Daily-Dose/archive-covid-19/07 February, 2022.html

215 lines
63 KiB
HTML
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="" xml:lang="" xmlns="http://www.w3.org/1999/xhtml"><head>
<meta charset="utf-8"/>
<meta content="pandoc" name="generator"/>
<meta content="width=device-width, initial-scale=1.0, user-scalable=yes" name="viewport"/>
<title>07 February, 2022</title>
<style type="text/css">
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
span.underline{text-decoration: underline;}
div.column{display: inline-block; vertical-align: top; width: 50%;}
</style>
<title>Covid-19 Sentry</title><meta content="width=device-width, initial-scale=1.0" name="viewport"/><link href="styles/simple.css" rel="stylesheet"/><link href="../styles/simple.css" rel="stylesheet"/><link href="https://unpkg.com/aos@2.3.1/dist/aos.css" rel="stylesheet"/><script src="https://unpkg.com/aos@2.3.1/dist/aos.js"></script></head>
<body>
<h1 data-aos="fade-down" id="covid-19-sentry">Covid-19 Sentry</h1>
<h1 data-aos="fade-right" data-aos-anchor-placement="top-bottom" id="contents">Contents</h1>
<ul>
<li><a href="#from-preprints">From Preprints</a></li>
<li><a href="#from-clinical-trials">From Clinical Trials</a></li>
<li><a href="#from-pubmed">From PubMed</a></li>
<li><a href="#from-patent-search">From Patent Search</a></li>
</ul>
<h1 data-aos="fade-right" id="from-preprints">From Preprints</h1>
<ul>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>On the use of glyphmaps for analysing Covid-19 reported cases</strong> -
<div>
Recent analysis of area-level Covid-19 cases data attempts to grapple with a challenge familiar to geovisualization: how to capture the development of the virus, whilst supporting analysis across geographic areas? We present several glyphmap designs for addressing this challenge applied to local authority data in England whereby charts displaying multiple aspects related to the pandemic are given a geo graphic arrangement. These graphics are visually complex, with clutter, occlusion and salience bias an inevitable consequence. We develop a framework for describing and validating the graphics against data and design requirements. Together with an observational data analysis, this framework is used to evaluate our designs, relating them to particular data analysis needs based on the usefulness of the structure they expose. Our designs, documented in an accompanying code repository, attend to common difficulties in geovisualization design and could transfer to contexts outside of the UK and to phenomena beyond the pandemic.
</div></li>
</ul>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://osf.io/6nz8q/" target="_blank">On the use of glyphmaps for analysing Covid-19 reported cases</a>
</div>
<ul>
<li><strong>SARS-CoV-2 Omicron symptomatic infections in previously infected or vaccinated South African healthcare workers</strong> -
<div>
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
We investigated Omicron infections among healthcare workers (HCW) presenting with symptoms of SARS-CoV-2 infection and evaluated the protective effect of vaccination or prior infection. Between 24th November and 31st December 2021, HCW in Johannesburg, South Africa, were tested for SARS-CoV-2 infection by Nucleic Acid Amplification Test (NAAT). Blood samples collected either at the symptomatic visit or within 3-months prior, were tested for spike protein immunoglobulin G (IgG). Overall, 433 symptomatic HCW were included in the analysis, with 190 (43.9%) having an Omicron infection; 69 (16.7%) were unvaccinated and 270 (62.4%) received a single dose of Ad26.COV.2 vaccine. There was no difference in the odds of identifying Omicron between unvaccinated and Ad26.COV.2 vaccinated HCW (adjusted odds ratio [aOR] 0.81, 95% confidence interval [CI]: 0.46, 1.43). One-hundred and fifty-four (35.3%) HCW had at least one SARS- CoV-2 NAAT-confirmed prior infection; these had lower odds of Omicron infection compared with those without past infection (aOR 0.55, 95%CI: 0.36, 0.84). Anti-spike IgG concentration of 1549 binding antibody unit/mL was suggestive of significant reduction in the risk of symptomatic Omicron infection. We found high reinfection and vaccine breakthrough infection rates with the Omicron variant among HCW. Prior infection and high anti-spike IgG concentration were protective against Omicron infection.
</p>
</div>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2022.02.04.22270480v1" target="_blank">SARS-CoV-2 Omicron symptomatic infections in previously infected or vaccinated South African healthcare workers</a>
</div></li>
<li><strong>SARS-CoV-2 Testing Strategies for Outbreak Mitigation in Vaccinated Populations</strong> -
<div>
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
Although COVID-19 vaccines are globally available, waning immunity and emerging vaccine-evasive variants of concern have hindered the international response as COVID-19 cases continue to rise. Mitigating COVID-19 requires testing to identify and isolate infectious individuals. We developed a stochastic compartmentalized model to simulate SARS-CoV-2 spread in the United States and India using Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) assays, rapid antigen tests, and vaccinations. We detail the optimal testing frequency and coverage in the US and India to mitigate an emerging outbreak even in a vaccinated population: overall, maximizing frequency is more important, but high coverage remains necessary when there is sustained transmission. We show that a resource-limited vaccination strategy still requires high-frequency testing and is 16.50% more effective in India than the United States. Tailoring testing strategies to transmission settings can help effectively reduce cases more than if a uniform approach is employed without regard to differences in location.
</p>
</div>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2022.02.04.22270483v1" target="_blank">SARS-CoV-2 Testing Strategies for Outbreak Mitigation in Vaccinated Populations</a>
</div></li>
<li><strong>Impacts of the COVID-19 pandemic on future seasonal influenza epidemic</strong> -
<div>
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
Seasonal influenza viruses typically cause annual epidemics worldwide infecting 5-15% of the human population. However, during the first two years of the COVID-19 pandemic, seasonal influenza virus circulation was unprecedentedly low with very few reported infections. The lack of immune stimulation to influenza viruses during this time, combined with waning antibody titres to previous influenza virus infections, could lead to increased susceptibility to influenza in the coming seasons and to larger and more severe epidemics when infection prevention measures against COVID-19 are relaxed. Here, based on serum samples from 165 adults collected longitudinally before and during the pandemic, we show that the waning of antibody titres against seasonal influenza viruses during the first two years of the pandemic is likely to be negligible. Using historical influenza virus epidemiological data from 2003-2019, we also show that low country-level prevalence of each influenza subtype over one or more years has only small impacts on subsequent epidemic size. These results suggest that the risks posed by seasonal influenza viruses remained largely unchanged during the first two years of the COVID-19 pandemic and that the sizes of future seasonal influenza virus epidemics will likely be similar to those observed before the pandemic.
</p>
</div>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2022.02.05.22270494v1" target="_blank">Impacts of the COVID-19 pandemic on future seasonal influenza epidemic</a>
</div></li>
<li><strong>Emulation of a target trial from observational data to compare effectiveness of Casirivimab/Imdevimab and Bamlanivimab/Etesevimab for early treatment of non-hospitalized patients with COVID-19</strong> -
<div>
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
Objectives Comparative analysis between different monoclonal antibodies (mAbs) against SARS-CoV-2 are lacking. We present an emulation trial from observational data to compare effectiveness of Bamlanivimab/Etesevimab (BAM/ETE) and Casirivimab/Imdevimab (CAS/IMD) in outpatients with early mild-to-moderate COVID-19 in a real-world scenario of variants of concern (VoCs) from Alpha to Delta. Methods Allocation to treatment was subject to mAbs availability, and the measured factors were not used to determine which combination to use. Patients were followed through day 30. Viral load was measured by cycle threshold (CT) on D1 (baseline) and D7. Primary outcome was time to COVID-19-related hospitalization or death from any cause over days 0-30. Weighted pooled logistic regression and marginal structural Cox model by inverse probability weights were used to compare BAM/ETE vs. CAS/IMD. ANCOVA was used to compare mean D7 CT values by intervention. Models were adjusted for calendar month, MASS score and VoCs. We evaluated effect measure modification by VoCs, vaccination, D1 CT levels and enrolment period. Results COVID19-related hospitalization or death from any cause occurred in 15 of 237 patients in the BAM/ETE group (6.3%) and in 4 of 196 patients in the CAS/IMD group (2.0%) (relative risk reduction [1 minus the relative risk] 72%; p=0.024). Subset analysis carried no evidence that the effect of the intervention was different across stratification factors. There was no evidence in viral load reduction from baseline through day 7 across the two groups (+0.17, 95% -1.41;+1.74, p=0.83). Among patients who experienced primary outcome, none showed a negative RT-PCR test in nasopharingeal swab (p=0.009) and 82.4% showed still high viral load (p&lt;0.001) on D7. Conclusions In a pre-Omicron epidemiologic scenario, CAS/IMD reduced risk of clinical progression of COVID-19 compared to BAM/ETE. This effect was not associated with a concomitant difference in virological response.
</p>
</div>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2022.02.04.22270143v1" target="_blank">Emulation of a target trial from observational data to compare effectiveness of Casirivimab/Imdevimab and Bamlanivimab/Etesevimab for early treatment of non-hospitalized patients with COVID-19</a>
</div></li>
<li><strong>ARTIFICIAL INTELLIGENCE TOOLS FOR EFFECTIVE MONITORING OF POPULATION AT DISTANCE DURING COVID-19 PANDEMIC. RESULTS FROM AN ITALIAN PILOT FEASIBILITY STUDY (RICOVAI-19 STUDY).</strong> -
<div>
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
In order to reduce the burden on healthcare systems and in particular to support an appropriate way to the Emergency Department (ED) access, home tele-monitoring patients was strongly recommended during the COVID-19 pandemic. Furthermore, paper from numerous groups has shown the potential of using data from wearable devices to characterize each individual9s unique baseline, identify deviations from that baseline suggestive of a viral infection, and to aggregate that data to better inform population surveillance trends. However, no evidence about usage of Artificial Intelligence (AI) applicatives on digitally data collected from patients and doctors exists. With a growing global population of connected wearable users, this could potentially help to improve the earlier diagnosis and management of infectious individuals and improving timeliness and precision of tracking infectious disease outbreaks. During the study RICOVAI-19 (RICOVero ospedaliero con strumenti di Artificial Intelligence nei pazienti con COVid-19) performed in a Marche Region, Italy, we evaluated N129 subjects monitored at home in a six-months period between March 22, 2021 and October 22, 2021. During the monitoring, personal on demand health technologies were used to collect clinical and vital data in order to feed the database and the machine learning engine. The AI output resulted in a clinical stability index (CSI) which enables the system to deliver suggestions to the population and doctors about how intervene . Results showed the beneficial influence of CSI for predicting clinical classes of subjects and identifying who of them need to be admitted at ED. The same pattern of results was confirming the alert included in the decision support system in order to request further testing or clinical information in some cases. In conclusion, our study does support an high impact of AI tools on COVID outcomes to fight this pandemic by driving new approaches to public awareness.
</p>
</div>
<div class="article- link article-html-link">
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2022.02.04.22270087v1" target="_blank">ARTIFICIAL INTELLIGENCE TOOLS FOR EFFECTIVE MONITORING OF POPULATION AT DISTANCE DURING COVID-19 PANDEMIC. RESULTS FROM AN ITALIAN PILOT FEASIBILITY STUDY (RICOVAI-19 STUDY).</a>
</div></li>
<li><strong>The usefulness of D-dimer as a predictive marker for mortality in patients with COVID-19 hospitalized during the first wave in Italy.</strong> -
<div>
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
Background The coronavirus disease 2019 (COVID-19) presents an urgent threat to global health. Identification of predictors of poor outcomes will assist medical staff in treatment and allocating limited healthcare resources. Aims The primary aim was to study the value of D-dimer as a predictive marker for in-hospital mortality. Methods This was a cohort study. The study population consisted of hospitalized patients (age &gt;18 years), who were diagnosed with COVID-19 based on real-time PCR at 9 hospitals during the first COVID-19 wave in Lombardy, Italy (Feb-May 2020). The primary endpoint was in-hospital mortality. Information was obtained from patient records. Statistical analyses were performed using a Fine-Gray competing risk survival model. Model discrimination was assessed using Harrells C-index and model calibration was assessed using a calibration plot. Results Out of 1049 patients, 501 patients had evaluable data. Of these 501 patients, 96 died. The cumulative incidence of in-hospital mortality within 30 days was 20% (95CI: 16%-23%), and the majority of deaths occurred within the first 10 days. A prediction model containing D-dimer as the only predictor had a C-index of 0.66 (95%CI: 0.61-0.71). Overall calibration of the model was very poor. The addition of D-dimer to a model containing age, sex and co-morbidities as predictors did not lead to any meaningful improvement in either the C-index or the calibration plot. Conclusion The predictive value of D-dimer alone was moderate, and the addition of D-dimer to a simple model containing basic clinical characteristics did not lead to any improvement in model performance.
</p>
</div>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2022.02.04.22270433v1" target="_blank">The usefulness of D-dimer as a predictive marker for mortality in patients with COVID-19 hospitalized during the first wave in Italy.</a>
</div></li>
<li><strong>Comparative effectiveness of different primary vaccination courses on mRNA based booster vaccines against SARs-COV-2 infections: A time-varying cohort analysis using trial emulation in the Virus Watch community cohort</strong> -
<div>
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
Abstract Importance The Omicron (B.1.1.529) variant has increased SARs-CoV-2 infections in double vaccinated individuals globally, particularly in ChAdOx1 recipients. To tackle rising infections, the UK accelerated booster vaccination programmes used mRNA vaccines irrespective of an individual9s primary course vaccine type with booster doses rolled out according to clinical priority. There is limited understanding of the effectiveness of different primary vaccination courses on mRNA based booster vaccines against SARs-COV-2 infections and how time-varying confounders can impact the evaluations comparing different vaccines as primary courses for mRNA boosters. Objective To evaluate the comparative effectiveness of ChAdOx1 versus BNT162b2 as primary doses against SARs-CoV-2 in booster vaccine recipients whilst accounting for time-varying confounders. Design Trial emulation was used to reduce time-varying confounding-by- indication driven by prioritising booster vaccines based upon age, vulnerability and exposure status e.g. healthcare worker. Trial emulation was conducted by meta-analysing eight cohort results whose booster vaccinations were staggered between 16/09/2021 to 05/01/2022 and followed until 23/01/2022. Time from booster vaccination until SARS-CoV-2 infection, loss of follow-up or end-of-study was modelled using Cox proportional hazards models for each cohort and adjusted for age, sex, minority ethnic status, clinically vulnerability, and deprivation. Setting Prospective observational study using the Virus Watch community cohort in England and Wales. Participants People over the age of 18 years who had their booster vaccination between 16/09/2021 to 05/01/2022 without prior natural immunity. Exposures ChAdOx1 versus BNT162b2 as a primary dose, and an mRNA booster vaccine. Results Across eight cohorts, 19,692 mRNA vaccine boosted participants were analysed with 12,036 ChAdOx1 and 7,656 BNT162b2 primary courses with a median follow- up time of 73 days (IQR:54-90). Median age, clinical vulnerability status and infection rates fluctuate through time. 7.2% (n=864) of boosted adults with ChAdOx1 primary course experienced a SARS-CoV-2 infection compared to 7.6% (n=582) of those with BNT162b2 primary course during follow-up. The pooled adjusted hazard ratio was 0.99 [95%CI:0.88-1.11], demonstrating no difference between the incidence of SARs-CoV-2 infections based upon the primary vaccine course. Conclusion and Relevance In mRNA boosted individuals, we found no difference in protection comparing those with a primary course of BNT162b2 to those with aChAdOx1 primary course. This contrasts with pre-booster findings where previous research shows greater effectiveness of BNT162b2 than ChAdOx1 in preventing infection.
</p>
</div>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2022.02.04.22270479v1" target="_blank">Comparative effectiveness of different primary vaccination courses on mRNA based booster vaccines against SARs-COV-2 infections: A time-varying cohort analysis using trial emulation in the Virus Watch community cohort</a>
</div></li>
<li><strong>The GLasses Against transmission of SARS-CoV-2 in the communitY (GLASSY) trial: A pragmatic randomized trial (study protocol)</strong> -
<div>
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
Background: A systematic review of observational studies indicated that eye protection may be an effective measure to prevent SARS-CoV-2 infections. Randomized trials are needed to assess whether the observed associations are caused by protection of the eye or confounding factors such as other systematic differences between users and non-users of eye protection, co-interventions, or changes in COVID-19 incidence when comparisons were done over time. Methods: Pragmatic, virtual, parallel group, 1:1 randomized, superiority trial. We will recruit and randomize participants via an online portal. The trial will be fully remote and virtual without any personal interaction between investigators and participants. All members of the public are eligible who confirm that they are at least 18 years of age, do not regularly wear glasses, have not contracted COVID-19 since December 15th 2021, and are willing to be randomized to wear, or not wear glasses in public when close to other people, for a 2-week period. Persons who are dependent on visual aids but typically use contact lenses are eligible. The participants will be randomized (1:1) to wear glasses (sunglasses or other types of glasses) in public spaces when close to others (public transport, shopping centers etc.), or to the control group. The control group will be asked not to wear glasses in public spaces when close to others. The primary outcome is positive test for COVID-19. We aim to include about 25,000 participants to have a statistical power of 80% to detect a relative risk reduction of 25% for the primary outcome. Discussion: Many have easy access to sunglasses or other glasses. Wearing glasses may provide eye protection and repurposing sunglasses for infection control could be a simple, readily available, environmentally friendly, safe, and sustainable infection prevention measure.
</p>
</div>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2022.02.04.22270120v1" target="_blank">The GLasses Against transmission of SARS-CoV-2 in the communitY (GLASSY) trial: A pragmatic randomized trial (study protocol)</a>
</div></li>
<li><strong>Attitudes Towards Coronavirus (COVID-19) Vaccine and Sources of Information Across Diverse Ethnic Groups in the UK: a Qualitative Study</strong> -
<div>
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
Objectives To explore attitudes and intentions towards COVID-19 vaccination, and influences and sources of information about COVID-19 across diverse ethnic groups (EGs) in the UK. Design Remote qualitative interviews and focus groups (FGs) conducted June-October 2020 before UK COVID-19 vaccine approval. Data were transcribed and analysed through inductive thematic analysis. Setting General public in the community across England and Wales. Participants 100 participants from 19 self-identified EGs with spoken English or Punjabi. Results Mistrust and doubt were common themes across all EGs including white British and minority EGs, but more pronounced amongst Bangladeshi, Pakistani, Black ethnicities and Travellers. Many participants shared concerns about perceived lack of information about COVID-19 vaccine safety, efficacy and potential unknown adverse effects. Across EGs participants stated occupations with public contact, older adults and vulnerable groups should be prioritised for vaccination. Perceived risk, social influences, occupation, age, co-morbidities and engagement with healthcare influenced participant intentions to accept vaccination once available; all Jewish FG participants intended to accept, while all Traveller FG participants indicated they probably would not. Facilitators to COVID-19 vaccine uptake across all EGs included: desire to return to normality and protect health and wellbeing; perceived higher risk of infection; evidence of vaccine safety and efficacy; vaccine availability and accessibility. COVID-19 information sources were influenced by social factors, culture and religion and included: friends, family; media and news outlets; and research literature. Participants across most different EGs were concerned about misinformation or had negative attitudes towards the media. Conclusions During vaccination programme roll-out, including boosters, commissioners and vaccine providers should provide accurate information, authentic community outreach, and use appropriate channels to disseminate information and counter misinformation. Adopting a context-specific approach to vaccine resources, interventions and policies and empowering communities has potential to increase trust in the programme.
</p>
</div>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2022.02.04.22270456v1" target="_blank">Attitudes Towards Coronavirus (COVID-19) Vaccine and Sources of Information Across Diverse Ethnic Groups in the UK: a Qualitative Study</a>
</div></li>
<li><strong>Interactions among 17 respiratory pathogens: a cross-sectional study using clinical and community surveillance data</strong> -
<div>
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
Background Co-circulating respiratory pathogens can interfere with or promote each other, leading to important effects on disease epidemiology. Estimating the magnitude of pathogen-pathogen interactions from clinical specimens is challenging because sampling from symptomatic individuals can create biased estimates. Methods We conducted an observational, cross-sectional study using samples collected by the Seattle Flu Study between 11 November 2018 and 20 August 2021. Samples that tested positive via RT-qPCR for at least one of 17 potential respiratory pathogens were included in this study. Semi-quantitative cycle threshold (Ct) values were used to measure pathogen load. Differences in pathogen load between monoinfected and coinfected samples were assessed using linear regression adjusting for age, season, and recruitment channel. Results 21,686 samples were positive for at least one potential pathogen. Most prevalent were rhinovirus (33.5%), Streptococcus pneumoniae (SPn, 29.0%), SARS-CoV-2 (13.8%) and influenza A/H1N1 (9.6%). 140 potential pathogen pairs were included for analysis, and 56 (40%) pairs yielded significant Ct differences (p &lt; 0.01) between monoinfected and co-infected samples. We observed no virus-virus pairs showing evidence of significant facilitating interactions, and found significant viral load decrease among 37 of 108 (34%) assessed pairs. Samples positive with SPn and a virus were consistently associated with increased SPn load. Conclusions Viral load data can be used to overcome sampling bias in studies of pathogen-pathogen interactions. When applied to respiratory pathogens, we found evidence of viral-SPn facilitation and several examples of viral-viral interference. Multipathogen surveillance is a cost-efficient data collection approach, with added clinical and epidemiological informational value over single-pathogen testing, but requires careful analysis to mitigate selection bias.
</p>
</div>
<div class="article- link article-html-link">
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2022.02.04.22270474v1" target="_blank">Interactions among 17 respiratory pathogens: a cross-sectional study using clinical and community surveillance data</a>
</div></li>
<li><strong>Wastewater Surveillance of U.S. Coast Guard Installations and Seagoing Military Vessels to Mitigate the Risk of COVID-19 Outbreaks</strong> -
<div>
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
Military training centers may be high risk environments for the spread of disease such as COVID-19. Individuals arrive after traveling from many parts of the country, live in communal settings, and undergo high-interaction training. A pilot study of wastewater testing was initiated in February, 2021 to determine its feasibility as a sentinel surveillance tool in the U.S. Coast Guard for SARS-CoV-2. Wastewater was analyzed for the presence of two viral genes, N and E, and quantified relative to levels of a fecal indicator virus, Pepper Mild Mottle Virus (PMMoV). A stability control, Bovine Syncytial Respiratory Virus vaccine, was added to samples to assess sample stability and degradation. Wastewater data was validated by comparison with concomitant screening and surveillance programs that identified asymptomatic individuals infected with SARS-CoV-2 by diagnostic testing at on site medical clinics using PCR. Elevated levels of SARS-CoV-2 in wastewater were frequently associated with diagnosed cases, and in several instances, led to screenings of asymptomatic individuals that identified infected personnel, mitigating the risk of spread of disease. Wastewater screening also successfully indicated the presence of breakthrough cases in vaccinated individuals. A method for assessing blackwater from Coast Guard vessels was also developed, allowing detection of SARS-CoV-2 virus in shipboard populations. In one instance, virus was detected in the blackwater four weeks following the diagnosis of a single person on a Coast Guard cutter. These data show that wastewater testing is an effective tool for measuring the presence and prevalence of SARS-CoV-2 in military populations so that mitigation can occur and suggest other diseases may be assessed similarly. As a result, the Coast Guard has established three laboratories with wastewater testing capability at strategic locations and is actively continuing its wastewater testing program.
</p>
</div>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2022.02.05.22269021v1" target="_blank">Wastewater Surveillance of U.S. Coast Guard Installations and Seagoing Military Vessels to Mitigate the Risk of COVID-19 Outbreaks</a>
</div></li>
<li><strong>Commentary The Elderly in the pandemic era</strong> -
<div>
Highlighted manuscript Dapsone has been the treatment and preventive drug for mild cognitive impairment, Alzheimers disease, Parkinsons disease, Seizure, Stroke and Covid-19 ARDS. B.K.s team at Hunt Regional Hospital reported a study that drastically reduced mortality by administering Dapsone to patients with Covid-19 ARDS in the intensive care unit. If Dapsone were used for early symptoms of cognitive impairment or stroke, the increase in deaths would have been prevented. J.H. also recommends it to the elderly living in this pandemic era. However, we must consult our doctor before taking it.
</div>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://osf.io/h6wfy/" target="_blank">Commentary The Elderly in the pandemic era</a>
</div></li>
<li><strong>4,4-Diaminodiphenyl Sulfone (DDS) as an Inflammasome Competitor.pdf</strong> -
<div>
The aim of this study was to examine the use of an inflammasome competitor as a preventative agent. Coronaviruses have zoonotic potential due to the adaptability of their S protein to bind receptors of other species, most notably demonstrated by SARS-CoV. The binding of SARS-CoV-2 to TLR causes the release of pro-IL-1β, which is cleaved by caspase-1, followed by formation and activation of the inflammasome, which is a mediator of lung inflammation, fever, and fibrosis. The NLRP3 inflammasome is implicated in a variety of human diseases including Alzheimers disease (AD), prion diseases, type 2 diabetes, and numerous infectious diseases. By examining the use of 4,4-diaminodiphenyl sulfone (DDS) in the treatment of patients with Hansens disease, also diagnosed as Alzheimers disease, this study demonstrates the diverse mechanisms involved in the activation of inflammasomes. TLRs, due to genetic polymorphisms, can alter the immune response to a wide variety of microbial ligands, including viruses. In particular, TLR-Arg677Trp was reported to be exclusively present in Korean patients with lepromatous leprosy (LL). Previously, mutation of the intracellular domain of TLR2 has demonstrated its role in determining the susceptibility to LL, though LL was successfully treated using a combination of DDS with rifampicin and clofazimine. Of the three tested antibiotics, DDS was effective in the molecular regulation of NLRP3 inflammasome activators that are important in mild cognitive impairment (MCI), Parkinsons disease (PD), and AD. The specific targeting of NLRP3 itself or up-/downstream factors of the NLRP3 inflammasome by DDS may be responsible for its observed preventive effects, functioning as a competitor.
</div>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://osf.io/3dgqf/" target="_blank">4,4-Diaminodiphenyl Sulfone (DDS) as an Inflammasome Competitor.pdf</a>
</div></li>
<li><strong>Using multiple sampling strategies to estimate SARS-CoV-2 epidemiological parameters from genomic sequencing data</strong> -
<div>
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
SARS-CoV-2 virus genomes are currently being sequenced at an unprecedented pace. The choice of sequences used in genetic and epidemiological analysis is important as it can induce biases that detract from the value of these rich datasets. This raises questions about how a set of sequences should be chosen for analysis, and which epidemiological parameters derived from genomic data are sensitive or robust to changes in sampling. We provide initial insights on these largely understudied problems using SARS-CoV-2 genomic sequences from Hong Kong and the Amazonas State, Brazil. We consider sampling schemes that select sequences uniformly, in proportion or reciprocally with case incidence and which simply use all available sequences (unsampled). We apply Birth-Death Skyline and Skygrowth methods to estimate the time- varying reproduction number (Rt) and growth rate (rt) under these strategies as well as related R0 and date of origin parameters. We compare these to estimates from case data derived from EpiFilter, which we use as a reference for assessing bias. We find that both Rt and rt are sensitive to changes in sampling whilst R0 and date of origin are relatively robust. Moreover, we find that the unsampled datasets (opportunistic sampling) provided, overall, the worst Rt and rt estimates for both Hong Kong and the Amazonas case studies. We highlight that sampling strategy may be an influential yet neglected component of sequencing analysis pipelines. More targeted attempts at genomic surveillance and epidemic analyses, particularly in resource-poor settings which have a limited genomic capability, are necessary to maximise the informativeness of virus genomic datasets.
</p>
</div>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2022.02.04.22270165v1" target="_blank">Using multiple sampling strategies to estimate SARS-CoV-2 epidemiological parameters from genomic sequencing data</a>
</div></li>
</ul>
<h1 data-aos="fade-right" id="from-clinical-trials">From Clinical Trials</h1>
<ul>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Effect of Daily Oral Administration of Food Supplement NLC-V in Patients Diagnosed With COVID-19</strong> - <b>Condition</b>:   COVID-19<br/><b>Intervention</b>:   Dietary Supplement: NLC-V<br/><b>Sponsor</b>:  <br/>
Todos Medical, Ltd.<br/><b>Completed</b></p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Study Design of the Diacerein in Patients With Covid-19</strong> - <b>Condition</b>:   COVID-19<br/><b>Interventions</b>:   Drug: Diacerein;   Drug: placebo capsules<br/><b>Sponsors</b>:   University of Campinas, Brazil;   Fundação de Amparo à Pesquisa do Estado de São Paulo<br/><b>Not yet recruiting</b></p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A Study to Evaluate the Safety, Tolerability, and Immunogenicity of MVC-COV1901 or MVC-COV1901(Beta) Against COVID-19</strong> - <b>Condition</b>:   COVID-19 Vaccine<br/><b>Interventions</b>:   Biological: MVC-COV1901(Beta);   Biological: MVC- COV1901<br/><b>Sponsor</b>:   Medigen Vaccine Biologics Corp.<br/><b>Not yet recruiting</b></p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Exercise Fatigue Parameters and Endothelial Function in Pediatric Patients With a History of COVID-19 Infection or MIS-C</strong> - <b>Conditions</b>:   COVID-19;   MIS-C Associated With COVID-19<br/><b>Interventions</b>:  <br/>
Device: Cardiopulmonary exercise test (CPET);   Device: Peripheral Arterial Tonography (PAT) using the EndoPAT™ device;   Diagnostic Test: Endothelin<br/><b>Sponsors</b>:   Rambam Health Care Campus;   The Baruch Padeh Medical Center, Poriya<br/><b>Recruiting</b></p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Evaluate the Efficacy and Safety of TF0023 in Treatments for COVID-19 in Hospitalized Adults</strong> - <b>Condition</b>:   COVID-19 Pneumonia<br/><b>Intervention</b>:   Drug: TF0023<br/><b>Sponsor</b>:  <br/>
Techfields Inc<br/><b>Not yet recruiting</b></p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Short Daily Versus Conventional Hemodialysis for COVID-19 Patients</strong> - <b>Condition</b>:   COVID-19<br/><b>Intervention</b>:   Other: Short daily dialysis<br/><b>Sponsor</b>:  <br/>
Shahid Beheshti University of Medical Sciences<br/><b>Completed</b></p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Non-inferiority Trial on Monoclonal Antibodies in COVID-19</strong> - <b>Condition</b>:   COVID-19<br/><b>Interventions</b>:   Drug: Bamlanivimab Etesevimab;   Drug: Sotrovimab;   Drug: Casirivimab-Imdevimab<br/><b>Sponsors</b>:   Azienda Ospedaliera Universitaria Integrata Verona;   Agenzia Italiana del Farmaco;   Azienda Sanitaria-Universitaria Integrata di Udine<br/><b>Recruiting</b></p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Availability and Advice on Test Uptake During the COVID-19 Pandemic: a Vignette Study.</strong> - <b>Condition</b>:   COVID-19<br/><b>Interventions</b>:   Behavioral: Customised testing advice;   Behavioral: Regular testing advice;   Behavioral: LFT available;   Behavioral: No LFT available<br/><b>Sponsor</b>:  <br/>
National Institute for Public Health and the Environment (RIVM)<br/><b>Completed</b></p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Efficacy and Safety of Ingavirin®, 90 mg Capsules in Patients With COVID-19</strong> - <b>Condition</b>:   COVID-19<br/><b>Interventions</b>:   Drug: Ingavirin®, 90 mg capsules;   Drug: Placebo<br/><b>Sponsor</b>:   Valenta Pharm JSC<br/><b>Recruiting</b></p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Phase IIa Randomized Placebo Controlled Clinical Study of Codivir in Hospitalized Patients With Moderate COVID-19</strong> - <b>Condition</b>:   COVID-19<br/><b>Interventions</b>:   Drug: Covidir injections;   Diagnostic Test: Quantitative PCR SARS-CoV-2;   Diagnostic Test: IgM and IgG dosage;   Diagnostic Test: Screening Blood tests;   Diagnostic Test: Electrocardiogram;   Other: NEWS-2 score;   Other: WHO score;   Other: Physical examination;   Other: COVID-19-Related Symptoms assessment<br/><b>Sponsor</b>:   Code Pharma<br/><b>Recruiting</b></p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Exercise in Adults With Post-Acute Sequelae of SARS-CoV-2 (COVID-19) Infection Study</strong> - <b>Condition</b>:   COVID-19<br/><b>Intervention</b>:   Other: Exercise Prescription<br/><b>Sponsor</b>:  <br/>
Baylor Research Institute<br/><b>Not yet recruiting</b></p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Safety and Immunogenicity Study of EgyVax Vaccine Candidate for Prophylaxis of COVID-19 Infection</strong> - <b>Condition</b>:   COVID-19<br/><b>Interventions</b>:   Drug: EgyVax Vaccine Candidate;   Drug: Placebo<br/><b>Sponsors</b>:   Eva Pharma;   Veterinary Serum &amp; Vaccine Research Institute (VSVRI), Egypt;   The Supreme Council of University Hospitals, Egypt;   Ministry of Higher Education and Scientific Research, Egypt<br/><b>Not yet recruiting</b></p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Intranasal Heparin Treatment to Reduce Transmission Among Household Contacts of COVID 19 Positive Adults and Children</strong> - <b>Condition</b>:   COVID-19<br/><b>Interventions</b>:   Drug: unfractionated heparin;   Drug: 0.9%sodium chloride<br/><b>Sponsors</b>:   Murdoch Childrens Research Institute;   University of Melbourne;   Northern Hospital, Australia;   Monash University;   The Peter Doherty Institute for Infection and Immunity;   St Vincents Hospital Melbourne<br/><b>Not yet recruiting</b></p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Clinical Trials to Assess Safety and Efficacy of DWRX2003 Combination With Remdesivir in Moderate to Severe COVID-19 Patients.</strong> - <b>Condition</b>:   COVID-19<br/><b>Interventions</b>:   Drug: DWRX2003;   Drug: Placebo<br/><b>Sponsor</b>:  <br/>
Daewoong Pharmaceutical Co. LTD.<br/><b>Not yet recruiting</b></p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>To Evaluate the Safety and Efficacy of Inhaled CT-P63 and CT-P66 Combination Therapy in Patients With Mild to Moderate COVID-19</strong> - <b>Condition</b>:   COVID-19<br/><b>Intervention</b>:   Biological: CT-P63 and CT-P66 / Placebo<br/><b>Sponsor</b>:   Celltrion<br/><b>Not yet recruiting</b></p></li>
</ul>
<h1 data-aos="fade-right" id="from-pubmed">From PubMed</h1>
<ul>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Emerging quinoline and quinolone based antibiotics in the light of epidemics</strong> - Pandemics are large-scale outbreaks of infectious disease that can greatly increase morbidity and mortality all the globe. Since past 1990 till twentieth century, these infectious diseases have been major threat all over the globe associated with poor hygiene and sanitation. In light of these epidemics, researches have gained enormous rise in the developing the potential therapeutic treatment. Thus revolutionized antibiotics have led to the near eradication of such ailments. Around 50 million…</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Identification of fragments binding to SARS-CoV-2 nsp10 reveals ligand-binding sites in conserved interfaces between nsp10 and nsp14/nsp16</strong> - Since the emergence of SARS-CoV-2 in 2019, Covid-19 has developed into a serious threat to our health, social and economic systems. Although vaccines have been developed in a tour-de-force and are now increasingly available, repurposing of existing drugs has been less successful. There is a clear need to develop new drugs against SARS-CoV-2 that can also be used against future coronavirus infections. Non-structural protein 10 (nsp10) is a conserved stimulator of two enzymes crucial for viral…</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>The interplay between SARS-CoV-2 infected airway epithelium and immune cells modulates the immunoregulatory/inflammatory signals</strong> - To assess the cross talk between immune cells and respiratory tract during SARS-CoV-2 infection, we analysed the relationships between the inflammatory response induced by SARS-CoV-2 replication and immune cells phenotype in a reconstituted organotypic human airway epithelium (HAE). The results indicated that immune cells failed to inhibit SARS- CoV-2 replication in HAE model. In contrast, immune cells strongly affected the inflammatory profile induced by SARS- CoV-2 infection, dampening the…</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Discovery of novel TMPRSS2 inhibitors for COVID-19 using in silico fragment-based drug design, molecular docking, molecular dynamics, and quantum mechanics studies</strong> - The global expansion of COVID-19 and the mutations of severe acute respiratory syndrome coronavirus necessitate quick development of treatment and vaccination. Because the androgen-responsive serine protease TMPRSS2 is involved in cleaving the SARS-CoV-2 spike protein allowing the virus to enter the cell, therefore, direct TMPRSS2 inhibition will inhibit virus activation and disease progression which make it an important target for drug discovery. In this study, a homology model of TMPRSS2…</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Engineered extracellular vesicles directed to the spike protein inhibit SARS-CoV-2</strong> - SARS-CoV-2 (CoV-2) viral infection results in COVID-19 disease, which has caused significant morbidity and mortality worldwide. A vaccine is crucial to curtail the spread of SARS-CoV-2, while therapeutics will be required to treat ongoing and reemerging infections of SARS-CoV-2 and COVID-19 disease. There are currently no commercially available effective anti-viral therapies for COVID-19 urging the development of novel modalities. Here, we describe a molecular therapy specifically targeted to…</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Molecular Mechanisms of Cardiac Injury Associated With Myocardial SARS-CoV-2 Infection</strong> - Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread around the world. The development of cardiac injury is a common condition in patients with COVID-19, but the pathogenesis remains unclear. The RNA-Seq dataset (GSE150392) comparing expression profiling of mock human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and SARS-CoV-2-infected hiPSC-CMs was obtained from Gene Expression Omnibus (GEO). We identified…</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Evaluation of the Antiviral Potential of Modified Heterocyclic Base and 5-Norcarbocyclic Nucleoside Analogs Against SARS-CoV-2</strong> - The pandemic caused by the novel betacoronavirus SARS-CoV-2 has already claimed more than 3.5 million lives. Despite the development and use of anti-COVID-19 vaccines, the disease remains a major public health challenge throughout the world. Large-scale screening of the drugs already approved for the treatment of other viral, bacterial, and parasitic infections, as well as autoimmune, oncological, and other diseases is currently underway as part of their repurposing for development of effective…</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Environmental Design Strategies to Decrease the Risk of Nosocomial Infection in Medical Buildings Using a Hybrid MCDM Model</strong> - The prevention and control of nosocomial infection (NI) are becoming increasingly difficult, and its mechanism is becoming increasingly complex. A globally aging population means that an increasing proportion of patients have a susceptible constitution, and the frequent occurrence of severe infectious diseases has also led to an increase in the cost of prevention and control of NI. Medical buildings spatial environment design for the prevention of NI has been a hot subject of considerable…</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Montelukast is a dual-purpose inhibitor of SARS-CoV-2 infection and virus-induced IL-6 expression identified by structure-based drug repurposing</strong> - Drug-repurposing has been instrumental to identify drugs preventing SARS-CoV-2 replication or attenuating the disease course of COVID-19. Here, we identify through structure-based drug-repurposing a dual-purpose inhibitor of SARS-CoV-2 infection and of IL-6 production by immune cells. We created a computational structure model of the receptor binding domain (RBD) of the SARS-CoV-2 spike 1 protein, and used this model for in silico screening against a library of 6171 molecularly defined…</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Alu RNA Structural Features Modulate Immune Cell Activation and A-to-I Editing of Alu RNAs Is Diminished in Human Inflammatory Bowel Disease</strong> - Alu retrotransposons belong to the class of short interspersed nuclear elements (SINEs). Alu RNA is abundant in cells and its repetitive structure forms double-stranded RNAs (dsRNA) that activate dsRNA sensors and trigger innate immune responses with significant pathological consequences. Mechanisms to prevent innate immune activation include deamination of adenosines to inosines in dsRNAs, referred to as A-to-I editing, degradation of Alu RNAs by endoribonucleases, and sequestration of Alu RNAs…</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Inhibitors of Human 5-Lipoxygenase Potently Interfere With Prostaglandin Transport</strong> - 5-Lipoxygenase (5-LO) is the key enzyme in the formation of pro-inflammatory leukotrienes (LT) which play an important role in a number of inflammatory diseases. Accordingly, 5-LO inhibitors are frequently used to study the role of 5-LO and LT in models of inflammation and cancer. Interestingly, the therapeutic efficacy of these inhibitors is highly variable. Here we show that the frequently used 5-LO inhibitors AA-861, BWA4C, C06, CJ-13,610 and the FDA approved compound zileuton as well as the…</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Antidepressant and Antipsychotic Drugs Reduce Viral Infection by SARS-CoV-2 and Fluoxetine Shows Antiviral Activity Against the Novel Variants in vitro</strong> - Repurposing of currently available drugs is a valuable strategy to tackle the consequences of COVID-19. Recently, several studies have investigated the effect of psychoactive drugs on SARS-CoV-2 in cell culture models as well as in clinical practice. Our aim was to expand these studies and test some of these compounds against newly emerged variants. Several antidepressants and antipsychotic drugs with different primary mechanisms of action were tested in ACE2/TMPRSS2-expressing human embryonic…</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Essential oil from <em>Cymbopogon citratus</em> exhibits “anti-aspergillosis” potential: in-silico molecular docking and in vitro studies</strong> - CONCLUSION: In vitro results revealed that lemon grass oil was able to inhibit growth of fungal strains toxicity thus signifying its role as potent anti-fungal drug.</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Identification of the SARS-CoV-2 surface therapeutic targets and drugs using molecular modeling methods for inhibition the virus entry</strong> - Although COVID-19 emerged as a major concern to public health around the world, no licensed medication has been found as of yet to efficiently stop the virus spread and treat the infection. The SARS-CoV-2 entry into the host cell is driven by the direct interaction of the S1 domain with the ACE-2 receptor followed by conformational changes in the S2 domain, as a result of which fusion peptide is inserted into the target cell membrane, and the fusion process is mediated by the specific…</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Why tightness alone is not enough: The varying anti-pathogenic effects of rational values and cultural tightness at different phases of the COVID-19 pandemic</strong> - Gelfand et al. demonstrated that tight cultural norms lowered COVID-19 transmissions and deaths, but cant account for the lag between the beginning of the pandemic and the significance of tightness. Rational values help citizens adopt novel behavioral norms necessary to inhibit viral transmission. Multiple regression analysis on COVID-19 cases and deaths within twelve 25-day stages of the pandemic revealed that rational values were particularly significant in subduing COVID-19 cases and deaths…</p></li>
</ul>
<h1 data-aos="fade-right" id="from-patent-search">From Patent Search</h1>
<ul>
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>IDENTIFICATION AND ALARM SYSTEM FOR FACIAL CORONA MASK USING CNN BASED IMAGE PROCESSING</strong> - tThe covid-19 epidemic is the worlds largest wake-up call for people to pay attention to their own and societys health. One thing to keep in mind is that there is a segment of the population that has been exposed to the covid-19 virus and has generated antibodies without developing any significant illnesses and is continuing to be healthy. This indicates that a significant section of the population, even excluding the elderly, lacks the necessary bodily immunity to combat a Viral infection. As terrible as covid-19 is on a global scale, developing personal health standards and preventative measures for any pathogenic virus as a community would have spared many lives. Inthis work, a camera is combined with an image processing system to recognise facial masks, which may be improved in a variety of ways. First and foremost, this method is meant to identify masks on a single persons face. While this method is efficient in identifying someone has a mask, it does not ensure that they will wear it all of the time. The most effective update for this task is to install a camera with a wide field of view so that many individuals can be seen in the frame, and the faces of those who arent wearing markings can be identified, as well as the number of people and the timing. - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=IN346889253">link</a></p></li>
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>ANTIMICROBIAL SANITIZING FORMULATION</strong> - An antimicrobial sanitizing formulation, comprising, i) isopropyl alcohol in the range of 0.1%- 80% w/w, ii) an emollient in the range of 0.1%-15% w/w, iii) hydrogen peroxide in the range of 0.1 0.13% w/w, iv) citric acid in the range of 0.1% to 2.0% w/w, v) silver nitrate in the range of 0.1% to 0.5% w/w, and vi) a fragrance imparting agent in the range of 0.1% to 2.0% w/w. - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=IN346888094">link</a></p></li>
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A HEALTH BAND WITH A BIOMETRIC MODULE AND WORKING METHOD THEREOF</strong> - The present invention discloses a health band with a biometric module and method thereof. The assembly includes, but not limited to, a plurality of sensors configured to gather health data associated with a predefined symptom of a medical condition of a user; a memory unit configured to store the data and an interface, which is configured to determine the medical condition using the data;a processing unit configured to execute the application; and a notification facility configured to provide a notification upon receiving from the interface an instruction associated with the notification, wherein the notification is associated with a drug reminder and the like. - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=IN346889061">link</a></p></li>
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>RNA 검출 방법</strong> - 본 발명은 RNA의 분석 및 검출 방법에 관한 것이다. 특히, 본 발명은 특히, 본 발명은 짧은 염기서열의 RNA까지 분석이 가능하면서도 높은 민감도 및 정확도로 정량적 검출까지 가능하여 감염증, 암 등 여러 질환의 진단 용도로도 널리 활용될 수 있다. - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=KR346026620">link</a></p></li>
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>黄芩黄酮活性成分及其制剂在制备预防和/或治疗炎症风暴药物中的应用</strong> - 本发明公开了黄芩黄酮活性成分及其制剂在制备预防和/或治疗炎症风暴药物中的应用。所述黄芩黄酮活性成分选自下述至少一种黄芩素、汉黄芩素和千层纸素A。炎症风暴是一种机体对外界刺激的过度免疫反应和炎症反应以炎症细胞因子的快速大量释放为特征。炎症风暴可由许多感染或非感染性疾病引起并与疾病的严重程度和多器官功能障碍综合征的发生密切相关。减少炎症风暴的发生有助于降低器官损伤和减缓疾病进程尤其对危重症患者的治疗至关重要。本发明发现黄芩素、汉黄芩素、千层纸素A均具有不同程度抑制小鼠细胞因子风暴的作用。黄芩素能改善炎症风暴引发的肺损伤和炎性细胞浸润。因此黄芩黄酮活性成分可用于制备防治炎症风暴的药物。 - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=CN349220813">link</a></p></li>
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>一种预防和/或治疗炎症风暴的药物组合物及其制剂与应用</strong> - 本发明公开了一种预防和/或治疗炎症风暴的药物组合物、制剂及其应用。该药物组合物由黄芩素、汉黄芩素和千层纸素A组成其中黄芩素、汉黄芩素、千层纸素A的质量比为0.25<sub>1.50.5</sub>71。本发明提供的自微乳包括下述组分药物磷脂复合物、油相、乳化剂和助乳化剂其中所述药物磷脂复合物由上述药物组合物和磷脂材料复合而成。本发明的实验结果表明在LPS诱导的系统性炎症风暴小鼠模型中黄芩素、汉黄芩素和千层纸素A的组合物及其自微乳制剂均具有不同程度抑制小鼠细胞因子风暴的作用。本发明为炎症风暴的临床治疗提供了一种安全、有效、经济的解决方案。 - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=CN349220821">link</a></p></li>
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>用于核酸检测的微流控芯片及检测方法</strong> - 本发明提供一种用于核酸检测的微流控芯片及检测方法。所述微流控芯片包括依次叠放在一起并相互密封的三层结构由上至下分别为气道层、中间层和流道层所述气道层包含两个独立的气道所述中间层为弹性薄膜用于控制流道层上微阀的开启和关闭所述流道层包含四个进样口两个出样口四个微阀一个LAMP反应室、一个CRISPR反应室以及若干条流道所述微阀通过弹性薄膜与气道层的气道相连并通过气道层气压的改变来实现微阀的开关实现不同进样口的顺序进样。本发明将微流控与LAMP扩增技术以及CRISPR检测技术相结合在单个芯片上实现高灵敏高特异性的检测病毒核酸。 - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=CN349220678">link</a></p></li>
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>REUNION OF PHOTOTHERMAL THERAPY WITH MXENE ADSORBED UREMIC TOXINS AND CYTOKINES: A SHILED FOR COVID-19 PATENTS</strong> - The COVID-19 pandemic has created havoc throughout the world. The disease has proved to be more fatalfor patients having comorbidities like diabetics, lungs and kidney infections, etc. In the case of COVID-19 patientsI having kidney injury, the. removal of uremic toxins from the blood is hindered and there is a rapid surge in the levelj of cytokine hormone resulting in the death of the patient in a short interval of time. To resolve this issue,iI; researchers have examined that the immediate removal of these toxins can improve the condition of the patient to a |greater extent. Studies have also found the presence of SARS CoV-2 viral RNAs in the blood of COVID-19patients, which risks their life as well as impacts the blood transfusion process, especially in the case ofasymptomatic patients. Hence it is required to control the surge of cytokines and uremic toxins as well as disinfectthe blood of the patient from the virus. MXenes, having a foam-like porous structure and hydrophilic negativesurface functionalization have greater adsorption efficiency as well as superior photothermal activity. Utilizingthese properties of MXenes, the MXene membranes can be used in the dialyzer that can help in the efficient andBiuick removal of the uremic toxins, cytokines, and other impurities from the blood. Along with this the greaterTJAdsorption efficiency of MXenes to amino acids result in the trapping of the SARS CoV-2 viruses on the surface J)3&gt;f the MXene. Many researchers as well as the WHO have proved the efficient reduction of the viral copy numbersjjvith the increase of temperature. Hence, followed by the trapping of the viruses, the implementation of"Zphotothermal Therapy can result in the inactivation and denaturation of the viruses and their respective viral RNAsBJlby the produced heat. The same process can be repeated several times to get better results. This whole process canr&gt;oQ-esult in impurity-free and infection-free blood, that can be returned back to the body of the patient or can be!— I Sitilized for the blood transfusion process without any risk of infection.IM - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=IN346889224">link</a></p></li>
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>基于引物设计和铜纳米簇的SARS-CoV-2德尔塔变异株检测方法</strong> - 本发明公开了一种基于引物设计和铜纳米簇的SARSCoV2德尔塔变异株检测方法。该方法结合DPO引物和AT引物成功区分了单碱基缺失的SARSCoV2德尔塔变异株和SARSCoV2野生菌株。并且DPO引物和AT引物的PCR产物可以作为CuNCs的生成模板在紫外照射下实现SARSCoV2德尔塔变异株的可视化检测。本申请利用常规实验条件借助PCR仪将DPO引物和AT引物结合扩增使其SARSCoV2德尔塔变异株检测具有特异性、高灵敏、可视化的优势。 - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=CN348141584">link</a></p></li>
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>REDUCING AND STOPPING OXYGEN WASTAGE IN HOSPITAL</strong> - In an aspect, the present invention discloses a system (200) for prevention and reduction of oxygen wastage from oxygen mask (202). The system (200) includes the oxygen mask (202) having straps; a tension sensor (204), the tension sensor being sensitive towards tension produced in the straps as the oxygen gets leakage through sides of the mask (202); a processor configured in alignment with the tension sensor (204); and a buzzer (206) in alignment with processor. - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=IN346042219">link</a></p></li>
</ul>
<script>AOS.init();</script></body></html>