230 lines
57 KiB
HTML
230 lines
57 KiB
HTML
<!DOCTYPE html>
|
||
<html lang="" xml:lang="" xmlns="http://www.w3.org/1999/xhtml"><head>
|
||
<meta charset="utf-8"/>
|
||
<meta content="pandoc" name="generator"/>
|
||
<meta content="width=device-width, initial-scale=1.0, user-scalable=yes" name="viewport"/>
|
||
<title>25 November, 2020</title>
|
||
<style>
|
||
code{white-space: pre-wrap;}
|
||
span.smallcaps{font-variant: small-caps;}
|
||
span.underline{text-decoration: underline;}
|
||
div.column{display: inline-block; vertical-align: top; width: 50%;}
|
||
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
|
||
ul.task-list{list-style: none;}
|
||
.display.math{display: block; text-align: center; margin: 0.5rem auto;}
|
||
</style>
|
||
<!--[if lt IE 9]>
|
||
<script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv-printshiv.min.js"></script>
|
||
<![endif]-->
|
||
<title>Covid-19 Sentry</title><meta content="width=device-width, initial-scale=1.0" name="viewport"/><link href="styles/simple.css" rel="stylesheet"/><link href="../styles/simple.css" rel="stylesheet"/><link href="https://unpkg.com/aos@2.3.1/dist/aos.css" rel="stylesheet"/><script src="https://unpkg.com/aos@2.3.1/dist/aos.js"></script></head>
|
||
<body>
|
||
<h1 data-aos="fade-down" id="covid-19-sentry">Covid-19 Sentry</h1>
|
||
<h1 data-aos="fade-right" data-aos-anchor-placement="top-bottom" id="contents">Contents</h1>
|
||
<ul>
|
||
<li><a href="#from-preprints">From Preprints</a></li>
|
||
<li><a href="#from-clinical-trials">From Clinical Trials</a></li>
|
||
<li><a href="#from-pubmed">From PubMed</a></li>
|
||
<li><a href="#from-patent-search">From Patent Search</a></li>
|
||
</ul>
|
||
<h1 data-aos="fade-right" id="from-preprints">From Preprints</h1>
|
||
<ul>
|
||
<li><strong>Trust in science and experts during the COVID-19 outbreak in Italy</strong> -
|
||
<div>
|
||
Trust in science and experts is extremely important in times of epidemics to ensure compliance with public health measures. Yet little is known about how this trust evolves while an epidemic is underway. In this paper, we examine the dynamics of trust in science and experts in real-time as the high-impact epidemic of Coronavirus (COVID-19) unfolds in Italy, by drawing on digital trace data from Twitter and survey data collected online via Telegram and Facebook. Both Twitter and Telegram data point to initial increases in reliance on and information-seeking from scientists and health authorities with the diffusion of the disease. Consistent with these increases, using a separately fielded online survey we find that knowledge about health information linked to COVID-19 and support for containment measures was fairly widespread. Trust in science, relative to trust in institutions (e.g. local or national government), emerges as a consistent predictor of both knowledge and containment outcomes. However, over time and as the epidemic peaks, we detect a slowdown and turnaround in reliance and information-seeking from scientists and health authorities, which we interpret as signs of an erosion in trust. This is supported by a novel survey experiment, which finds that those holding incorrect beliefs about COVID-19 give no or lower importance to information about the virus when the source of such information is known to be scientific.
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://osf.io/twuhj/" target="_blank">Trust in science and experts during the COVID-19 outbreak in Italy</a>
|
||
</div></li>
|
||
<li><strong>Trust in science and experts during the COVID-19 outbreak in Italy</strong> -
|
||
<div>
|
||
Trust in science and experts is extremely important in times of epidemics to ensure compliance with public health measures. Yet little is known about how this trust evolves while an epidemic is underway. In this paper, we examine the dynamics of trust in science and experts in real-time as the high-impact epidemic of Coronavirus (COVID-19) unfolds in Italy, by drawing on digital trace data from Twitter and survey data collected online via Telegram and Facebook. Both Twitter and Telegram data point to initial increases in reliance on and information-seeking from scientists and health authorities with the diffusion of the disease. Consistent with these increases, using a separately fielded online survey we find that knowledge about health information linked to COVID-19 and support for containment measures was fairly widespread. Trust in science, relative to trust in institutions (e.g. local or national government), emerges as a consistent predictor of both knowledge and containment outcomes. However, over time and as the epidemic peaks, we detect a slowdown and turnaround in reliance and information-seeking from scientists and health authorities, which we interpret as signs of an erosion in trust. This is supported by a novel survey experiment, which finds that those holding incorrect beliefs about COVID-19 give no or lower importance to information about the virus when the source of such information is known to be scientific.
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://osf.io/preprints/socarxiv/5tch8/" target="_blank">Trust in science and experts during the COVID-19 outbreak in Italy</a>
|
||
</div></li>
|
||
<li><strong>Bachelor theses rating as an entrance test to the master program of psychology: Psychometrical casuistic</strong> -
|
||
<div>
|
||
The COVID-19 pandemic influenced entrance testing to the master program of psychology at the Masaryk University in 2020. An administration of the standard paper-and-pencil knowledge test was not possible; therefore, we chose the bachelor theses rating. This paper is “psychometrical casuistic”, which covers criteria development regarding content validity, design selection, and results. Two randomly selected raters rated each thesis, and we equated their severity using the logistic linear test model (LLTM) under the Item Response Theory (IRT) paradigm. This procedure resulted in the unidimensional and unbiased scores equated across 18 judges and 2 terms (n1 = 82, n2 = 48). The reliability was comparable to the standard tests, r = 0,869, and judges’ severity or criteria difficulty did not differ across them. The resulting rating seems to be valid and not less fair compared to the written exam. The proposed method can serve other departments and other goals, not only as an entrance test. We share an analytical script and all the necessary materials to enhance using the method.
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://psyarxiv.com/dt7nr/" target="_blank">Bachelor theses rating as an entrance test to the master program of psychology: Psychometrical casuistic</a>
|
||
</div></li>
|
||
<li><strong>Nurses’ burnout and associated risk factors during the COVID-19 pandemic: a systematic review and meta-analysis</strong> -
|
||
<div>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
||
Background: During the COVID-19 pandemic, physical and mental health of the nurses is greatly challenged since they work under unprecedented pressure and they are more vulnerable to the harmful effects of the disease. Aim: To examine the impact of the COVID-19 pandemic on nurses9 burnout and to identify associated risk factors. Methods: We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines for this systematic review and meta-analysis. PubMed, Scopus, ProQuest, and pre-print services (medRxiv and PsyArXiv) were searched from January 1, 2020 to November 15, 2020 and we removed duplicates. We applied a random effect model to estimate pooled effects since the heterogeneity between results was very high. Findings: Fourteen studies, including 17,390 nurses met the inclusion criteria. Five standardized and valid questionnaires were used to measure burnout among nurses; Maslach Burnout Inventory, Copenhagen Burnout Inventory, Professional Quality of Life Scale version 5, Mini-Z, and Spanish Burnout Inventory. The overall prevalence of emotional exhaustion was 34.1% (95% confidence interval [CI]: 22.5-46.6%), of depersonalization was 12.6% (95% CI: 6.9-19.7%), and of lack of personal accomplishment was 15.2% (95% CI: 1.4-39.8%). The following factors were associated with increased nurses9 burnout: younger age, higher educational level, higher degree, decreased social support, having a relative/friend diagnosed with COVID-19, low family and colleagues readiness to cope with COVID-19 outbreak, increased perceived threat of Covid-19, longer working time in quarantine areas, working in a high-risk environment (a COVID-19 designated hospital, a COVID-19 unit, etc.), working in hospitals with inadequate and insufficient material and human resources, decreased working safety while caring for COVID-19 patients, increased workload, decreased self-confidence in self-protection, and lower levels of specialized training regarding COVID-19, job experience, and self-confidence in caring for COVID-19. Conclusion: Nurses experience high levels of burnout during the COVID-19 pandemic, while several sociodemographic, social, and occupational factors affect this burnout. Several interventions need to be implemented to mitigate mental health impact of the COVID-19 pandemic on nurses, e.g. screening for mental health illness and early supportive interventions for high-risk nurses, immediate access to mental health care services, social support to reduce feelings of isolation, sufficient personal protective equipment for all nurses to provide security, etc. Governments, health care organizations, and policy makers should act in this direction to prepare health care systems, individuals, and nurses for a better response against the COVID-19 pandemic.
|
||
</p>
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2020.11.24.20237750v1" target="_blank">Nurses’ burnout and associated risk factors during the COVID-19 pandemic: a systematic review and meta-analysis</a>
|
||
</div></li>
|
||
<li><strong>Changes in daily loneliness for German residents during the first four weeks of the COVID-19 pandemic</strong> -
|
||
<div>
|
||
The coronavirus disease 2019 (Covid-19) outbreak has dramatically altered people’s social lives due to strict distancing policies. Increased loneliness has been publicly discussed as a harmful psychological side effect of these policies. However, thus far, empirical evidence was lacking. This large scale daily diary study assessed daily loneliness in N = 4,850 German adults from March 16, 2020 until April 12, 2020. Daily loneliness increased during the first two weeks of the Covid 19 lockdown and decreased thereafter. We identified subgroups that are at a higher risk for changes in daily loneliness during the Covid-19 pandemic (i.e., older adults, parents). It is important to evaluate if and how established knowledge about psychological functioning applies to extraordinary times and events such as the Covid-19 pandemic.
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://psyarxiv.com/ytkx9/" target="_blank">Changes in daily loneliness for German residents during the first four weeks of the COVID-19 pandemic</a>
|
||
</div></li>
|
||
<li><strong>Outbreak of strains of SARS CoV-2, its prevalence & preventive measures taken by different Countries</strong> -
|
||
<div>
|
||
World Health Organization (WHO) announced the official name of the 2019 novel coronavirus associated diseases coronavirus disease (COVID-19) and the reference name for the virus is severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).Transmission of SARS CoV-2 in humans occurs mainly via respiratory droplet or aerosols, close contact with an infected person, exposed to coughing, sneezing and likely in oral-faecal. The COVID-19 outbreak started in different countries at different times, and now those countries are at different stages. By comparing infection trajectories from the 100th case mark, we have been able to observe the rapid spread of the virus in various countries. To date, no specific antiviral drugs or vaccines are available for the control of SARS CoV-2. The experts at global level suggest implementation of strict measures such as practicing quarantine, social distancing, avoiding social gathering to reduce the number of COVID-19 cases. This is a dynamically unfolding pandemic that will require the concerted efforts of counties around the world to control. Given the unfold of the new coronavirus and its impacts on human health, it becomes pertinent to device methods for handling this public health emergency at the community, national, and international levels. it’s vital to additional investigate a preventative intervention to halt the unfold of the COVID-19 infection, because it has been discovered that not all countries have constant fate concerning infection and fatality. It becomes vital to acknowledge and study the factors accountable and also the underlying mechanisms for this.
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://osf.io/ce6vf/" target="_blank">Outbreak of strains of SARS CoV-2, its prevalence & preventive measures taken by different Countries</a>
|
||
</div></li>
|
||
<li><strong>Help-Seeking Intention During COVID-19 Pandemic: A Nationwide Web-Based Survey in Indonesia</strong> -
|
||
<div>
|
||
Background: This study was conducted based on many studies on mental health problems during the Covid-19 pandemic and the urgency for the availability of mental health services. Unfortunately, research related to help-seeking intention for mental health in general public, particularly in Indonesia, is very limited. Meanwhile, several studies have shown that help-seeking intention is a good predictor whether someone will attend mental health services or not. Objective: The aims of this study are to determine the sources of help that are most soughtafter and the factors predicting help-seeking intention during the COVID-19 pandemic. Methods: Online instruments consist of demographical questions, 11 items of General Helpseeking Questionnaire (GHSQ) (Wilson, Deane, Ciarrochi, & Rickwood, 2005), 7 items of Fear of COVID-19 Scale (FCV-19S) (Ahorsu et al., 2020), and 5 items of Coronavirus Anxiety Scale (CAS) (Lee, 2020) were distributed via email, Facebook messenger, and Whatsapp during August 11 – 21, 2020. The data were analyzed using multiple linear regression and multivariate logistic regression. Results: The results showed that parents were the most sought-after source of help during the COVID-19 pandemic. While age, education, occupation, living in infected area, and fear significantly predict help-seeking intention. Meanwhile, the factors significantly predict the level of help-seeking intention are anxiety and fear. Limitations: This research uses a cross-sectional design. Therefore, it cannot test help-seeking intention after data collection. Furthermore, data was obtained using the self-report method which depends on the participants’ ability to understand the items of the questionnaire. Conclusion: The results showed that parents were the main choice of the participants if they seek for help. Therefore, it is important for parents to be equipped with skills in providing mental health help for their children or relatives. Moreover, all parties should be equipped and trained to provide mental health help. Mental health services should be provided to various demographical background of general public during of COVID-19 pandemic. The attention of mental health services should be directed to the not infected area as well rather than infected area only.
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://osf.io/we4q2/" target="_blank">Help-Seeking Intention During COVID-19 Pandemic: A Nationwide Web-Based Survey in Indonesia</a>
|
||
</div></li>
|
||
<li><strong>Ipomoeassin-F inhibits the in vitro biogenesis of the SARS-CoV-2 spike protein and its host cell membrane receptor</strong> -
|
||
<div>
|
||
In order to produce proteins essential for their propagation, many pathogenic human viruses, including SARS-CoV-2 the causative agent of COVID-19 respiratory disease, commandeer host biosynthetic machineries and mechanisms. Three major structural proteins, the spike, envelope and membrane proteins, are amongst several SARS-CoV-2 components synthesised at the endoplasmic reticulum (ER) of infected human cells prior to the assembly of new viral particles. Hence, the inhibition of membrane protein synthesis at the ER is an attractive strategy for reducing the pathogenicity of SARS-CoV-2 and other obligate viral pathogens. Using an in vitro system, we demonstrate that the small molecule inhibitor ipomoeassin F (Ipom-F) potently blocks the Sec61-mediated ER membrane translocation/insertion of three therapeutic protein targets for SARS-CoV-2 infection; the viral spike and ORF8 proteins together with angiotensin-converting enzyme 2, the host cell plasma membrane receptor. Our findings highlight the potential for using ER protein translocation inhibitors such as Ipom-F as host-targeting, broad-spectrum, antiviral agents.
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2020.11.24.390039v1" target="_blank">Ipomoeassin-F inhibits the in vitro biogenesis of the SARS-CoV-2 spike protein and its host cell membrane receptor</a>
|
||
</div></li>
|
||
<li><strong>Fragment binding to the Nsp3 macrodomain of SARS-CoV-2 identified through crystallographic screening and computational docking</strong> -
|
||
<div>
|
||
The SARS-CoV-2 macrodomain (Mac1) within the non-structural protein 3 (Nsp3) counteracts host-mediated antiviral ADP-ribosylation signalling. This enzyme is a promising antiviral target because catalytic mutations render viruses non-pathogenic. Here, we report a massive crystallographic screening and computational docking effort, identifying new chemical matter primarily targeting the active site of the macrodomain. Crystallographic screening of diverse fragment libraries resulted in 214 unique macrodomain-binding fragments, out of 2,683 screened. An additional 60 molecules were selected from docking over 20 million fragments, of which 20 were crystallographically confirmed. X-ray data collection to ultra-high resolution and at physiological temperature enabled assessment of the conformational heterogeneity around the active site. Several crystallographic and docking fragment hits were validated for solution binding using three biophysical techniques (DSF, HTRF, ITC). Overall, the 234 fragment structures presented explore a wide range of chemotypes and provide starting points for development of potent SARS-CoV-2 macrodomain inhibitors.
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2020.11.24.393405v1" target="_blank">Fragment binding to the Nsp3 macrodomain of SARS-CoV-2 identified through crystallographic screening and computational docking</a>
|
||
</div></li>
|
||
<li><strong>Increased Colonic Expression of ACE2 Associates with Poor Prognosis in Crohn’s disease</strong> -
|
||
<div>
|
||
Background and Aims: The host receptor for SARS-CoV-2, angiotensin-converting enzyme 2 (ACE2), is highly expressed in small intestine. Our aim was to study colonic ACE2 expression in Crohn’s disease (CD) and non-inflammatory bowel disease (non-IBD) controls. We hypothesized that the colonic expression levels of ACE2 impacts CD course. Methods: We examined the expression of colon ACE2 using RNA-seq and quantitative (q) RT-PCR from 69 adult CD and 14 NIBD control patients. In a subset of this cohort we validated ACE2 protein expression and localization in formalin-fixed, paraffin-embedded matched colon and ileal tissues using immunohistochemistry. The impact of increased ACE2 expression in CD for the risk of surgery was evaluated by a multivariate regression analysis and a Kaplan-Meier estimator. To provide critical support for the generality of our findings, we analyzed previously published RNA-seq data from two large independent cohorts of CD patients. Results: Colonic ACE2 expression was significantly higher in a subset of adult CD patients (ACE2-high CD). IHC in a sampling of ACE2-high CD patients confirmed high ACE2 protein expression in the colon and ileum compared to ACE2-low CD and NIBD patients. Notably, we found that ACE2-high CD patients are significantly more likely to undergo surgery within 5 years of diagnosis, with a Cox regression analysis finding that high ACE2 levels is an independent risk factor (OR 2.18; 95%CI, 1.05-4.55; p=0.037). Conclusion: Increased intestinal expression of ACE2 is associated with deteriorated clinical outcomes in CD patients. These data point to the need for molecular stratification that may impact CD disease-related outcomes.
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2020.11.24.396382v1" target="_blank">Increased Colonic Expression of ACE2 Associates with Poor Prognosis in Crohn’s disease</a>
|
||
</div></li>
|
||
<li><strong>Mutations in SARS-CoV-2 spike protein and RNA polymerase complex are associated with COVID-19 mortality risk</strong> -
|
||
<div>
|
||
SARS-CoV-2 mortality has been extensively studied in relationship to a patient’s predisposition to the disease. However, how sequence variations in the SARS-CoV-2 genome affect mortality is not understood. To address this issue, we used a whole-genome sequencing (WGS) association study to directly link death of SARS-CoV-2 patients with sequence variation in the viral genome. Specifically, we analyzed 3,626 single stranded RNA-genomes of SARS-CoV-2 patients in the GISAID database (Elbe and Buckland-Merrett, 2017; Shu and McCauley, 2017) with reported patient’s health status from COVID-19, i.e. deceased versus non-deceased. In total, evaluating 28,492 loci of the viral genome for association with patient/host mortality, two loci, 12,053bp and 25,088bp, achieved genome-wide significance (p-values of 1.24e-12, and 1.24e-26, respectively). Mutations at 25,088bp occur in the S2 subunit of the SARS-CoV-2 spike protein, which plays a key role in viral entry of target host cells. Additionally, mutations at 12,053bp are within the ORF1ab gene, in a region encoding for the protein nsp7, which is necessary to form the RNA polymerase complex responsible for viral replication and transcription. Both mutations altered amino acid coding sequences, potentially imposing structural changes that could enhance viral infectivity and symptom severity, and may be important to consider as targets for therapeutic development.
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2020.11.17.386714v1" target="_blank">Mutations in SARS-CoV-2 spike protein and RNA polymerase complex are associated with COVID-19 mortality risk</a>
|
||
</div></li>
|
||
<li><strong>Healthcare workers hospitalized due to COVID-19 have no higher risk of death than general population. Data from the Spanish SEMI-COVID-19 Registry.</strong> -
|
||
<div>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
||
Aim: To determine whether healthcare workers (HCW) hospitalized in Spain due to COVID-19 have a worse prognosis than non-healthcare workers (NHCW). Methods: Observational cohort study based on the SEMI-COVID-19 Registry, a nationwide registry that collects sociodemographic, clinical, laboratory, and treatment data on patients hospitalised with COVID-19 in Spain. Patients aged 20-65 years were selected. A multivariate logistic regression model was performed to identify factors associated with mortality. Results: As of 22 May 2020, 4393 patients were included, of whom 419 (9.5%) were HCW. Median (interquartile range) age of HCW was 52 (15) years and 62.4% were women. Prevalence of comorbidities and severe radiological findings upon admission were less frequent in HCW. There were no difference in need of respiratory support and admission to intensive care unit, but occurrence of sepsis and in-hospital mortality was lower in HCW (1.7% vs. 3.9%; p=0.024 and 0.7% vs. 4.8%; p<0.001 respectively). Age, male sex and comorbidity, were independently associated with higher in-hospital mortality and healthcare working with lower mortality (OR 0.219, 95%CI 0.069-0.693, p=0.01). 30-days survival was higher in HCW (0.968 vs. 0.851 p<0.001). Conclusions: Hospitalized COVID-19 HCW had fewer comorbidities and a better prognosis than NHCW. Our results suggest that professional exposure to COVID-19 in HCW does not carry more clinical severity nor mortality.
|
||
</p>
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2020.11.23.20236810v1" target="_blank">Healthcare workers hospitalized due to COVID-19 have no higher risk of death than general population. Data from the Spanish SEMI-COVID-19 Registry.</a>
|
||
</div></li>
|
||
<li><strong>The rocaglate CR-31-B (-) inhibits SARS-CoV-2 replication at non-cytotoxic, low nanomolar concentrations in vitro and ex vivo</strong> -
|
||
<div>
|
||
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a betacoronavirus in the subgenus Sarbecovirus causes a respiratory disease with varying symptoms referred to as coronavirus disease 2019 (COVID-19) and is responsible for a pandemic that started in early 2020. With no vaccines or effective antiviral treatments available, and infection and fatality numbers continuing to increase globally, the quest for novel therapeutic solutions remains an urgent priority. Rocaglates, a class of plant-derived cyclopenta[b]benzofurans, exhibit broad-spectrum antiviral activity against positive- and negative-sense RNA viruses. This compound class inhibits eukaryotic initiation factor 4A (eIF4A)-dependent mRNA translation initiation, resulting in strongly reduced viral RNA translation. The synthetic rocaglate CR-31-B (-) has previously been shown to inhibit the replication of human coronaviruses, such as HCoV-229E and MERS-CoV, as well as Zika-, Lassa-, Crimean Congo hemorrhagic fever virus in primary cells. Here, we assessed the antiviral activity of CR-31-B (-) against SARS-CoV-2 using both in vitro and ex vivo cell culture models. In African green monkey Vero E6 cells, CR-31-B (-) inhibited SARS-CoV-2 replication with an EC50 of ~1.8 nM. In line with this, viral protein accumulation and replication/transcription complex formation were found to be strongly reduced by this compound. In an ex vivo infection system using human airway epithelial cells, CR-31-B (-) was found to cause a massive reduction of SARS-CoV-2 titers by about 4 logs to nearly non-detectable levels. The data reveal a potent anti-SARS-CoV-2 activity by CR-31-B (-), corroborating previous results obtained for other coronaviruses and supporting the idea that rocaglates may be used in first-line antiviral intervention strategies against novel and emerging RNA virus outbreaks.
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2020.11.24.389627v1" target="_blank">The rocaglate CR-31-B (-) inhibits SARS-CoV-2 replication at non-cytotoxic, low nanomolar concentrations in vitro and ex vivo</a>
|
||
</div></li>
|
||
<li><strong>Timing the SARS-CoV-2 Index Case in Hubei Province</strong> -
|
||
<div>
|
||
Understanding when SARS-CoV-2 emerged is critical to evaluating our current approach to monitoring novel zoonotic pathogens and understanding the failure of early containment and mitigation efforts for COVID-19. We employed a coalescent framework to combine retrospective molecular clock inference with forward epidemiological simulations to determine how long SARS-CoV-2 could have circulated prior to the time of the most recent common ancestor. Our results define the period between mid-October and mid-November 2019 as the plausible interval when the first case of SARS-CoV-2 emerged in Hubei province. By characterizing the likely dynamics of the virus before it was discovered, we show that over two-thirds of SARS-CoV-2-like zoonotic events would be self-limited, dying out without igniting a pandemic. Our findings highlight the shortcomings of zoonosis surveillance approaches for detecting highly contagious pathogens with moderate mortality rates.
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2020.11.20.392126v1" target="_blank">Timing the SARS-CoV-2 Index Case in Hubei Province</a>
|
||
</div></li>
|
||
<li><strong>Hacking the diversity of SARS-CoV-2 and SARS-like coronaviruses in human, bat and pangolin populations</strong> -
|
||
<div>
|
||
In 2019, a novel coronavirus, SARS-CoV-2/nCoV-19, emerged in Wuhan, China, and has been responsible for the current COVID-19 pandemic. The evolutionary origins of the virus remain elusive and understanding its complex mutational signatures could guide vaccine design and development. As part of the international “CoronaHack” in April 2020 (https://www.coronahack.co.uk), we employed a collection of contemporary methodologies to compare the genomic sequences of coronaviruses isolated from human (SARS-CoV-2;n=163), bat (bat-CoV;n=215) and pangolin (pangolin-CoV;n=7) available in public repositories. Following de novo gene annotation prediction, analysis on gene-gene similarity network, codon usage bias and variant discovery were carried out. Strong host-associated divergences were noted in ORF3a, ORF6, ORF7a, ORF8 and S, and in codon usage bias profiles. Lastly, we have characterised several high impact variants (inframe insertion/deletion or stop gain) in bat-CoV and pangolin-CoV populations, some of which are found in the same amino acid position and maybe highlighting loci of potential functional relevance.
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2020.11.24.391763v1" target="_blank">Hacking the diversity of SARS-CoV-2 and SARS-like coronaviruses in human, bat and pangolin populations</a>
|
||
</div></li>
|
||
</ul>
|
||
<h1 data-aos="fade-right" id="from-clinical-trials">From Clinical Trials</h1>
|
||
<ul>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A Study Evaluating the Efficacy and Safety of CKD-314 in Hospitalized Adult Patients Diagnosed With COVID-19 Pneumonia</strong> - <b>Condition</b>: COVID-19<br/><b>Intervention</b>: Drug: Nafamostat Mesilate<br/><b>Sponsor</b>: Chong Kun Dang Pharmaceutical<br/><b>Not yet recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Phase III Double-blind, Placebo-controlled Study of AZD7442 for Post- Exposure Prophylaxis of COVID-19 in Adults</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Drug: AZD7442; Drug: Placebo<br/><b>Sponsors</b>: AstraZeneca; QuintilesIMS<br/><b>Not yet recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Phase III Double-blind, Placebo-controlled Study of AZD7442 for Pre-exposure Prophylaxis of COVID-19 in Adult.</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Drug: AZD7442; Drug: Placebo<br/><b>Sponsors</b>: AstraZeneca; QuintilesIMS<br/><b>Not yet recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Effectiveness and Safety of Rhea Health Tone® as add-on Therapy for COVID-19 in Hospitalized Adults in Indonesia</strong> - <b>Condition</b>: Covid19<br/><b>Intervention</b>: Dietary Supplement: Rhea Health Tone®<br/><b>Sponsors</b>: Universitas Padjadjaran; PT. Rhea Pharmaceutical Sciences Indonesia; Prodia Diacro Laboratories P.T.<br/><b>Not yet recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Fase I Clinical Trial on NK Cells for COVID-19</strong> - <b>Conditions</b>: Covid19; Sars-cov 2<br/><b>Intervention</b>: Biological: Natural Killer Cells infusion<br/><b>Sponsor</b>: Hospital de Clinicas de Porto Alegre<br/><b>Not yet recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A Phase Ⅱ Clinical Trial of Recombinant Corona Virus Disease-19 (COVID-19) Vaccine (Sf9 Cells)</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Biological: Low-dose Recombinant COVID-19 vaccine (Sf9 cells) (18-59 years) & Two dose regimen; Biological: Low-dose Recombinant COVID-19 vaccine (Sf9 cells) (18-59 years) & Three dose regimen; Biological: High-dose Recombinant COVID-19 vaccine (Sf9 cells) (18-59 years) & Two dose regimen; Biological: High-dose Recombinant COVID-19 vaccine (Sf9 cells) (18-59 years) & Three dose regimen; Biological: Low-dose Recombinant COVID-19 vaccine (Sf9 cells) (60-85 years) & Two dose regimen; Biological: Low-dose Recombinant COVID-19 vaccine (Sf9 cells) (60-85 years) & Three dose regimen; Biological: High-dose Recombinant COVID-19 vaccine (Sf9 cells) (60-85 years) & Two dose regimen; Biological: High-dose Recombinant COVID-19 vaccine (Sf9 cells) (60-85 years) & Three dose regimen; Biological: Low-dose placebo (18-59 years) & Two dose regimen; Biological: Low-dose placebo (18-59 years) & Three dose regimen; Biological: High-dose placebo (18-59 years) & Two dose regimen; Biological: High-dose placebo (18-59 years) & Three dose regimen; Biological: Low-dose placebo (60-85 years) & Two dose regimen; Biological: Low-dose placebo (60-85 years) & Three dose regimen; Biological: High-dose placebo (60-85 years) & Two dose regimen; Biological: High-dose placebo (60-85 years) & Three dose regimen<br/><b>Sponsors</b>: Jiangsu Province Centers for Disease Control and Prevention; West China Hospital<br/><b>Recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Hydrogen Therapy in Patients With Moderate Covid-19</strong> - <b>Condition</b>: Covid-19<br/><b>Intervention</b>: Drug: Mixture 3,6% H2 in N2 (96.4%)<br/><b>Sponsor</b>: University Hospital, Grenoble<br/><b>Not yet recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Prevention With Chloroquine in Health Personnel Exposed to Infection With Coronavirus Disease 2019 (COVID-19) (TS-COVID)</strong> - <b>Condition</b>: Covid19<br/><b>Intervention</b>: Drug: Chloroquine<br/><b>Sponsor</b>: Fundacion Clinica Valle del Lili<br/><b>Active, not recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Adaptive COVID-19 Treatment Trial 4 (ACTT-4)</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Drug: Baricitinib; Drug: Dexamethasone; Other: Placebo; Drug: Remdesivir<br/><b>Sponsor</b>: National Institute of Allergy and Infectious Diseases (NIAID)<br/><b>Not yet recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Vitamin D and Zinc Supplementation for Improving Treatment Outcomes Among COVID-19 Patients in India</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Dietary Supplement: Vitamin D3 (cholecalciferol); Dietary Supplement: Zinc (zinc gluconate); Dietary Supplement: Zinc (zinc gluconate) & Vitamin D (cholecalciferol); Other: Placebo<br/><b>Sponsors</b>: Harvard School of Public Health; Foundation for Medical Research; University Health Network, Toronto<br/><b>Not yet recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Organization of Pulmonary Rehabilitation of Post-COVID-19 Patient With Sequelae (REHABCOVID)</strong> - <b>Condition</b>: Covid19<br/><b>Interventions</b>: Other: Respiratory rehabilitation program (RR).; Other: Respiratory tele-rehabilitation program (TRR).<br/><b>Sponsor</b>: Centre Hospitalier Intercommunal de Toulon La Seyne sur Mer<br/><b>Not yet recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Inhaled Heparin for Hospitalised COVID-19 Patients</strong> - <b>Condition</b>: Covid19<br/><b>Intervention</b>: Drug: Unfractionated heparin<br/><b>Sponsors</b>: Australian National University; Helwan University; Clinica San Camilo, Argentina<br/><b>Recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Effect of Vitamin D on Hospitalized Adults With COVID-19 Infection</strong> - <b>Condition</b>: Covid19<br/><b>Interventions</b>: Drug: Cholecalciferol; Other: Placebo<br/><b>Sponsors</b>: University of Liege; Laboratoires SMB S.A.<br/><b>Recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Efficacy and Safety of Ovotransferrin in COVID-19 Patients</strong> - <b>Condition</b>: Covid19<br/><b>Intervention</b>: Dietary Supplement: Ovotransferrin<br/><b>Sponsor</b>: Azienda Ospedaliera Universitaria Policlinico Paolo Giaccone Palermo<br/><b>Not yet recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Study To antagOnize Plasminogen Activator Inhibitor-1 in Severe COVID-19</strong> - <b>Condition</b>: Covid19<br/><b>Interventions</b>: Drug: TM5614; Other: Placebo<br/><b>Sponsor</b>: Northwestern University<br/><b>Recruiting</b></p></li>
|
||
</ul>
|
||
<h1 data-aos="fade-right" id="from-pubmed">From PubMed</h1>
|
||
<ul>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Bacillus Calmette-Guerin vaccination Policy and Consumption of Ammonium Chloride-Enriched Confectioneries May Be Factors Reducing COVID-19 Death Rates in Europe</strong> - CONCLUSIONS: The results seem to confirm an association between BCG-positive vaccination policy and salmiak consumption, and lower death rates from COVID-19. Implementing BCG vaccination policy and fortification of foods with salmiak (NH4Cl) may have a significant impact on the control of SARS-CoV epidemic.</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Dysregulated immunity in SARS-CoV-2 infected pregnant women</strong> - CONCLUSIONS AND RELEVANCE: SARS-CoV-2 infection during pregnancy was characterized by placental inflammation and reduced antiviral antibody responses, which may impact the efficacy of COVID-19 therapeutics in pregnancy. The long-term implications of placental inflammation for neonatal health also requires greater consideration.</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Novel gene-specific translation mechanism of dysregulated, chronic inflammation reveals promising, multifaceted COVID-19 therapeutics</strong> - Hyperinflammation and lymphopenia provoked by SARS-CoV-2-activated macrophages contribute to the high mortality of Coronavirus Disease 2019 (COVID-19) patients. Thus, defining host pathways aberrantly activated in patient macrophages is critical for developing effective therapeutics. We discovered that G9a, a histone methyltransferase that is overexpressed in COVID-19 patients with high viral load, activates translation of specific genes that induce hyperinflammation and impairment of T cell…</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>The Development of a Novel Nanobody Therapeutic for SARS-CoV-2</strong> - Combating the COVID-19 pandemic requires potent and low-cost therapeutics. We identified a novel series of single-domain antibodies (i.e., nanobody), Nanosota-1, from a camelid nanobody phage display library. Structural data showed that Nanosota-1 bound to the oft-hidden receptor-binding domain (RBD) of SARS-CoV-2 spike protein, blocking out viral receptor ACE2. The lead drug possessing an Fc tag ( Nanosota-1C-Fc ) bound to SARS-CoV-2 RBD with a K (d) of 15.7picomolar (∼3000 times more tightly…</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>One novel virus, different beliefs as playmakers towards disease spread in Africa: looking at COVID-19 from a religious lens</strong> - Religious and spiritual observances that draw large people together are pervasive in many parts of the world, including Africa. With the recent emergence of COVID-19, these mass religious gatherings may pose significant threats to human health. Given the compromised healthcare systems in many parts of Africa, faith-based institutions have a huge responsibility towards the management of the potential spread of the virus through effective organizational strategies or interventions. This essay…</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Plasma-activated water: An alternative disinfectant for S protein inactivation to prevent SARS-CoV-2 infection</strong> - SARS-CoV-2 is a highly contagious virus and is causing a global pandemic. SARS-CoV-2 infection depends on the recognition of and binding to the cellular receptor human angiotensin-converting enzyme 2 (hACE2) through the receptor-binding domain (RBD) of the spike protein, and disruption of this process can effectively inhibit SARS-CoV-2 invasion. Plasma-activated water efficiently inactivates bacteria and bacteriophages by causing damage to biological macromolecules, but its effect on coronavirus…</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Inhibiting the reproduction of SARS-CoV-2 through perturbations in human lung cell metabolic network</strong> - Viruses rely on their host for reproduction. Here, we made use of genomic and structural information to create a biomass function capturing the amino and nucleic acid requirements of SARS-CoV-2. Incorporating this biomass function into a stoichiometric metabolic model of the human lung cell and applying metabolic flux balance analysis, we identified host-based metabolic perturbations inhibiting SARS-CoV-2 reproduction. Our results highlight reactions in the central metabolism, as well as amino…</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Structure of nonstructural protein 1 from SARS-CoV-2</strong> - The periodic emergence of novel coronaviruses (CoVs) represents an ongoing public health concern with significant health and financial burden worldwide. The most recent occurrence originated in the city of Wuhan, China where a novel coronavirus (SARS-CoV-2) emerged causing severe respiratory illness and pneumonia. The continual emergence of novel coronaviruses underscores the importance of developing effective vaccines as well as novel therapeutic options that target either viral functions or…</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Cryo-EM Structure of an Extended SARS-CoV-2 Replication and Transcription Complex Reveals an Intermediate State in Cap Synthesis</strong> - Transcription of SARS-CoV-2 mRNA requires sequential reactions facilitated by the replication and transcription complex (RTC). Here, we present a structural snapshot of SARS-CoV-2 RTC as it transitions toward cap structure synthesis. We determine the atomic cryo-EM structure of an extended RTC assembled by nsp7-nsp8(2)-nsp12-nsp13(2)-RNA and a single RNA-binding protein, nsp9. Nsp9 binds tightly to nsp12 (RdRp) NiRAN, allowing nsp9 N terminus inserting into the catalytic center of nsp12 NiRAN,…</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Metformin Is Associated With Decreased 30-Day Mortality Among Nursing Home Residents Infected With SARS-CoV2</strong> - CONCLUSIONS AND IMPLICATIONS: Our data suggest a reduction in 30-day mortality following SARS-CoV-2 infection in residents who were on metformin-containing diabetes regimens. These findings suggest a relative survival benefit in nursing home residents on metformin, potentially through its mTOR inhibition effects. A prospective study should investigate the therapeutic benefits of metformin among persons with COVID-19.</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>The tyrosine kinase inhibitor nilotinib inhibits SARS-CoV-2 In Vitro</strong> - At the end of 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an enveloped positive-sense RNA virus, was identified for the first time in Wuhan, a city in the Chinese province of Hubei, as the cause of a new pathology which was later named coronavirus disease of 2019 (COVID-19).¹ SARS-CoV2 belongs to the family Coronaviridae and shares 79% nucleotide sequence identity with SARS-CoV and 96% with bat-coronavirus RatG13.^(1,2) The most frequent symptoms of COVID-19 are cough,…</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Down’s syndrome and COVID-19: risk or protection factor against infection? A molecular and genetic approach</strong> - Down syndrome (DS) is the most common genetic cause of learning difficulties and intellectual disabilities. DS patients often present with several congenital defects and chronic diseases, including immunity disorders. Elevated levels of pro-inflammatory cytokines such as interleukin (IL)-6 and tumor necrosis factor alpha (TNF-α) have been seen, which appear to vary with age. At birth, patients present with combined immunodeficiency, with frequent infections that decrease with age. Furthermore,…</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>The biomaterial polyphosphate blocks stoichiometric binding of the SARS-CoV-2 S-protein to the cellular ACE2 receptor</strong> - The effect of the polyanionic polymer of inorganic polyphosphate (polyP) involved in innate immunity on the binding of the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein to the cellular ACE2 receptor was studied. The RBD surface comprises a basic amino acid stretch of four arginine residues which interact with the physiological polyP (polyP(40)) and polyP(3). Subsequently, the interaction of RBD with ACE2 is sensitively inhibited. After the chemical modification of arginine, an…</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Catechin Derivatives as Inhibitor of COVID-19 Main Protease (Mpro): Molecular Docking studies unveils an opportunity against CORONA</strong> - CONCLUSION: Compounds have a great potential to become COVID-19 main protease Mpro inhibitor. Nevertheless for their medicinal use further investigation is necessary.</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Targeted intracellular degradation of SARS-CoV-2 via computationally optimized peptide fusions</strong> - The COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, has elicited a global health crisis of catastrophic proportions. With only a few vaccines approved for early or limited use, there is a critical need for effective antiviral strategies. In this study, we report a unique antiviral platform, through computational design of ACE2-derived peptides which both target the viral spike protein receptor binding domain (RBD) and recruit E3 ubiquitin ligases for subsequent intracellular…</p></li>
|
||
</ul>
|
||
<h1 data-aos="fade-right" id="from-patent-search">From Patent Search</h1>
|
||
<ul>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>AN EFFICIENT METHODOLOGY TO MANAGE THE ADMISSIONS IN HOSPITALS DURING THE PANDEMICS SUCH AS COVID 19</strong> -</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>SARS-CoV-2 예방을 위한 mRNA기반 항원보강제 혼합물 합성 방법</strong> - 본 발명은 SARS-CoV-2(코로나 바이러스) 예방을 위한 mRNA 항원보강제에 관한 것으로 코로나 바이러스에 대한 백신으로서 상기의 항원에 대한 예방을 목적으로 하고 있다. 아이디어에는 보강제에 해당하는 완전프로인트항원보강제(CFA)와 불완전프로인트항원보강제(IFA), 번역과 안정성의 최적화가 된 mRNA, mRNA 운반체, 양이온성 지질 나노입자(lipid nanoparticles)로 구성되며 기존의 백신에 비해 효율성과 안정성의 측면에서 더 향상된 효과를 가지고 있다.</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Vorrichtung zum Reinigen und/oder Desinfizieren von Objekten</strong> -</p>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
||
</p><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">Vorrichtung (1) zum Desinfizieren von Objekten mit einer Basiseinheit (2), mit einem Aufnahmebehälter (4) für Wasser, welcher an der Basiseinheit (2) montierbar und von der Basiseinheit demontierbar ist, mit einer Objekthalterung (6) zum Halten und/oder Stützen der Objekte (10), wobei diese Objekthalterung (6) in dem Aufnahmebehälter montierbar ist und mit einer elektrisch betriebenen Reinigungseinrichtung (8), welche in dem Wasser befindliche Objekte zumindest mittelbar reinigt oder desinfiziert, wobei diese Reinigungseinrichtung in der Basiseinheit befindliche Erzeugungsmittel zum Erzeugen einer elektrischen Spannung aufweist sowie einen Plasmagenerator und/oder eine Ultraschallerzeugungseinheit.</p></li>
|
||
</ul>
|
||
<img alt="embedded image" id="EMI-D00000"/>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"></p>
|
||
<ul>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Methods for treating Arenaviridae and Coronaviridae virus infections</strong> - Provided are methods for treating Arenaviridae and Coronaviridae virus infections by administering nucleosides and prodrugs thereof, of Formula I:</li>
|
||
</ul>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">wherein the ’ position of the nucleoside sugar is substituted. The compounds, compositions, and methods provided are particularly useful for the treatment of Lassa virus and Junin virus infections.</p>
|
||
<ul>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Atemschutz-Baukastensystem</strong> -
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
||
Atemschutz-Baukastensystem, das aufweist:</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">eine auf zumindest Mund und Nase einer Person aufsetzbare Maske (1), die einen Eingang (11) und einen Ausgang (12) aufweist, und</li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">mindestens einen Schlauch (3, 31, 32),</li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">wobei sämtliche Komponenten des Atemschutz-Baukastensystems modular ausgebildet und über Steckverbindungen oder Schraubverbindungen (115, 125, 155, 165, 175, 215, 315, 75, 915) miteinander verbindbar sind, um der Maske (1) Luft über deren Eingang (11) zuzuführen und/oder ausgeatmete Luft vom Ausgang (12) der Maske (1) wegzuführen.</li>
|
||
</ul>
|
||
<img alt="embedded image" id="EMI-D00000"/>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"></p>
|
||
<ul>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Vorrichtung zur Übergabe und Dekontamination von mit Krankheitserregern kontaminierten Gegenständen oder Erzeugnissen</strong> -
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
||
Vorrichtung zur Übergabe von mit Krankheitserregern kontaminierten Gegenständen oder Erzeugnissen nach einer Dekontamination, umfassend eine Einrichtung zur Dekontamination der mit Krankheitserregern kontaminierten Gegenstände oder Erzeugnisse mit mindestens einer UV-Strahlungsquelle (24), eine Durchzugseinrichtung mit Ein- und/oder Ausgabebereichen für die kontaminierten bzw. dekontaminierten Gegenstände oder Erzeugnisse, dadurch gekennzeichnet, dass die Durchzugseinrichtung im Eingang bzw. im Ausgang zum Ein- und/oder Ausgabebereich angeordnete sich paarweise gegenüberliegende Walzen (17) und Räder (4) umfasst, die zum Einzug bzw. zur Ausgabe der kontaminierten bzw. dekontaminierten Gegenstände oder Erzeugnisse vorgesehen sind, wobei die Walzen (17) und die Räder (4) durch im Ein- und/oder Ausgabebereich angeordnete Sensoren (23) und einer elektronische Kontrolleinheit (27) in Bewegung bringbar sind, wobei die Gegenstände oder Erzeugnisse in den Bereich der Einrichtung zur Dekontamination förderbar sind, der zwischen den paarweise angeordneten Walzen (17) und Rädern (4) vorgesehen ist, welcher sich gegenüberliegende Platten (25) aus Quarzglas oder einem UV-transparenten Polymermaterial, wie Graphen oder Kunstglas umfasst, über bzw. unter welchen die UV-Strahlungsquelle (24) angeordnet ist, welche als UVC-LED-Leiste und/oder Modul mit mindestens einer LED-Lampe ausgebildet ist.</p></li>
|
||
</ul>
|
||
<img alt="embedded image" id="EMI-D00000"/>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"></p>
|
||
<ul>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>제2형 중증급성호흡기증후군 코로나바이러스 감염 질환의 예방 또는 치료용 조성물</strong> - 본 발명은 화학식 1로 표시되는 화합물, 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는 제2형 중증급성호흡기증후군 코로나바이러스 감염 질환 예방 또는 치료용 약학적 조성물을 제공한다. [화학식 1] .</p>
|
||
<pre><code> JPEG
|
||
112020094463686-pat00017.jpg
|
||
48
|
||
135</code></pre></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>新型冠状病毒中和性抗体滴度检测ELISA试剂盒</strong> - 本发明提供一种新型冠状病毒中和性抗体滴度检测ELISA试剂盒,其中包括:包被有生物素‑链霉亲和素标记的人ACE2蛋白的酶标板、辣根过氧化酶标记的新型冠状病毒RBD蛋白、新型冠状病毒中和性抗体阳性对照、包被液、洗涤液、稀释液、封闭液、显色液和终止液等。该试剂盒具有成本低,操作简单,高灵敏度、高特异性、高准确度的特点,可用于新型冠状病毒中和抗体的批量、快速检测。</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Reagenzien und Verwendungen zur Diagnose einer SARS-CoV-2-Infektion</strong> -</p>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
||
</p><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">Diagnostisch nützlicher Träger umfassend ein Polypeptid umfassend SEQ ID NO1 oder eine Variante davon, die an einen Antikörper gegen SEQ ID NO1 aus einer Probe von einem Patienten binden kann, der an einer SARS-CoV-2-Infektion leidet, wobei das Polypeptid bevorzugt auf der Festphase des Trägers immobilisiert ist.</p></li>
|
||
</ul>
|
||
<img alt="embedded image" id="EMI-D00000"/>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"></p>
|
||
<ul>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Reagenzien und Verwendungen zur Diagnose einer SARS-CoV-2-Infektion</strong> -
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
||
Verwendung eines Polypeptides umfassend SEQ ID NO1 oder eine Variante davon, die an einen Antikörper gegen SED ID NO1 aus einer Probe von einem Patienten binden kann, zur Herstellung eines diagnostischen Kits.</p></li>
|
||
</ul>
|
||
<img alt="embedded image" id="EMI-D00000"/>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"></p>
|
||
|
||
|
||
<script>AOS.init();</script></body></html> |