.underline{text-decoration: underline;}
div.column{display: inline-block; vertical-align: top; width: 50%;}
</style>
<title>Covid-19 Sentry</title><meta content="width=device-width, initial-scale=1.0" name="viewport"/><link href="styles/simple.css" rel="stylesheet"/><link href="../styles/simple.css" rel="stylesheet"/><link href="https://unpkg.com/aos@2.3.1/dist/aos.css" rel="stylesheet"/><script src="https://unpkg.com/aos@2.3.1/dist/aos.js"></script></head>
<body>
<h1 data-aos="fade-down" id="covid-19-sentry">Covid-19 Sentry</h1>
<h1 data-aos="fade-right" data-aos-anchor-placement="top-bottom" id="contents">Contents</h1>
<ul>
<li><a href="#from-preprints">From Preprints</a></li>
<li><a href="#from-clinical-trials">From Clinical Trials</a></li>
<li><a href="#from-pubmed">From PubMed</a></li>
<li><a href="#from-patent-search">From Patent Search</a></li>
</ul>
<h1 data-aos="fade-right" id="from-preprints">From Preprints</h1>
<ul>
<li><strong>Monitoring SARS-CoV-2 in wastewater during New York Citys second wave of COVID-19: Sewershed-level trends and relationships to publicly available clinical testing data</strong> -
<div>
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
New York City9s ongoing wastewater monitoring program tracked trends in sewershed-level SARS-CoV-2 loads starting in the fall of 2020, just before the start of the City9s second wave of the COVID-19 outbreak. During a five- month study period, from November 8, 2020 to April 11, 2021, viral loads in influent wastewater from each of New York City9s 14 wastewater treatment plants were measured and compared to new laboratory-confirmed COVID-19 cases for the populations in each corresponding sewershed, estimated from publicly available clinical testing data. We found significant positive correlations between viral loads in wastewater and new COVID-19 cases. The strength of the correlations varied depending on the sewershed, with Spearman9s rank correlation coefficients ranging between 0.38 and 0.81 (mean = 0.55). Based on a linear regression analysis of a combined data set for New York City, we found that a 1 log<sub>10</sub> change in the SARS-CoV-2 viral load in wastewater corresponded to a 0.6 log<sub>10</sub> change in the number of new laboratory-confirmed COVID-19 cases/day in a sewershed. An estimated minimum detectable case rate between 2 - 8 cases/day/100,000 people was associated with the method limit of detection in wastewater. This work offers a preliminary assessment of the relationship between wastewater monitoring data and clinical testing data in New York City. While routine monitoring and method optimization continue, information on the development of New York City9s ongoing wastewater monitoring program may provide insights for similar wastewater-based epidemiology efforts in the future.
</p>
</div>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2022.02.08.22270666v1" target="_blank">Monitoring SARS-CoV-2 in wastewater during New York Citys second wave of COVID-19: Sewershed-level trends and relationships to publicly available clinical testing data</a>
</div></li>
<li><strong>COPD and social distancing in the UK</strong> -
<div>
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
Background: Those with Chronic Obstructive Pulmonary Disease (COPD) were at a higher risk of experiencing severe illness in the event of contracting COVID-19. Did they therefore act more cautiously? Aim: The aim was to determine whether the condition of COPD incurred significant change in social distancing behavior compared to the general public. Design and Setting: Data was used from the Imperial COVID-19 Behavioural Tracker, which details results of regular public surveying on attitudes surrounding COVID-19 guidance. Methods: Responses by U.K. participants to twenty questions reflecting willingness to adhere to social distancing guidance were compared in those reporting COPD and non-COPD status. Results: Those with COPD stated a significantly greater willingness to wear face masks during early stages of pandemic. There was greater reluctance to go out and go shopping. There was no apparent or significant difference in willingness to use public transport, suggesting that this was an unavoidable necessity for all. The relationship between level of adherence and COVID-19 case numbers was weak both for those of both COPD and non-COPD status. Discussion: These results suggest that those with COPD were more cautious and followed guidance more willingly. Advice provided by GPs and healthcare professionals is likely to be beneficial in guiding patient behaviour.
</p>
</div>
<div class="article- link article-html-link">
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2022.02.08.22270657v1" target="_blank">COPD and social distancing in the UK</a>
</div></li>
<li><strong>Update on the Mental Health Crisis in Academia: Effects of the COVID-19 Pandemic on Early Career Researchers Mental Health and Satisfaction with PhD training</strong> -
<div>
In recent years, academia has been facing a mental health crisis affecting especially early career researchers (ECRs). Moreover, the COVID-19 pandemic has posed an unprecedented burden for the mental health of many individuals. In this study we conducted an online survey aiming to investigate how ECRs, specifically doctoral students, evaluate their mental health status and satisfaction with their PhD training during and, retrospectively, before the pandemic. The survey took place in the beginning of 2021 in Germany, during which time pandemic-related restrictions and a soft lock- down were in place. Our final sample comprised 222 mostly empirically working doctoral researchers in an international and diverse science context of the wider Berlin area. Our results show that satisfaction with the PhD training and overall well-being decreased during the pandemic, as compared to the self-reported retrospective evaluations of these aspects before the onset of the pandemic. Additionally, more than a fifth of the sample was found to show clinically meaningful levels of depressive symptoms. Almost 25% experienced severe loneliness and the whole sample exhibited high levels of personal and work-related burnout. Finally, we explored predictors of the quantified levels of depression, anxiety, and burnout. The most prominent predictor for poor mental health was low satisfaction with PhD training, strongly suggesting a link between the doctoral work of ECRs and their mental health. Females vs. males as well as ECRs in individual PhD trainings vs. structured PhD programs reported higher symptoms of burnout. Taken together, our study replicates previous findings of poor mental health in ECRs and shows that problems related to PhD training increased during the COVID-19 pandemic. Therefore, we conclude that systematic adjustments in academia are required to improve the mental health of ECRs.
</div>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://psyarxiv.com/nv4ut/" target="_blank">Update on the Mental Health Crisis in Academia: Effects of the COVID-19 Pandemic on Early Career Researchers Mental Health and Satisfaction with PhD training</a>
</div></li>
<li><strong>Bacterial Pneumonia and Respiratory Culture Utilization among Hospitalized Patients with and without COVID-19 in New York City</strong> -
<div>
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
COVID-19 is associated with prolonged hospitalization and a high risk of intubation, which raises concern for bacterial co-infection and antimicrobial resistance. Previous research has shown a wide range of bacterial pneumonia rates for COVID-19 patients in a variety of clinical and demographic settings, but none have compared hospitalized COVID-19 patients to patients testing negative for SARS-CoV-2 in similar care settings. We performed a retrospective cohort study on hospitalized patients with COVID-19 testing from 10 March 2020 to 31 December 2020. A total of 19,219 patients were included, of which 3,796 tested positive for SARS-CoV-2. We found a 2.6-fold increase (p &lt; 0.001) in respiratory culture ordering in COVID-19 patients. On a per-patient basis, COVID-19 patients were 1.5-fold more likely than non-COVID patients to have abnormal respiratory cultures (46.8% vs. 30.9%, p &lt;0.001), which was primarily driven by patients requiring intubation. Among patients with pneumonia, a significantly higher proportion of COVID-19 patients had ventilator-associated pneumonia (VAP) relative to non-COVID patients (85.7% vs 55.1%, p &lt;0.001), but a lower proportion had community-acquired (12.2% vs 22.1%, p &lt; 0.01) or hospital-acquired pneumonia (2.1% vs. 22.8%, p &lt; 0.001). There was also a significantly higher proportion of respiratory cultures positive for MRSA, K. pneumoniae, and antibiotic-resistant organisms in COVID-19 patients. Increased rates of respiratory culture ordering for COVID-19 patients therefore appear to be clinically justified for patients requiring intubation, but further research is needed to understand how SARS-CoV-2 increases the risk of VAP.
</p>
</div>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2022.02.08.22270591v1" target="_blank">Bacterial Pneumonia and Respiratory Culture Utilization among Hospitalized Patients with and without COVID-19 in New York City</a>
</div></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>SARS-CoV-2 Seroprevalence in three Kenyan Health and Demographic Surveillance Sites, December 2020-May 2021</strong> -
<div>
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
Importance Most of the studies that have informed the public health response to the COVID-19 pandemic in Kenya have relied on samples that are not representative of the general population. Objective To determine the cumulative incidence of infection with SARS-CoV-2, from a randomly selected sample of individuals normally resident at three Health and Demographic Surveillance Systems (HDSSs) in Kenya. Design This was a cross-sectional population-based serosurvey conducted at Kilifi HDSS, Nairobi Urban HDSS, and Manyatta HDSS in Kenya. We selected age-stratified samples at HDSSs in Kilifi, Kisumu and Nairobi, in Kenya. Blood samples were collected from participants between 01 Dec 2020 and 27 May</p></div></li>
</ul>
<ol start="2021" type="1">
<li>Setting Kilifi HDSS comprises a predominantly rural population, Manyatta HDSS comprises a predominantly semi-urban population, while Nairobi Urban HDSS comprises an urban population. The total population under regular surveillance at the three sites is ~470,000. Exposure We tested for IgG antibodies to SARS-CoV-2 spike protein using ELISA. Locally validated assay sensitivity and specificity were 93% (95% CI 88-96%) and 99% (95% CI 98-99.5%), respectively. Main Outcome and Measures The primary outcome measure was cumulative incidence of infection with SARS-COV-2 virus as evidenced by seropositivity to SARS-CoV-2 whole spike protein. We adjusted our estimates using classical methods and Bayesian modelling to account for assay performance. We performed multivariable logistic regression to test associations between seropositivity and age category, time period and sex. Results We recruited 2,559 individuals from the three HDSS sites, median age (IQR) 27years (10-78) and 52% were female. Seroprevalence at all three sites rose steadily during the study period. In Kilifi, Kisumu and Nairobi, seroprevalences at the beginning of the study were 14.5 % (9.1-21), 36.0 (28.2-44.4) and 32.4 % (23.1-42.4) respectively; at the end they were 27.6 % (21.4-33.9), 42.0 % (34.7-50.0) and 50.2 % (39.7-61.1), respectively. In multivariable logistic regression models that adjusted for sex and period of sample collections, age category was strongly associated with seroprevalence (p&lt;0.001), with the highest seroprevalences being observed in the 35-44 and ≥65 year age categories. Conclusion There has been substantial unobserved transmission of SARS-CoV-2 in the general population in Kenya. There is wide variation in cumulative incidence by location and age category.
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"></p>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2022.02.07.22270012v1" target="_blank">SARS-CoV-2 Seroprevalence in three Kenyan Health and Demographic Surveillance Sites, December 2020-May 2021</a>
</div></li>
</ol>
<ul>
<li><strong>Community vaccination can shorten the COVID-19 isolation period: an individual-based modeling approach</strong> -
<div>
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
Background: Isolation of infected individuals and quarantine of their contacts are usually employed to mitigate the transmission of SARS-CoV-2. While 14-day isolation of infected individuals could effectively reduce the risk of subsequence transmission, it also significantly impacts the patient9s financial, psychological, and emotional well- being. It is, therefore, vital to investigate how the isolation duration could be shortened when effective vaccines are available and in what circumstances we can live with COVID-19 without isolation and quarantine. Methods: An individual- based modeling approach was employed to estimate the likelihood of secondary infections and the likelihood of an outbreak following the isolation of an index case for a range of isolation periods. Our individual-based model integrates the viral load and infectiousness profiles of vaccinated and unvaccinated infected individuals. The effects of waning vaccine-induced immunity against Delta and Omicron variant transmission were also investigated. Results: In the baseline scenario in which all individuals are unvaccinated, and no nonpharmaceutical interventions are employed, there is a chance of about 3% that an unvaccinated index case will make at least one secondary infection after being isolated for 14 days, and a sustained chain of transmission can occur with a chance of less than 1%. We found that at the outbreak risk equivalent to that of 14-day isolation in the baseline scenario, the isolation duration can be shortened to 7.33 days (95% CI 6.68-7.98) if 75% of people in the community are fully vaccinated during the last three months. In the best-case scenario in which all individuals in the community are fully vaccinated, isolation of infected individuals may no longer be necessary, at least during the first three months after being fully vaccinated, indicating that booster vaccination may be required after being fully vaccinated for three to four months. Finally, our simulations showed that the reduced vaccine effectiveness against Omicron variant transmission does not much affect the risk of an outbreak if the vaccine effectiveness against infection is maintained at a high level via booster vaccination. Conclusions: The isolation duration of a vaccine breakthrough infector could be safely shortened if a majority of people in the community are immune to SARS-CoV-2 infection. A booster vaccination may be necessary three months after full vaccination to keep the outbreak risk low.
</p>
</div>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2022.02.08.22270668v1" target="_blank">Community vaccination can shorten the COVID-19 isolation period: an individual-based modeling approach</a>
</div></li>
<li><strong>Cardiovascular Signatures of COVID-19 Predict Mortality and Identify Barrier Stabilizing Therapies</strong> -
<div>
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
Background: Endothelial cell (EC) activation, endotheliitis, vascular permeability, and thrombosis have been observed in patients with severe COVID-19, indicating that the vasculature is affected during the acute stages of SARS- CoV-2 infection. It remains unknown whether circulating vascular markers are sufficient to predict clinical outcomes, are unique to COVID-19, and if vascular permeability can be therapeutically targeted. Methods: Evaluating the prevalence of circulating inflammatory, cardiac and EC activation markers, and the development of a microRNA atlas in 241 patients with suspected SARS-CoV-2 infection, allowed their prognostic value to be assessed by a Random Forest model machine learning approach. Subsequent ex vivo experiments assessed EC permeability responses to patient plasma and were used to uncover modulated gene regulatory networks from which rational therapeutic design was inferred. Findings: Multiple inflammatory and EC activation biomarkers were associated with mortality in COVID-19 patients and in severity-matched SARS-CoV-2-negative patients, while dysregulation of specific microRNAs at presentation was specific for poor COVID-19-related outcomes and revealed disease-relevant pathways. Integrating the datasets using a machine learning approach further enhanced clinical risk prediction for in-hospital mortality. Exposure of ECs to COVID-19 patient plasma resulted in severity-specific gene expression responses and EC barrier dysfunction which was ameliorated using angiopoietin-1 mimetic or recombinant Slit2-N. Interpretation: Integration of multi-omics data identified microRNA and vascular biomarkers prognostic of in-hospital mortality in COVID-19 patients and revealed that vascular stabilizing therapies should be explored as a treatment for endothelial dysfunction in COVID-19, and other severe diseases where endothelial dysfunction has a central role in pathogenesis.
</p>
</div>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2022.02.08.22270636v1" target="_blank">Cardiovascular Signatures of COVID-19 Predict Mortality and Identify Barrier Stabilizing Therapies</a>
</div></li>
<li><strong>Can starch-based diet or sugar water put an end to the COVID-19 pandemic?</strong> -
<div>
High valine plus glycine content is a feature of the proteins in SARS-CoV-2 and SARS viruses, and it causes the generation of aggregates between proteins and insoluble calcium salts via secondary chemical bonding. Starch-based diet or sugar water with adequate vitamins can go for many days without the generation of essential amino acids such as valine, creating bottlenecks in virion production in human body. Despite its potential carcinogenicity, modest lysine supplement can be favorable as lysine rich proteins gather chloride and solubilize stressful, insoluble and stiff calcium oxalate and calcium phosphate.
</div>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://osf.io/shmk3/" target="_blank">Can starch-based diet or sugar water put an end to the COVID-19 pandemic?</a>
</div></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Evaluating Fomite Risk of Brown Paper Bags Storing Personal Protective Equipment Exposed to SARS-CoV-2: A Quasi- Experimental Study</strong> -
<div>
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
Introduction: Literature is lacking on the safety of storing contaminated PPE in paper bags for reuse, potentially increasing exposure to frontline healthcare workers (HCW) and patients. Objectives: To evaluate the effectiveness of paper bags as a barrier for fomite transmission of SARS-CoV-2 by storing limited reusable face masks, respirators, and face shields. Methods: This quasi-experimental study evaluated the presence of SARS-CoV-2 on the interior and exterior surfaces of paper bags containing PPE that had aerosolized exposures in clinical and simulated settings. Between May and October 2020, 30 unique PPE items were collected from critical and intermediate care COVID-19 units at two urban hospitals. Exposed PPE, worn by either an infected patient or HCW during a SARS-CoV-2 aerosolizing event, were placed into an unused brown paper bag. Samples were tested at 30-minute and 12-hour intervals. Results: A total of 177 swabs were processed from 30 PPE samples. We found a (12/177 total) 6.8% positivity rate among all samples across both collection sites. Highest positivity rates were associated with ventilator disconnection (1/6 samples, 16.7% positivity) and exposure to respiratory droplets from coughing (2/24 samples, 8.3% positivity), compared to exposure to high-flow nasal cannula (8/129 samples, 6.2% positivity) or tracheostomy surgery (1/18 samples, 5.6% positivity). Positivity rates differed between hospital units. Total positivity rates were similar between 30-minute (6.7%) and 12-hour (6.9%) sample testing time intervals. Control samples exposed to inactivated SARS-CoV-2 droplets had higher total viral counts than samples exposed to nebulized aerosols. Conclusions: Data suggests paper bags are not a significant fomite risk for SARS-CoV-2 transmission. However, controls demonstrated a risk with droplet exposure. Data can inform guidelines for storing and re-using PPE in situations of limited supplies during future pandemics.
</p>
</div></li>
</ul>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2022.02.07.22270332v1" target="_blank">Evaluating Fomite Risk of Brown Paper Bags Storing Personal Protective Equipment Exposed to SARS-CoV-2: A Quasi-Experimental Study</a>
</div>
<ul>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Deploying wearable sensors for pandemic mitigation</strong> -
<div>
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
Wearable sensors can continuously and passively detect potential respiratory infections, before or absent symptoms. However, the population-level impact of deploying these devices during pandemics is unclear. We built a compartmental model of Canada9s second COVID-19 wave and simulated wearable sensor deployment scenarios, systematically varying detection algorithm accuracy, uptake, and adherence. With current detection algorithms and 4% uptake, we found that deploying wearable sensors could have averted 9% of second wave SARS-CoV-2 infections, though 29% of this reduction is attributed to incorrectly quarantining uninfected device users. Improving detection specificity and offering confirmatory rapid tests each minimized incorrect quarantines and associated costs. With a sufficiently low false positive rate, increasing uptake and adherence became effective strategies for scaling averted infections. We concluded that wearable sensor deployment can meaningfully contribute to pandemic mitigation; in the case of COVID-19, technology improvements or supporting measures are required to reduce social and economic costs to acceptable levels.
</p>
</div></li>
</ul>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2022.02.07.22270634v1" target="_blank">Deploying wearable sensors for pandemic mitigation</a>
</div>
<ul>
<li><strong>Clinical and Economic Impact of COVID-19 on Plantation Workers: Preliminary Results from the Guatemala Agricultural Workers and Respiratory Illness Impact (AGRI) Study</strong> -
<div>
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
We evaluated the clinical and socioeconomic burdens of respiratory disease in a cohort of Guatemalan banana plantation workers. All eligible workers were offered enrollment from June 15 to December 30, 2020, and annually, then followed for influenza-like illnesses (ILI) through: 1) self-reporting to study nurses, 2) sentinel surveillance at health posts, and 3) absenteeism. Workers with ILI submitted nasopharyngeal swabs for influenza, RSV, and SARS-CoV-2 testing, then completed surveys at days 0, 7, and 28. Through October 10, 2021, 1,833 workers developed 169 ILIs (12.0/100 person-years) and 43 (25.4%) of these ILIs were laboratory-confirmed SARS-CoV-2 (3.1/100 person-years). Workers with SARS-CoV-2-positive ILI reported more anosmia (p&lt;0.01), dysgeusia (p&lt;0.01), difficulty concentrating (p=0.01), and irritability (p=0.01), and greater clinical and well-being severity scores (Flu-iiQ) than test- negative ILIs; they also had greater absenteeism (p&lt;0.01) and lost income (median US$127.1, p&lt;0.01). These results support the prioritization of Guatemalan farm workers for COVID-19 vaccination.
</p>
</div>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2022.02.07.22270274v1" target="_blank">Clinical and Economic Impact of COVID-19 on Plantation Workers: Preliminary Results from the Guatemala Agricultural Workers and Respiratory Illness Impact (AGRI) Study</a>
</div></li>
<li><strong>An efficient coalescent epoch model for Bayesian phylogenetic inference</strong> -
<div>
We present a two headed approach called Bayesian Integrated Coalescent Epoch PlotS (BICEPS) for efficient inference of coalescent epoch models. Firstly, we integrate out population size parameters and secondly we introduce a set of more powerful Markov chain Monte Carlo (MCMC) proposals for flexing and stretching trees. Even though population sizes are integrated out and not explicitly sampled through MCMC, we are still able to generate samples from the population size posteriors, which allows demographic reconstruction through time. Altogether, BICEPS can be considered a more muscular version of the popular Bayesian skyline model. We demonstrate its power and correctness by a well calibrated simulation study. Furthermore, we demonstrate with an application to COVID-19 genomic data that some analyses that have trouble converging with the traditional Bayesian skyline prior and standard MCMC proposals can do well with the BICEPS approach. BICEPS is available as open source package for BEAST 2 under GPL license and has a user friendly graphical user interface.
</div>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2021.06.28.450225v2" target="_blank">An efficient coalescent epoch model for Bayesian phylogenetic inference</a>
</div></li>
<li><strong>A highly attenuated SARS-CoV-2 related pangolin coronavirus variant has a 104nt deletion at the 3-terminus untranslated region</strong> -
<div>
SARS-CoV-2 related coronaviruses (SARS-CoV-2r) from Guangdong and Guangxi pangolins have been implicated in the emergence of SARS-CoV-2 and future pandemics. We previously reported the culture of a SARS-CoV-2r GX_P2V from Guangxi pangolins. Here we report the GX_P2V isolate rapidly adapted to Vero cells by acquiring two genomic mutations: an alanine to valine substitution in the nucleoprotein and a 104-nucleotide deletion in the hypervariable region (HVR) of the 3-terminus untranslated region (3-UTR). We further report the characterization of the GX_P2V variant in in vitro and in vivo infection models. In cultured Vero and BGM cells, the GX_P2V variant produced minimal cell damage and small plaques. The GX_P2V variant infected golden hamsters and BALB/c mice but was highly attenuated. Golden hamsters infected intranasally had a short duration of productive infection. These productive infections induced neutralizing antibodies against pseudoviruses of GX_P2V and SARS-CoV-2. Collectively, our data show that the GX_P2V variant is highly attenuated in in vitro and in vivo infection models. Attenuation of the variant is likely due to the 104-nt deletion in the HVR in the 3-UTR. This study furthers our understanding of pangolin coronaviruses pathogenesis and provides novel insights for the design of live attenuated vaccines against SARS-CoV-2.
</div>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2022.02.07.479352v1" target="_blank">A highly attenuated SARS-CoV-2 related pangolin coronavirus variant has a 104nt deletion at the 3-terminus untranslated region</a>
</div></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Spike Protein-independent Attenuation of SARS-CoV-2 Omicron Variant in Laboratory Mice</strong> -
<div>
Despite being more transmissible, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant was found to cause milder diseases in laboratory animals, often accompanied by a lower viral load compared to previous variants of concern. This study revealed the structural basis for a robust interaction between the receptor binding domain of the Omicron spike protein and mouse ACE2. Pseudovirus bearing the Omicron spike protein efficiently utilized mouse ACE2 for entry. By comparing viral load and disease severity among laboratory mice infected by a natural Omicron variant or ancestral viruses bearing either the entire Omicron Spike or only the N501Y/Q493R mutations in its spike, we found that mutations outside the spike protein in the Omicron variant may be responsible for the observed lower viral load. Together, our results indicated that a post-entry block to the Omicron variant exists in laboratory mice.
</div></li>
</ul>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2022.02.08.479543v1" target="_blank">Spike Protein-independent Attenuation of SARS-CoV-2 Omicron Variant in Laboratory Mice</a>
</div>
<ul>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Heterologous SARS-CoV-2 IgA neutralising antibody responses in convalescent plasma</strong> -
<div>
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
Following infection with SARS-CoV-2, virus-specific antibodies are generated which can both neutralise virions and clear infection via Fc effector functions. The importance of IgG antibodies for protection and control of SARS-CoV-2 has been extensively reported. In comparison, other antibody isotypes including IgA have been poorly characterized. Here we characterized plasma IgA from 41 early convalescent COVID-19 subjects for neutralisation and Fc effector functions. We find that convalescent plasma IgA from &gt;60% of the cohort have the capacity to inhibit the interaction between wild-type RBD and ACE2. Furthermore, a third of the cohort induced stronger IgA-mediated inhibition of RBD binding to ACE2 than IgG, when tested at equivalent concentrations. Plasma IgA and IgG from the cohort, broadly recognize similar RBD epitopes and showed similar ability to inhibit ACE2 from binding 22 of 23 different prevalent RBD proteins with single amino acid mutations. Plasma IgA was largely incapable of mediating antibody-dependent phagocytosis in comparison to plasma IgG. Overall, convalescent plasma IgA contributes to neutralisation towards wild-type RBD and various RBD single mutants in most subjects, although this response is heterogeneous and less potent than IgG.
</p>
</div></li>
</ul>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2022.02.06.22270359v1" target="_blank">Heterologous SARS-CoV-2 IgA neutralising antibody responses in convalescent plasma</a>
</div>
<h1 data-aos="fade-right" id="from-clinical-trials">From Clinical Trials</h1>
<ul>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Evaluation of Full Versus Fractional Doses of COVID-19 Vaccines Given as a Booster in Adults in Australia - Mongolia, Indonesia, Australia Coronavirus (MIACoV).</strong> - <b>Condition</b>:   COVID-19<br/><b>Interventions</b>:   Biological: Tozinameran - Standard dose;   Biological: Tozinameran - fractional dose;   Biological: Elasomeran - standard dose;   Biological: Elasomeran - fractional dose<br/><b>Sponsors</b>:   Murdoch Childrens Research Institute;   Coalition for Epidemic Preparedness Innovations;   PATH;   The Peter Doherty Institute for Infection and Immunity<br/><b>Not yet recruiting</b></p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Zofin to Treat COVID-19 Long Haulers</strong> - <b>Condition</b>:   COVID-19<br/><b>Interventions</b>:   Drug: Zofin;   Other: Placebo<br/><b>Sponsors</b>:  <br/>
Organicell Regenerative Medicine;   Proxima Clinical Research, Inc.<br/><b>Not yet recruiting</b></p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Effect of Daily Oral Administration of Food Supplement NLC-V in Patients Diagnosed With COVID-19</strong> - <b>Condition</b>:   COVID-19<br/><b>Intervention</b>:   Dietary Supplement: NLC-V<br/><b>Sponsor</b>:  <br/>
Todos Medical, Ltd.<br/><b>Completed</b></p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Study Design of the Diacerein in Patients With Covid-19</strong> - <b>Condition</b>:   COVID-19<br/><b>Interventions</b>:   Drug: Diacerein;   Drug: placebo capsules<br/><b>Sponsors</b>:   University of Campinas, Brazil;   Fundação de Amparo à Pesquisa do Estado de São Paulo<br/><b>Not yet recruiting</b></p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>HEART Rate Variability Biofeedback in LOng COVID-19 (HEARTLOC)</strong> - <b>Condition</b>:   COVID-19<br/><b>Intervention</b>:   Behavioral: Heart Rate Variability Biofeedback (HRV-B)<br/><b>Sponsors</b>:   University of Leeds;   University of Manchester;   Leeds Comunity Healthcare NHS Trust<br/><b>Recruiting</b></p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A Study to Evaluate the Safety, Tolerability, and Immunogenicity of MVC-COV1901 or MVC-COV1901(Beta) Against COVID-19</strong> - <b>Condition</b>:   COVID-19 Vaccine<br/><b>Interventions</b>:   Biological: MVC-COV1901(Beta);   Biological: MVC- COV1901<br/><b>Sponsor</b>:   Medigen Vaccine Biologics Corp.<br/><b>Not yet recruiting</b></p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Evaluate the Efficacy and Safety of TF0023 in Treatments for COVID-19 in Hospitalized Adults</strong> - <b>Condition</b>:   COVID-19 Pneumonia<br/><b>Intervention</b>:   Drug: TF0023<br/><b>Sponsor</b>:  <br/>
Techfields Inc<br/><b>Not yet recruiting</b></p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Short Daily Versus Conventional Hemodialysis for COVID-19 Patients</strong> - <b>Condition</b>:   COVID-19<br/><b>Intervention</b>:   Other: Short daily dialysis<br/><b>Sponsor</b>:  <br/>
Shahid Beheshti University of Medical Sciences<br/><b>Completed</b></p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Availability and Advice on Test Uptake During the COVID-19 Pandemic: a Vignette Study.</strong> - <b>Condition</b>:   COVID-19<br/><b>Interventions</b>:   Behavioral: Customised testing advice;   Behavioral: Regular testing advice;   Behavioral: LFT available;   Behavioral: No LFT available<br/><b>Sponsor</b>:  <br/>
National Institute for Public Health and the Environment (RIVM)<br/><b>Completed</b></p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Efficacy and Safety of Ingavirin®, 90 mg Capsules in Patients With COVID-19</strong> - <b>Condition</b>:   COVID-19<br/><b>Interventions</b>:   Drug: Ingavirin®, 90 mg capsules;   Drug: Placebo<br/><b>Sponsor</b>:   Valenta Pharm JSC<br/><b>Recruiting</b></p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Phase IIa Randomized Placebo Controlled Clinical Study of Codivir in Hospitalized Patients With Moderate COVID-19</strong> - <b>Condition</b>:   COVID-19<br/><b>Interventions</b>:   Drug: Covidir injections;   Diagnostic Test: Quantitative PCR SARS-CoV-2;   Diagnostic Test: IgM and IgG dosage;   Diagnostic Test: Screening Blood tests;   Diagnostic Test: Electrocardiogram;   Other: NEWS-2 score;   Other: WHO score;   Other: Physical examination;   Other: COVID-19-Related Symptoms assessment<br/><b>Sponsor</b>:   Code Pharma<br/><b>Recruiting</b></p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Exercise in Adults With Post-Acute Sequelae of SARS-CoV-2 (COVID-19) Infection Study</strong> - <b>Condition</b>:   COVID-19<br/><b>Intervention</b>:   Other: Exercise Prescription<br/><b>Sponsor</b>:  <br/>
Baylor Research Institute<br/><b>Not yet recruiting</b></p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Safety and Efficacy of COVIDEX™ Therapy in Management of Adult COVID-19 Patients in Uganda.</strong> - <b>Condition</b>:   COVID-19<br/><b>Intervention</b>:   Drug: COVIDEX<br/><b>Sponsors</b>:   Makerere University;   Mbarara University of Science and Technology<br/><b>Not yet recruiting</b></p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Safety and Immunogenicity Study of EgyVax Vaccine Candidate for Prophylaxis of COVID-19 Infection</strong> - <b>Condition</b>:   COVID-19<br/><b>Interventions</b>:   Drug: EgyVax Vaccine Candidate;   Drug: Placebo<br/><b>Sponsors</b>:   Eva Pharma;   Veterinary Serum &amp; Vaccine Research Institute (VSVRI), Egypt;   The Supreme Council of University Hospitals, Egypt;   Ministry of Higher Education and Scientific Research, Egypt<br/><b>Not yet recruiting</b></p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Safety and Immunogencity Study of SARS-CoV-2 Protein Subunit Recombinant Vaccine Adjuvanted With Alum+CpG 1018</strong> - <b>Condition</b>:   COVID-19<br/><b>Interventions</b>:   Biological: SARS-CoV-2 protein subunit recombinant vaccine;   Biological: SARS-CoV-2 inactivated vaccine<br/><b>Sponsors</b>:   PT Bio Farma;   Fakultas Kedokteran Universitas Indonesia;   Faculty of Medicine, Diponegoro University, Semarang<br/><b>Not yet recruiting</b></p></li>
</ul>
<h1 data-aos="fade-right" id="from-pubmed">From PubMed</h1>
<ul>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Cytokine Storm and Failed Resolution in COVID-19: Taking a Cue from Multiple Sclerosis</strong> - CONCLUSION: Given the fact that current treatment for COVID-19 is only supportive, global research is aimed at developing safe and effective therapeutic options that can result in a better clinical course in patients with comorbid conditions. Accordingly, taking a cue from our experiences in controlling robust inflammatory response in MS and diabetes by simultaneously inhibiting inflammatory process and stimulating its resolution, combinatorial therapy of metformin and SPM in COVID-19 holds…</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Anticoronavirus Activity of Water-Soluble Pristine C<sub>60</sub> Fullerenes: In Vitro and In Silico Screenings</strong> - CONCLUSION: Pioneer in vitro study to identify the anticoronavirus activity of water-soluble pristine C(60) fullerenes indicates that they are highly promising for further preclinical studies, since a significant inhibition of the infectious activity of swine coronavirus of transmissible gastroenteritis in BHK-21 cell culture was found. According to molecular modeling results, it was shown that C(60) fullerene can create the stable complexes with 3CLpro and RdRp proteins of SARS-CoV-2…</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Visible blue light inactivates SARS-CoV-2 variants and inhibits Delta replication in differentiated human airway epithelia</strong> - The emergence of SARS-CoV-2 variants that evade host immune responses has prolonged the COVID-19 pandemic. Thus, the development of an efficacious, variant-agnostic therapeutic for the treatment of early SARS-CoV-2 infection would help reduce global health and economic burdens. Visible light therapy has the potential to fill these gaps. In this study, visible blue light centered around 425 nm efficiently inactivated SARS-CoV-2 variants in cell-free suspensions and in a translationally relevant…</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Pyrimidine inhibitors synergize with nucleoside analogues to block SARS-CoV-2</strong> - The SARS-CoV-2 virus has infected more than 261 million people and led to more than 5 million deaths in the last year and a half¹ (WHO.org). SARS-CoV-2-infected individuals typically develop mild to severe flu-like symptoms, while infection of a subset of individuals leads to severe to fatal clinical outcomes². While vaccines have been rapidly developed to combat SARS-CoV-2, there has been a dearth of antiviral therapeutics. There is an urgent need for therapeutics which has been amplified by…</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Anti-histamines and Covid-19: Hype or Hope</strong> - CONCLUSIONS: Both H1 and H2 blockade are effective in the management of Covid-19 patients through antiviral and anti- inflammatory properties, which together reduce the risk of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS).</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Colchicine in the management of Covid-19: With or lieu of evidence</strong> - Coronavirus disease 2019 (Covid-19), leads to global calamitous effects. Covid-19 is caused by a novel coronavirus named as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Covid-19 is associated with development of hyper- inflammation and/or cytokine storm that together with high viral load trigger tissue damage and multi-organ failures (MOF). Colchicine (CN) is a lipophilic tricyclic alkaloid used for treatment of gout since ancient time. In Covid-19 era, CN is repurposed for…</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Vaccination of COVID-19 Convalescent Plasma Donors Increases Binding and Neutralizing Antibodies Against SARS-CoV-2 Variants</strong> - BACKGROUND: COVID-19 convalescent plasma (CCP) was widely used as passive immunotherapy during the first waves of SARS- CoV-2 infection in the US. However, based on observational studies and randomized controlled trials, beneficial effects of CCP were limited, and its use was virtually discontinued early in 2021, in concurrence with increased vaccination rates and availability of monoclonal antibody (mAb) therapeutics. Yet, as new variants of the SARS-CoV-2 spread, interest in CCP derived from…</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Undetectable triglycerides related to the combined intake of ascorbic acid and tacrolimus</strong> - Management of triglyceride (TG) levels is essential in intensive care units (ICU), especially to manage the risk of pancreatitis induced by propofol. However, some therapeutics in ICU such as intravenous ascorbic acid protocol, especially used in the context of Covid-19 could lead to false decrease of triglycerides by analytical disruption of Trinder reaction. We report here the case of a sample with unmeasurable triglyceride levels partly due to high plasma ascorbic acid levels. However,…</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>MERS-CoV nsp1 impairs the cellular metabolic processes by selectively downregulating mRNAs in a novel granules</strong> - MERS-CoV infection can damage the cellular metabolic processes, but the underlying mechanisms are largely unknown. Through screening, we found non-structural protein 1 (nsp1) of MERS-CoV could inhibit cell viability, cell cycle, and cell migration through its endonuclease activity. Transcriptome sequencing revealed that MERS-CoV nsp1 specifically downregulated the mRNAs of ribosomal protein genes, oxidative phosphorylation protein genes, and antigen presentation genes, but upregulated the mRNAs…</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Emerging quinoline and quinolone based antibiotics in the light of epidemics</strong> - Pandemics are large-scale outbreaks of infectious disease that can greatly increase morbidity and mortality all the globe. Since past 1990 till twentieth century, these infectious diseases have been major threat all over the globe associated with poor hygiene and sanitation. In light of these epidemics, researches have gained enormous rise in the developing the potential therapeutic treatment. Thus revolutionized antibiotics have led to the near eradication of such ailments. Around 50 million…</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Identification of fragments binding to SARS-CoV-2 nsp10 reveals ligand-binding sites in conserved interfaces between nsp10 and nsp14/nsp16</strong> - Since the emergence of SARS-CoV-2 in 2019, Covid-19 has developed into a serious threat to our health, social and economic systems. Although vaccines have been developed in a tour-de-force and are now increasingly available, repurposing of existing drugs has been less successful. There is a clear need to develop new drugs against SARS-CoV-2 that can also be used against future coronavirus infections. Non-structural protein 10 (nsp10) is a conserved stimulator of two enzymes crucial for viral…</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>The interplay between SARS-CoV-2 infected airway epithelium and immune cells modulates the immunoregulatory/inflammatory signals</strong> - To assess the cross talk between immune cells and respiratory tract during SARS-CoV-2 infection, we analysed the relationships between the inflammatory response induced by SARS-CoV-2 replication and immune cells phenotype in a reconstituted organotypic human airway epithelium (HAE). The results indicated that immune cells failed to inhibit SARS- CoV-2 replication in HAE model. In contrast, immune cells strongly affected the inflammatory profile induced by SARS- CoV-2 infection, dampening the…</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Discovery of novel TMPRSS2 inhibitors for COVID-19 using in silico fragment-based drug design, molecular docking, molecular dynamics, and quantum mechanics studies</strong> - The global expansion of COVID-19 and the mutations of severe acute respiratory syndrome coronavirus necessitate quick development of treatment and vaccination. Because the androgen-responsive serine protease TMPRSS2 is involved in cleaving the SARS-CoV-2 spike protein allowing the virus to enter the cell, therefore, direct TMPRSS2 inhibition will inhibit virus activation and disease progression which make it an important target for drug discovery. In this study, a homology model of TMPRSS2…</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Engineered extracellular vesicles directed to the spike protein inhibit SARS-CoV-2</strong> - SARS-CoV-2 (CoV-2) viral infection results in COVID-19 disease, which has caused significant morbidity and mortality worldwide. A vaccine is crucial to curtail the spread of SARS-CoV-2, while therapeutics will be required to treat ongoing and reemerging infections of SARS-CoV-2 and COVID-19 disease. There are currently no commercially available effective anti-viral therapies for COVID-19 urging the development of novel modalities. Here, we describe a molecular therapy specifically targeted to…</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Molecular Mechanisms of Cardiac Injury Associated With Myocardial SARS-CoV-2 Infection</strong> - Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread around the world. The development of cardiac injury is a common condition in patients with COVID-19, but the pathogenesis remains unclear. The RNA-Seq dataset (GSE150392) comparing expression profiling of mock human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and SARS-CoV-2-infected hiPSC-CMs was obtained from Gene Expression Omnibus (GEO). We identified…</p></li>
</ul>
<h1 data-aos="fade-right" id="from-patent-search">From Patent Search</h1>
<ul>
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>IDENTIFICATION AND ALARM SYSTEM FOR FACIAL CORONA MASK USING CNN BASED IMAGE PROCESSING</strong> - tThe covid-19 epidemic is the worlds largest wake-up call for people to pay attention to their own and societys health. One thing to keep in mind is that there is a segment of the population that has been exposed to the covid-19 virus and has generated antibodies without developing any significant illnesses and is continuing to be healthy. This indicates that a significant section of the population, even excluding the elderly, lacks the necessary bodily immunity to combat a Viral infection. As terrible as covid-19 is on a global scale, developing personal health standards and preventative measures for any pathogenic virus as a community would have spared many lives. Inthis work, a camera is combined with an image processing system to recognise facial masks, which may be improved in a variety of ways. First and foremost, this method is meant to identify masks on a single persons face. While this method is efficient in identifying someone has a mask, it does not ensure that they will wear it all of the time. The most effective update for this task is to install a camera with a wide field of view so that many individuals can be seen in the frame, and the faces of those who arent wearing markings can be identified, as well as the number of people and the timing. - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=IN346889253">link</a></p></li>
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>ANTIMICROBIAL SANITIZING FORMULATION</strong> - An antimicrobial sanitizing formulation, comprising, i) isopropyl alcohol in the range of 0.1%- 80% w/w, ii) an emollient in the range of 0.1%-15% w/w, iii) hydrogen peroxide in the range of 0.1 0.13% w/w, iv) citric acid in the range of 0.1% to 2.0% w/w, v) silver nitrate in the range of 0.1% to 0.5% w/w, and vi) a fragrance imparting agent in the range of 0.1% to 2.0% w/w. - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=IN346888094">link</a></p></li>
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A HEALTH BAND WITH A BIOMETRIC MODULE AND WORKING METHOD THEREOF</strong> - The present invention discloses a health band with a biometric module and method thereof. The assembly includes, but not limited to, a plurality of sensors configured to gather health data associated with a predefined symptom of a medical condition of a user; a memory unit configured to store the data and an interface, which is configured to determine the medical condition using the data;a processing unit configured to execute the application; and a notification facility configured to provide a notification upon receiving from the interface an instruction associated with the notification, wherein the notification is associated with a drug reminder and the like. - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=IN346889061">link</a></p></li>
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>RNA 검출 방법</strong> - 본 발명은 RNA의 분석 및 검출 방법에 관한 것이다. 특히, 본 발명은 특히, 본 발명은 짧은 염기서열의 RNA까지 분석이 가능하면서도 높은 민감도 및 정확도로 정량적 검출까지 가능하여 감염증, 암 등 여러 질환의 진단 용도로도 널리 활용될 수 있다. - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=KR346026620">link</a></p></li>
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>黄芩黄酮活性成分及其制剂在制备预防和/或治疗炎症风暴药物中的应用</strong> - 本发明公开了黄芩黄酮活性成分及其制剂在制备预防和/或治疗炎症风暴药物中的应用。所述黄芩黄酮活性成分选自下述至少一种黄芩素、汉黄芩素和千层纸素A。炎症风暴是一种机体对外界刺激的过度免疫反应和炎症反应以炎症细胞因子的快速大量释放为特征。炎症风暴可由许多感染或非感染性疾病引起并与疾病的严重程度和多器官功能障碍综合征的发生密切相关。减少炎症风暴的发生有助于降低器官损伤和减缓疾病进程尤其对危重症患者的治疗至关重要。本发明发现黄芩素、汉黄芩素、千层纸素A均具有不同程度抑制小鼠细胞因子风暴的作用。黄芩素能改善炎症风暴引发的肺损伤和炎性细胞浸润。因此黄芩黄酮活性成分可用于制备防治炎症风暴的药物。 - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=CN349220813">link</a></p></li>
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>一种预防和/或治疗炎症风暴的药物组合物及其制剂与应用</strong> - 本发明公开了一种预防和/或治疗炎症风暴的药物组合物、制剂及其应用。该药物组合物由黄芩素、汉黄芩素和千层纸素A组成其中黄芩素、汉黄芩素、千层纸素A的质量比为0.25<sub>1.50.5</sub>71。本发明提供的自微乳包括下述组分药物磷脂复合物、油相、乳化剂和助乳化剂其中所述药物磷脂复合物由上述药物组合物和磷脂材料复合而成。本发明的实验结果表明在LPS诱导的系统性炎症风暴小鼠模型中黄芩素、汉黄芩素和千层纸素A的组合物及其自微乳制剂均具有不同程度抑制小鼠细胞因子风暴的作用。本发明为炎症风暴的临床治疗提供了一种安全、有效、经济的解决方案。 - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=CN349220821">link</a></p></li>
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>用于核酸检测的微流控芯片及检测方法</strong> - 本发明提供一种用于核酸检测的微流控芯片及检测方法。所述微流控芯片包括依次叠放在一起并相互密封的三层结构由上至下分别为气道层、中间层和流道层所述气道层包含两个独立的气道所述中间层为弹性薄膜用于控制流道层上微阀的开启和关闭所述流道层包含四个进样口两个出样口四个微阀一个LAMP反应室、一个CRISPR反应室以及若干条流道所述微阀通过弹性薄膜与气道层的气道相连并通过气道层气压的改变来实现微阀的开关实现不同进样口的顺序进样。本发明将微流控与LAMP扩增技术以及CRISPR检测技术相结合在单个芯片上实现高灵敏高特异性的检测病毒核酸。 - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=CN349220678">link</a></p></li>
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>REUNION OF PHOTOTHERMAL THERAPY WITH MXENE ADSORBED UREMIC TOXINS AND CYTOKINES: A SHILED FOR COVID-19 PATENTS</strong> - The COVID-19 pandemic has created havoc throughout the world. The disease has proved to be more fatalfor patients having comorbidities like diabetics, lungs and kidney infections, etc. In the case of COVID-19 patientsI having kidney injury, the. removal of uremic toxins from the blood is hindered and there is a rapid surge in the levelj of cytokine hormone resulting in the death of the patient in a short interval of time. To resolve this issue,iI; researchers have examined that the immediate removal of these toxins can improve the condition of the patient to a |greater extent. Studies have also found the presence of SARS CoV-2 viral RNAs in the blood of COVID-19patients, which risks their life as well as impacts the blood transfusion process, especially in the case ofasymptomatic patients. Hence it is required to control the surge of cytokines and uremic toxins as well as disinfectthe blood of the patient from the virus. MXenes, having a foam-like porous structure and hydrophilic negativesurface functionalization have greater adsorption efficiency as well as superior photothermal activity. Utilizingthese properties of MXenes, the MXene membranes can be used in the dialyzer that can help in the efficient andBiuick removal of the uremic toxins, cytokines, and other impurities from the blood. Along with this the greaterTJAdsorption efficiency of MXenes to amino acids result in the trapping of the SARS CoV-2 viruses on the surface J)3&gt;f the MXene. Many researchers as well as the WHO have proved the efficient reduction of the viral copy numbersjjvith the increase of temperature. Hence, followed by the trapping of the viruses, the implementation of"Zphotothermal Therapy can result in the inactivation and denaturation of the viruses and their respective viral RNAsBJlby the produced heat. The same process can be repeated several times to get better results. This whole process canr&gt;oQ-esult in impurity-free and infection-free blood, that can be returned back to the body of the patient or can be!— I Sitilized for the blood transfusion process without any risk of infection.IM - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=IN346889224">link</a></p></li>
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>基于引物设计和铜纳米簇的SARS-CoV-2德尔塔变异株检测方法</strong> - 本发明公开了一种基于引物设计和铜纳米簇的SARSCoV2德尔塔变异株检测方法。该方法结合DPO引物和AT引物成功区分了单碱基缺失的SARSCoV2德尔塔变异株和SARSCoV2野生菌株。并且DPO引物和AT引物的PCR产物可以作为CuNCs的生成模板在紫外照射下实现SARSCoV2德尔塔变异株的可视化检测。本申请利用常规实验条件借助PCR仪将DPO引物和AT引物结合扩增使其SARSCoV2德尔塔变异株检测具有特异性、高灵敏、可视化的优势。 - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=CN348141584">link</a></p></li>
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>REDUCING AND STOPPING OXYGEN WASTAGE IN HOSPITAL</strong> - In an aspect, the present invention discloses a system (200) for prevention and reduction of oxygen wastage from oxygen mask (202). The system (200) includes the oxygen mask (202) having straps; a tension sensor (204), the tension sensor being sensitive towards tension produced in the straps as the oxygen gets leakage through sides of the mask (202); a processor configured in alignment with the tension sensor (204); and a buzzer (206) in alignment with processor. - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=IN346042219">link</a></p></li>
</ul>
<script>AOS.init();</script></body></html>