217 lines
56 KiB
HTML
217 lines
56 KiB
HTML
<!DOCTYPE html>
|
||
<html lang="" xml:lang="" xmlns="http://www.w3.org/1999/xhtml"><head>
|
||
<meta charset="utf-8"/>
|
||
<meta content="pandoc" name="generator"/>
|
||
<meta content="width=device-width, initial-scale=1.0, user-scalable=yes" name="viewport"/>
|
||
<title>10 April, 2021</title>
|
||
<style type="text/css">
|
||
code{white-space: pre-wrap;}
|
||
span.smallcaps{font-variant: small-caps;}
|
||
span.underline{text-decoration: underline;}
|
||
div.column{display: inline-block; vertical-align: top; width: 50%;}
|
||
</style>
|
||
<title>Covid-19 Sentry</title><meta content="width=device-width, initial-scale=1.0" name="viewport"/><link href="styles/simple.css" rel="stylesheet"/><link href="../styles/simple.css" rel="stylesheet"/><link href="https://unpkg.com/aos@2.3.1/dist/aos.css" rel="stylesheet"/><script src="https://unpkg.com/aos@2.3.1/dist/aos.js"></script></head>
|
||
<body>
|
||
<h1 data-aos="fade-down" id="covid-19-sentry">Covid-19 Sentry</h1>
|
||
<h1 data-aos="fade-right" data-aos-anchor-placement="top-bottom" id="contents">Contents</h1>
|
||
<ul>
|
||
<li><a href="#from-preprints">From Preprints</a></li>
|
||
<li><a href="#from-clinical-trials">From Clinical Trials</a></li>
|
||
<li><a href="#from-pubmed">From PubMed</a></li>
|
||
<li><a href="#from-patent-search">From Patent Search</a></li>
|
||
</ul>
|
||
<h1 data-aos="fade-right" id="from-preprints">From Preprints</h1>
|
||
<ul>
|
||
<li><strong>The homology analysis of ACE2 gene and its distinct expression in laboratory and wild animals</strong> -
|
||
<div>
|
||
Angiotensin-converting enzyme-2 (ACE2) has been recognized as an entry receptor of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into the host cells while bats has been suspected as natural host of SARS-CoV-2. However, the detail of intermediate host or the route of transmission of SARS-CoV-2 is still unclear. In this study, we analyze the conservation of ACE2 gene in 11 laboratory and wild animals that live in close proximity either with Bats or human and further investigated its RNA and protein expression pattern in wild bats, mice and tree shrew. We verified that the wild-bats and mice were belonged to Hipposideros pomona and Rattus norvegicus, respectively. ACE2 gene is highly conserved among all 11 animals species at the DNA level. Phylogenetic analysis based on the ACE2 nucleotide sequences revealed that wild bat and Tree shrew were forming a cluster close to human. We further report that ACE2 RNA expression pattern is highly species-specific in different tissues of different animals. Most notably, we found that the expression pattern of ACE2 RNA and protein are very different in each animal species. In summary, our results suggested that ACE2 gene is highly conserved among all 11 animals species. However, different relative expression pattern of ACE2 RNA and protein in each animal species is interesting. Further research is needed to clarify the possible connection between different relative expression pattern of ACE2 RNA and protein in different laboratory and wild animal species and the susceptibility to SARS-CoV-2 infection.
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2021.04.08.439088v1" target="_blank">The homology analysis of ACE2 gene and its distinct expression in laboratory and wild animals</a>
|
||
</div></li>
|
||
<li><strong>Exploring zebrafish larvae as a COVID-19 model: probable SARS-COV-2 replication in the swim bladder</strong> -
|
||
<div>
|
||
Animal models are essential to understand COVID-19 pathophysiology and for pre-clinical assessment of drugs and other therapeutic or prophylactic interventions. We explored the small, cheap and transparent zebrafish larva as a potential host for the SARS-CoV-2 virus. Bath exposure, as well as microinjection in the coelom, pericardium, brain ventricle, bloodstream, or yolk, did not result in detectable SARS-CoV-2 replication in wild-type larvae. However, when the virus was inoculated in the swim bladder, a modest increase in viral RNA was observed after 24 hours, suggesting a successful infection in some animals. The low infectivity of SARS- CoV-2 in zebrafish was not due to the host type I interferon response, as similar results were observed in type I interferon-deficient animals. We could not detect the induction of transcriptional type I interferon or inflammatory cytokine responses following infection. Overexpression of human ACE2 in a mosaic fashion by plasmid injection in eggs was not sufficient to increase SARS-CoV-2 infectivity. In conclusion, wild-type zebrafish larvae appear mostly non-permissive to SARS-CoV-2, except in the swim bladder, an aerial organ sharing similarities with lungs.
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2021.04.08.439059v1" target="_blank">Exploring zebrafish larvae as a COVID-19 model: probable SARS-COV-2 replication in the swim bladder</a>
|
||
</div></li>
|
||
<li><strong>Reflections of COVID-19 cases on the wastewater loading of SARS-CoV-2 RNA: A case of three major cities of Gujarat, India</strong> -
|
||
<div>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
||
The scientific community has widely supported wastewater monitoring of SARS-CoV-2 due to the early and prolonged excretion of coronavirus in the faecal matter. In the present study, eighteen influent wastewater samples from different wastewater treatment plants and pumping stations (5 samples from Vadodara city, 4 from Gandhinagar, and nine from Ahmedabad city) were collected and analyzed for the occurrence of SARS-CoV-2 RNA in Gujarat province, India. The results showed the highest SARS-CoV-2 genome concentration in Vadodara (3078 copies/ L), followed by Ahmedabad (2968 copies/ L) and Gandhinagar (354 copies/ L). The comparison of genome concentration corresponded to the number of confirmed and active cases in all three cities. The study confirms the potential of the Surveillance of Wastewater for Early Epidemic Prediction (SWEEP) that can be used at a large scale around the globe for better dealing with the pandemic situation.
|
||
</p>
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.04.08.21254861v1" target="_blank">Reflections of COVID-19 cases on the wastewater loading of SARS-CoV-2 RNA: A case of three major cities of Gujarat, India</a>
|
||
</div></li>
|
||
<li><strong>Antibody Responses in Elderly Residential Care Persons following COVID-19 mRNA Vaccination</strong> -
|
||
<div>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
||
Objective COVID-19 disproportionately impacts older adults residing at long-term care facilities. Data regarding antibody response to COVID-19 vaccines in this population is limited. Our objective was to quantify the presence and magnitude of antibody response in older, vaccinated residents at assisted living, personal care, and independent living facilities. Design A cross-sectional quality improvement study was conducted March 15-April 1, 2021 in the Pittsburgh region. Setting and Population Participants were volunteers at assisted living, personal care, and independent living facilities, who received mRNA COVID-19 vaccine. Conditions that obviate immune responses were exclusionary criteria. Methods Sera were collected to measure IgG anti-SARS-CoV-2 antibody level with reflex to total anti-SARS-CoV-2 immunoglobulin levels. Descriptive statistics, Pearson correlation coefficients, and multiple linear regression analysis were performed to evaluate relationships between factors potentially associated with antibody levels. Results All participants (N=70) had received two rounds of vaccination for COVID-19 and were found to have antibodies to SARS-CoV-2. There was wide variation in relative levels of antibodies as determined by extinction coefficients. Antibody levels trended lower in male sex, advanced age, steroid medications, and longer length of time from vaccination. Conclusions and Implications Higher functioning long-term care residents mounted detectable antibody responses when vaccinated with COVID-19 mRNA-based vaccines. This study provides preliminary information on level of population risk of assisted living, personal care, and independent living residents which can inform reopening strategies. Data suggests some degree of immunity is present during the immediate period following vaccination. However, protective effects of such vaccination programs remain to be determined in larger studies. Clinical protection is afforded not just by pre-formed antibody levels, but by ongoing adaptive immunity, which is known to be decreased in older individuals. Thus, the implications of these levels of antibodies in preventing COVID-19 disease must be determined by clinical follow-up.
|
||
</p>
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.04.07.21254925v1" target="_blank">Antibody Responses in Elderly Residential Care Persons following COVID-19 mRNA Vaccination</a>
|
||
</div></li>
|
||
<li><strong>Cardiac Surgery during the Covid-19 Pandemic: Evidence from the first wave</strong> -
|
||
<div>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
||
Background: The Covid-19 pandemic has affected human behaviour and burdened health systems and has thus had an impact on other health outcomes. Objective: This paper studies whether there was a decrease in cardiac surgery operations in Greece during the first wave of the Covid-19 pandemic. Data and Methods: We used data from 7 major hospitals that geographically cover about half the country and more than half the population, including a mix of public, private, military and childrens hospitals. We used a difference-in-differences econometric approach to compare trends in cardiac surgery before and after the pandemic in 2020, to the same months in 2019, controlling for seasonality and unemployment, and using hospital fixed effects. Results: We found that during the first wave of the pandemic and the associated lockdown, there were 35-56% fewer cardiac surgery operations compared to what we would have expected in the absence of the pandemic. Conclusions: There was a steep decline in Cardiac surgery operations in Greece during the first wave of the Covid-19 pandemic. Possible reasons may include people not seeking medical attention to avoid the risk of catching Covid-19; fewer referrals; and working from home, thus not being exposed to a stressful work environment or commute.
|
||
</p>
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.04.07.21254206v1" target="_blank">Cardiac Surgery during the Covid-19 Pandemic: Evidence from the first wave</a>
|
||
</div></li>
|
||
<li><strong>Covid-19 and Excess Mortality in Medicare Beneficiaries</strong> -
|
||
<div>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
||
We estimated excess mortality in Medicare recipients with probable and confirmed Covid-19 infections in the general community and amongst residents of long-term care (LTC) facilities. We considered 28,389,098 Medicare and dual-eligible recipients from one year before February 29, 2020 through September 30, 2020, with mortality followed through November 30th, 2020. Probable and confirmed Covid-19 diagnoses, presumably mostly symptomatic, were determined from ICD-10 codes. We developed a Risk Stratification Index (RSI) mortality model which was applied prospectively to establish baseline mortality risk. Excess deaths attributable to Covid-19 were estimated by comparing actual-to-expected deaths based on historical comparisons and in closely matched cohorts with and without Covid-19. 677,100 (2.4%) beneficiaries had confirmed Covid-19 and 2,917,604 (10.3%) had probable Covid-19. 472,329 confirmed cases were community living and 204,771 were in LTC. Mortality following a probable or confirmed diagnosis in the community increased from an expected incidence of about 4% to actual incidence of 7.5%. In long-term care facilities, the corresponding increase was from 20.3% to 24.6%. The absolute increase was therefore similar at 3-4% in the community and in LTC residents. The percentage increase was far greater in the community (89%) than among patients in chronic care facilities (21%) who had higher baseline risk. The LTC population without probable or confirmed Covid-19 diagnoses experienced 38,932 excess deaths (35%) compared to historical estimates. Limitations in access to Covid-19 testing and disease under-reporting in LTC patients probably were important factors, although social isolation and disruption in usual care presumably also contributed. Remarkably, there were 31,360 fewer deaths than expected in community dwellers without probable or confirmed Covid-19 diagnoses, representing a 6% reduction. Disruptions to the healthcare system and avoided medical care were thus apparently offset by other factors, representing overall benefit. The Covid-19 pandemic had marked effects on mortality, but the effects were highly context-dependent.
|
||
</p>
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.04.07.21254793v1" target="_blank">Covid-19 and Excess Mortality in Medicare Beneficiaries</a>
|
||
</div></li>
|
||
<li><strong>Companionship for women using English maternity services during COVID-19: National and organisational perspectives</strong> -
|
||
<div>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
||
Objectives: To explore the impact of COVID-19 on companionship for women using maternity services in England, as part of the Achieving Safe and Personalised maternity care In Response to Epidemics (ASPIRE COVID-19 UK) study. Setting: Maternity care provision in England. Participants: Interviews were held with 26 national governmental, professional, and service-user organisation leads including representatives from the Royal College of Midwives, NHS England, Birthrights and AIMS (July-Dec). Other data included public-facing outputs logged from 25 maternity Trusts (Sept/Oct) and data extracted from 78 documents from 8 key governmental, professional and service-user organisations that informed national maternity care guidance and policy (Feb-Dec). Results: Six themes emerged: Postcode lottery of care highlights variations in companionship practices, Confusion and stress around rules relates to a lack of and variable information concerning companionship, Unintended consequences concerns the negative impacts of restricted companionship on service-users and staff, Need for flexibility highlights concerns about applying companionship policies irrespective of need, Acceptable time for support highlights variations in when and if companionship was allowed antenatally and intrapartum; and Loss of human rights for gain in infection control emphasizes how a predominant focus on infection control was at a cost to psychological safety and womens human rights. Conclusions: Policies concerning companionship have been inconsistently applied within English maternity services during the COVID-19 pandemic. In some cases, policies were not justified by the level of risk, and were applied indiscriminately regardless of need. This was associated with psychological harms for some women and staff. There is an urgent need to determine how to balance risks and benefits sensitively and flexibly and to optimise outcomes during the current and future crisis situations.
|
||
</p>
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.04.08.21254762v1" target="_blank">Companionship for women using English maternity services during COVID-19: National and organisational perspectives</a>
|
||
</div></li>
|
||
<li><strong>Increased Resistance of SARS-CoV-2 Variant P.1 to Antibody Neutralization</strong> -
|
||
<div>
|
||
The relative resistance of SARS-CoV-2 variants B.1.1.7 and B.1.351 to antibody neutralization has been described recently. We now report that another emergent variant from Brazil, P.1, is not only refractory to multiple neutralizing monoclonal antibodies, but also more resistant to neutralization by convalescent plasma (3.4 fold) and vaccinee sera (3.8-4.8 fold). The cryo-electron microscopy structure of a soluble prefusion-stabilized spike reveals the P.1 trimer to adopt exclusively a conformation in which one of the receptor-binding domains is in the “up” position, with the functional impact of mutations appearing to arise from local changes instead of global conformational alterations. The P.1 variant threatens current antibody therapies but less so the protective efficacy of our vaccines.
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2021.03.01.433466v2" target="_blank">Increased Resistance of SARS-CoV-2 Variant P.1 to Antibody Neutralization</a>
|
||
</div></li>
|
||
<li><strong>Getting Closer by Moving Apart? Strategic Interdependence and Preferences for Debt Mutualization in the Eurozone</strong> -
|
||
<div>
|
||
Existing research suggests that a “democratic constraint” blocks progress towards debt mutualization in the eurozone: voters in creditor countries fiercely oppose debt sharing, while voters in debtor countries strongly support remaining in the euro, which limits their governments’ bargaining power. However, this literature neglects that preferences depend on expectations about what other countries will do. We document this strategic interdependence with a novel survey experiment in Germany and Italy, conducted at a crucial moment during the COVID-19 pandemic. Italian voters vastly discount the costs of a disorderly exit, while they strongly reduce their support for the euro if austerity is a condition for continued euro membership. Faced with the possibility of Italexit, German voters weigh the costs of a possible breakup of the euro more heavily than the costs of debt mutualization. A majority thus accepts debt mutualization. These results suggest that voters take strategic interdependence into account when formulating their preferences and that public opinion is not (or no longer) a binding constrain for increasing fiscal risk-sharing in the eurozone. Moreover, we reconstruct the debate about the pandemic recovery fund in Germany and Italy and show that the German change of position was aimed at defusing a threat to the integrity of the eurozone.
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://osf.io/preprints/socarxiv/atg8p/" target="_blank">Getting Closer by Moving Apart? Strategic Interdependence and Preferences for Debt Mutualization in the Eurozone</a>
|
||
</div></li>
|
||
<li><strong>Evaluating and optimizing COVID-19 vaccination policies: a case study of Sweden</strong> -
|
||
<div>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
||
We evaluate the efficiency of vaccination scenarios for COVID-19 by analysing a data-driven mathematical model. Healthcare demand and incidence are investigated for different scenarios of transmission and vaccination schemes. Our results suggest that reducing the transmission rate affected by invading virus strains, seasonality and the level of prevention, is most important. Second to this is timely vaccine deliveries and expeditious vaccination management. Postponing vaccination of antibody-positive individuals reduces also the disease burden, and once risk groups have been vaccinated, it is best to continue vaccinating in a descending age order.
|
||
</p>
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.04.07.21255026v1" target="_blank">Evaluating and optimizing COVID-19 vaccination policies: a case study of Sweden</a>
|
||
</div></li>
|
||
<li><strong>Network assessment and modeling the management of an epidemic on a college campus with testing, contact tracing, and masking</strong> -
|
||
<div>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
||
There remains a great challenge to minimize the spread of epidemics. This may be particularly true on densely populated, residential college campuses. To construct class and residential networks I used data from a four-year, residential liberal arts college with 5539 students. Equal-sized random networks also were created for each day. Different levels of compliance with mask use (none to 100%), mask efficacy (50% to 100%), and testing frequency (daily, or every 2, 3, 7, 14, 28, or 105 days) were assessed. Tests were assumed to be only 90% accurate and positive results were used to isolate individuals. I also tested the effectiveness of contact tracing and subsequent quarantining of neighbors of infectious individuals. I used class enrollment and residence data from a college with 5539 students to analyze network structure and test the epidemic potential of the infectious disease agent SARS-CoV-2. Average path lengths were longer in the college networks compared to random networks. Students in larger majors generally had shorter average path lengths. Average transitivity (clustering) was lower on days when students most frequently were in class (MWF). Degree distributions were generally large and right skewed, ranging from 0 to 719. Simulations began by inoculating twenty students (10 exposed and 10 infectious) with SARS-CoV-2 on the first day of the fall semester and ended once the disease was cleared. Transmission probability was calculated based on an R0 = 2:4. Without interventions epidemics resulted in most students becoming infected and lasted into the second semester. On average students in the college networks experienced fewer infections, shorter duration, and lower epidemic peaks that occurred compared to dynamics on equal-sized random networks. The most important factors in reducing case numbers were the proportion masking and the frequency of testing, followed by contact tracing and mask efficacy. The paper discusses further high-order interactions and other implications of non-pharmaceutical interventions for disease transmission on a residential college campus.
|
||
</p>
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.04.06.21255015v1" target="_blank">Network assessment and modeling the management of an epidemic on a college campus with testing, contact tracing, and masking</a>
|
||
</div></li>
|
||
<li><strong>Continuous monitoring of SARS-CoV-2 RNA in urban wastewater from Porto, Portugal: sampling and analysis protocols</strong> -
|
||
<div>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
||
Research on the emerging COVID-19 pandemic is demonstrating that wastewater infrastructures can be used as public health observatories of virus circulation in human communities. Important efforts are being organized worldwide to implement sewage-based surveillance of SARS-CoV-2 that can be used for preventive or early warning purposes, informing preparedness and response measures. However, its successful implementation requires important and iterative methodological improvements, as well as the establishment of standardized methods. The aim of this study was to develop a continuous monitoring protocol for SARS-CoV-2 in wastewater, that could be used to model virus circulation within the communities, complementing the current clinical surveillance. Specific objectives included (1) optimization and validation of a sensitive method for virus quantification; (2) monitoring the time-evolution of SARS-CoV-2 in wastewater from two wastewater treatment plants (WWTPs) in the city of Porto, Portugal. Untreated wastewater samples were collected weekly from the two WWTPs between May 2020 and March 2021, encompassing two COVID-19 incidence peaks in the region (mid-November 2020 and mid-January 2021). In the first stage of this study, we compared, optimized and selected a sampling and analysis protocol that included RNA virus concentration through centrifugation, RNA extraction from both liquid and solid fractions and quantification by reverse transcription quantitative PCR (RT-qPCR). In the second stage, we used the selected methodology to track SARS-CoV-2 in the collected wastewater over time. SARS-CoV-2 RNA was detected in 39 and 37 out of 48 liquid and solid fraction samples of untreated wastewater, respectively. The copy numbers varied throughout the study between 0 and 0.15 copies/ng RNA and a good fit was observed between the SARS-CoV-2 RNA concentration in the untreated wastewater and the COVID-19 temporal trends in the study region. In agreement with the recent literature, the results from this study support the use of wastewater-based surveillance to complement clinical testing and evaluate temporal and spatial trends of the current pandemic.
|
||
</p>
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.04.06.21254994v1" target="_blank">Continuous monitoring of SARS-CoV-2 RNA in urban wastewater from Porto, Portugal: sampling and analysis protocols</a>
|
||
</div></li>
|
||
<li><strong>The Value of a Regional Living COVID-19 Registry and the Challenges of Keeping It Alive</strong> -
|
||
<div>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
||
Background: The need for rapid access to regularly updated patient data for hypothesis testing, surge planning, and epidemiologic investigations underscore the value of updated registries that clinicians, researchers, and policy makers can easily access for local and regional planning. We sought to create an adaptive, living registry containing detailed clinical and epidemiologic and outcome data from SARS-CoV-2-PCR-positive patients in our healthcare system. Methods: From 03/13/202 onward, demographics, comorbidities, outpatient medications, along with 75 laboratory, 2 imaging, 19 therapeutic, and 4 outcome-related parameters were manually extracted from the electronic medical record of SARS-CoV-2 positive patients. These parameters were entered on a registry featuring calculation, graphing tools, pivot tables, and a macro programming language. Initially, two internal medicine residents populated the database, then professional data abstractors populated the registry. When the National Center for Immunization and Respiratory Diseases released their COVID-19 case report form for public access, we adapted it and used it on a browser-based, metadata-driven electronic data capture software platform. Statistics were performed in R and Minitab. Results: At the time of this submission, 200,807 SARS-CoV-2 RT-PCR tests were performed on 107,604 distinct patients. 3699 (3.4%) of those have had positive results. Of those, 399 (11%) have had the more than 75 parameters full entered in the registry. The average follow-up period was 25 days (range 21-34 days). Age, male gender, diabetes, hypertension, cardiovascular disease, kidney disease, and cancer were associated with hospital admission (all p values < 0.01), but not ICU admission. Statin, ACEI-ARB, and acid suppressant use were associated with admission (all p values < 0.03). Obesity and history of autoimmune disease were not associated with need for admission. Supplemental oxygen, vasopressor requirement, and outpatient statin use were associated with increased mortality (all p values < 0.03). Conclusion: A living COVID-19 registry represents a mechanism to facilitate optimal sharing of data between providers, consumers, health information networks, and health plans through technology-enabled, secure-access electronic health information. Our approach also involves a diversity of new roles in the field, such as using residents, staff, and the quality department, in addition to professional data extractors and the health informatics team. However, due to the overwhelming number of infections that continues to accelerate, and the labor/time intense nature of the project, only 11% of all patients with COVID-19 had all parameters entered in the registry. Therefore, this report also offers lessons learned and discusses sustainability issues, should others wish to establish a registry. It also highlights the local and broader public health significance of the registry.
|
||
</p>
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.04.06.21255019v1" target="_blank">The Value of a Regional Living COVID-19 Registry and the Challenges of Keeping It Alive</a>
|
||
</div></li>
|
||
<li><strong>Identifiability and Predictability of Integer- and Fractional-Order Epidemiological Models Using Physics-Informed Neural Networks</strong> -
|
||
<div>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
||
We analyze a plurality of epidemiological models through the lens of physics-informed neural networks (PINNs) that enable us to identify multiple time-dependent parameters and to discover new data-driven fractional differential operators. In particular, we consider several variations of the classical susceptible-infectious-removed (SIR) model by introducing more compartments and delay in the dynamics described by integer-order, fractional-order, and time-delay models. We report the results for the spread of COVID-19 in New York City, Rhode Island and Michigan states, and Italy, by simultaneously inferring the unknown parameters and the unobserved dynamics. For integer-order and time-delay models, we fit the available data by identifying time-dependent parameters, which are represented by neural networks (NNs). In contrast, for fractional differential models, we fit the data by determining different time-dependent derivative orders for each compartment, which we represent by NNs. We investigate the identifiability of these unknown functions for different datasets, and quantify the uncertainty associated with NNs and with control measures in forecasting the pandemic.
|
||
</p>
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.04.05.21254919v1" target="_blank">Identifiability and Predictability of Integer- and Fractional-Order Epidemiological Models Using Physics-Informed Neural Networks</a>
|
||
</div></li>
|
||
<li><strong>Behavioural responses to Covid-19 health certification: A rapid review</strong> -
|
||
<div>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
||
Background Covid-status certification (certificates for those who test negative for the SARS-CoV-2 virus, test positive for antibodies, or who have been vaccinated against SARS-CoV-2) has been proposed to enable safer access to a range of activities. Realising these benefits will depend in part upon the behavioural and social impacts of certification. The aim of this rapid review was to describe public attitudes towards certification, and its possible impact on uptake of testing and vaccination, protective behaviours, and crime. Method A search was undertaken in peer-reviewed databases, pre-print databases, and the grey literature, from 2000 to December 2020. Studies were included if they measured attitudes towards or behavioural consequences of health certificates based on one of three indices of Covid-19 status: test-negative result for current infectiousness, test-positive for antibodies conferring natural immunity, or vaccination(s) conferring immunity. Results Thirty-three papers met the inclusion criteria, only three of which were rated as low risk of bias. Public attitudes were generally favourable towards the use of immunity certificates for international travel, but unfavourable towards their use for access to work and other activities. A significant minority was strongly opposed to the use of certificates of immunity for any purpose. The limited evidence suggested that intention to get vaccinated varied with the activity enabled by certification or vaccination (e.g., international travel). Where vaccination is seen as compulsory this could lead to unwillingness to accept a subsequent vaccination. There was some evidence that restricting access to settings and activities to those with antibody test certificates may lead to deliberate exposure to infection in a minority. Behaviours that reduce transmission may decrease upon health certificates based on any of the three indices of Covid-19 status, including physical distancing and handwashing. Conclusions The limited evidence suggests that health certification in relation to COVID-19 (outside of the context of international travel) has the potential for harm as well as benefit. Realising the benefits while minimising the harms will require real-time evaluations allowing modifications to maximise the potential contribution of certification to enable safer access to a range of activities.
|
||
</p>
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.04.07.21255072v1" target="_blank">Behavioural responses to Covid-19 health certification: A rapid review</a>
|
||
</div></li>
|
||
</ul>
|
||
<h1 data-aos="fade-right" id="from-clinical-trials">From Clinical Trials</h1>
|
||
<ul>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Rehabilitation for Patients With Persistent Symptoms Post COVID-19</strong> - <b>Condition</b>: Covid19<br/><b>Intervention</b>: Other: Concentrated rehabilitation for patients with persistent symptoms post COVID-19<br/><b>Sponsors</b>: Western Norway University of Applied Sciences; Helse-Bergen HF<br/><b>Recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Study of DS-5670a (COVID-19 Vaccine) in Japanese Healthy Adults and Elderly Subjects</strong> - <b>Condition</b>: Covid19<br/><b>Interventions</b>: Biological: DS-5670a; Biological: Placebo<br/><b>Sponsor</b>: Daiichi Sankyo Co., Ltd.<br/><b>Recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Efficacy, Immunogenicity and Safety of Inactivated ERUCOV-VAC Compared With Placebo in COVID-19</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Biological: ERUCOV-VAC 3 µg/0.5 ml Vaccine; Biological: ERUCOV-VAC 6 µg/0.5 ml Vaccine; Other: Placebo<br/><b>Sponsors</b>: Health Institutes of Turkey; Erciyes University Scientific Research Projects Coordination<br/><b>Recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Efficacy and Safety of Three Different Doses of an Anti SARS-CoV-2 Hyperimmune Equine Serum in COVID-19 Patients</strong> - <b>Condition</b>: Covid19<br/><b>Interventions</b>: Biological: Anti SARS-CoV-2 equine hyperimmune serum; Biological: placebo<br/><b>Sponsors</b>: Caja Costarricense de Seguro Social; Universidad de Costa Rica; Ministry of Health Costa Rica<br/><b>Not yet recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Viral Clearance, PK and Tolerability of Ensovibep in COVID-19 Patients</strong> - <b>Condition</b>: Covid19<br/><b>Intervention</b>: Drug: ensovibep<br/><b>Sponsor</b>: Molecular Partners AG<br/><b>Recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A Nurse-Community Health Worker-Family Partnership Model: Addressing Uptake of COVID-19 Testing and Control Measures</strong> - <b>Condition</b>: COVID-19<br/><b>Intervention</b>: Behavioral: Nurse-Community-Family Partnership Intervention<br/><b>Sponsor</b>: New York University<br/><b>Not yet recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Safety and Immunogenicity of the Inactivated Koçak-19 Inaktif Adjuvanlı COVID-19 Vaccine Compared to Placebo</strong> - <b>Condition</b>: COVID-19 Vaccine<br/><b>Interventions</b>: Biological: Koçak-19 Inaktif Adjuvanlı COVID-19 Vaccine 4 µg/0.5 ml Vaccine; Biological: Koçak-19 Inaktif Adjuvanlı COVID-19 Vaccine 6 µg/0.5 ml Vaccine; Biological: Placebo<br/><b>Sponsor</b>: Kocak Farma<br/><b>Recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A Dose Finding, Efficacy and Safety Study of Ensovibep (MP0420) in Ambulatory Adult Patients With Symptomatic COVID-19</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Drug: ensovibep; Drug: Placebo<br/><b>Sponsors</b>: Molecular Partners AG; Novartis Pharmaceuticals; Iqvia Pty Ltd; Datamap; SYNLAB Analytics & Services Switzerland AG; Q2 Solutions<br/><b>Not yet recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Vitamin D, Omega-3, and Combination Vitamins B, C and Zinc Supplementation for the Treatment and Prevention of COVID-19</strong> - <b>Condition</b>: Covid19<br/><b>Interventions</b>: Dietary Supplement: Vitamin D; Dietary Supplement: Omega DHA / EPA; Dietary Supplement: Vitamin C, Vitamin B complex and Zinc Acetate<br/><b>Sponsors</b>: Hospital de la Soledad; Microclinic International<br/><b>Recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Study on Sequential Immunization of Recombinant COVID-19 Vaccine (Ad5 Vector) and RBD-based Protein Subunit Vaccine</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Biological: recombinant Ad5 vectored COVID-19 vaccine; Biological: RBD-based protein subunit vaccine (ZF2001) against COVID-19; Biological: trivalent split influenza vaccine<br/><b>Sponsor</b>: Jiangsu Province Centers for Disease Control and Prevention<br/><b>Not yet recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Respiratory Tele Monitoring COVID 19 (TMR COVID-19)</strong> - <b>Condition</b>: Covid19<br/><b>Interventions</b>: Device: Radius PPG Tetherless Pulse Oximetry (Masimo); Device: usual monitoring<br/><b>Sponsor</b>: Assistance Publique Hopitaux De Marseille<br/><b>Recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Omega-3 Oil Use in COVID-19 Patients in Qatar</strong> - <b>Condition</b>: COVID-19<br/><b>Intervention</b>: Drug: Omega 3 fatty acid<br/><b>Sponsor</b>: Hamad Medical Corporation<br/><b>Recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Cetirizine and Famotidine for COVID-19</strong> - <b>Condition</b>: Covid19<br/><b>Interventions</b>: Drug: Cetirizine and Famotidine; Drug: Placebo<br/><b>Sponsor</b>: Emory University<br/><b>Not yet recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>TCB008 in Patients With COVID-19</strong> - <b>Condition</b>: Covid19<br/><b>Intervention</b>: Drug: TCB008<br/><b>Sponsor</b>: TC Biopharm<br/><b>Not yet recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Dual MRI for Cardiopulmonary COVID-19 Long Haulers</strong> - <b>Condition</b>: Covid19<br/><b>Intervention</b>: Drug: Hyperpolarized 129Xenon gas<br/><b>Sponsor</b>: Bastiaan Driehuys<br/><b>Not yet recruiting</b></p></li>
|
||
</ul>
|
||
<h1 data-aos="fade-right" id="from-pubmed">From PubMed</h1>
|
||
<ul>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Thrombotic Thrombocytopenia after ChAdOx1 nCov-19 Vaccination</strong> - CONCLUSIONS: Vaccination with ChAdOx1 nCov-19 can result in the rare development of immune thrombotic thrombocytopenia mediated by platelet-activating antibodies against PF4, which clinically mimics autoimmune heparin-induced thrombocytopenia. (Funded by the German Research Foundation.).</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Involvement of the complement cascade in severe forms of COVID-19</strong> - The complement system is an essential component of the innate immune system. Its excessive activation during COVID-19 contributes to cytokine storm, disease-specific endothelial inflammation (endotheliitis) and thrombosis that comes with the disease. Targeted therapies of complement inhibition in COVID-19, in particular blocking the C5a-C5aR1 axis have to be taken into account in the establishment of potential biomarkers and development of therapeutic strategies in the most severe forms of the…</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Ultraviolet A Radiation and COVID-19 Deaths in the USA with replication studies in England and Italy</strong> - CONCLUSIONS: Our analysis suggests that higher ambient UVA exposure is associated with lower COVID-19 specific mortality. Further research on the mechanism may indicate novel treatments. Optimised UVA exposure may have population health benefits.</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Interferon-lambda3 Exacerbates the Inflammatory Response to Microbial Ligands: Implications for SARS-CoV-2 Pathogenesis</strong> - INTRODUCTION: Interferon lambdas (IFN-λs) are antiviral cytokines that restrict pathogen infection and dissemination at barrier surfaces. Controlled expression of IFN-λs efficiently eliminates acute infections by activating a suite of interferon stimulated genes that inhibit viral propagation and activate local immune cells. Excessive or prolonged production of IFN-λs can however mediate tissue inflammation and disrupt epithelial barriers in both viral and non-viral disease. The mechanism by…</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>MUC1-C influences cell survival in lung adenocarcinoma Calu-3 cells after SARS-CoV-2 infection</strong> - Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces coronavirus disease 2019 (COVID-19) and may increase the risk of adverse outcomes in lung cancer patients. In this study, we investigated the expression and function of mucin 1 (MUC1) after SARS-CoV-2 infection in the lung epithelial cancer cell line Calu-3. MUC1 is a major constituent of the mucus layer in the respiratory tract and contributes to pathogen defense. SARS-CoV-2 infection induced MUC1 C-terminal subunit (MUC1-C)…</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>The green tea catechin epigallocatechin gallate inhibits SARS-CoV-2 infection</strong> - The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection has caused a pandemic with tens of millions of cases and more than a million deaths. The infection causes COVID-19, a disease of the respiratory system of divergent severity. No treatment exists. Epigallocatechin-3-gallate (EGCG), the major component of green tea, has several beneficial properties, including antiviral activities. Therefore, we examined whether EGCG has antiviral activity against SARS-CoV-2. EGCG blocked…</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>C-Phycocyanin-derived Phycocyanobilin as a Potential Nutraceutical Approach for Major Neurodegenerative Disorders and COVID-19-induced Damage to the Nervous System</strong> - The edible cyanobacterium Spirulina platensis and its chief biliprotein C-Phycocyanin have shown protective activity in animal models of diverse human health diseases, often reflecting antioxidant and anti-inflammatory effects. The beneficial effects of C-Phycocyanin seem likely to be primarily attributable to its covalently attached chromophore Phycocyanobilin (PCB). Within cells, biliverdin is generated from free heme and it is subsequently reduced to bilirubin. Although bilirubin can function…</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>ATP energy-independently controls protein homeostasis with unique structure and diverse mechanisms</strong> - Proteins function in the crowded cellular environments with high salt concentrations, thus facing tremendous challenges of misfolding/aggregation which represents a pathological hallmark of aging and an increasing spectrum of human diseases. Recently, intrinsically disordered regions (IDRs) were recognized to drive liquid-liquid phase separation (LLPS), a common principle for organizing cellular membraneless organelles (MLOs). ATP, the universal energy currency for all living cells, mysteriously…</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>ORF10-Cullin-2-ZYG11B complex is not required for SARS-CoV-2 infection</strong> - In order to understand the transmission and virulence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), it is necessary to understand the functions of each of the gene products encoded in the viral genome. One feature of the SARS-CoV-2 genome that is not present in related, common coronaviruses is ORF10, a putative 38-amino acid protein-coding gene. Proteomic studies found that ORF10 binds to an E3 ubiquitin ligase containing Cullin-2, Rbx1, Elongin B, Elongin C, and ZYG11B…</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>SARS-CoV-2 drives JAK1/2-dependent local complement hyperactivation</strong> - Patients with coronavirus disease 2019 (COVID-19) present a wide range of acute clinical manifestations affecting the lungs, liver, kidneys and gut. Angiotensin converting enzyme (ACE) 2, the best-characterized entry receptor for the disease-causing virus SARS-CoV-2, is highly expressed in the aforementioned tissues. However, the pathways that underlie the disease are still poorly understood. Here, we unexpectedly found that the complement system was one of the intracellular pathways most highly…</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Drugs that inhibit TMEM16 proteins block SARS-CoV-2 Spike-induced syncytia</strong> - COVID-19 is a disease with unique characteristics including lung thrombosis¹, frequent diarrhoea², abnormal activation of the inflammatory response³ and rapid deterioration of lung function consistent with alveolar oedema⁴. The pathological substrate for these findings remains elusive. Here we show that the lungs of patients with COVID-19 contain infected pneumocytes with abnormal morphology and frequent multinucleation. Generation of these syncytia results from activation of the SARS-CoV-2…</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Identification of doxorubicin as a potential therapeutic against SARS-CoV-2 (COVID-19) protease: a molecular docking and dynamics simulation studies</strong> - After one year, the COVID-19 pandemic caused by SARS-CoV-2 is still the largest concern for the scientific community. Of the many recognized drug targets of SARS-CoV-2, the main protease is one of the most important target due to its function in viral replication. We conducted an in silico study with repurposing drugs of antibiotics class against virus protease and peptidase using AutoDock tool. The following significant binding energy interaction was observed with protease (PDB: 6LU7) like…</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Biomarkers of coagulation, endothelial function and fibrinolysis in critically-ill patients with COVID-19: A single-centre prospective longitudinal study</strong> - CONCLUSIONS: Longitudinal trajectories of clot lysis time, sTM, PAI-1, and plasminogen may have predictive ability for mortality in COVID-19.</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Pharmacokinetic and Pharmacodynamic Evaluation of Ravulizumab in Adults with Severe Coronavirus Disease 2019</strong> - CONCLUSION: High levels of baseline C5 observed in patients with severe COVID-19 contribute to the growing body of evidence that suggests this disease is marked by amplification of terminal complement activation. Data from this preliminary pharmacokinetic/pharmacodynamic evaluation of 22 patients with severe COVID-19 show that the modified ravulizumab dosing regimen achieved immediate and complete terminal complement inhibition, which can be sustained for up to 22 days. These data support the…</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Drug synergy of combinatory treatment with remdesivir and the repurposed drugs fluoxetine and itraconazole effectively impairs SARS-CoV-2 infection in vitro</strong> - CONCLUSION AND IMPLICATIONS: Itraconazole-remdesivir and fluoxetine-remdesivir combinations are promising starting points for therapeutic options to control SARS-CoV-2 infection and severe progression of COVID-19.</p></li>
|
||
</ul>
|
||
<h1 data-aos="fade-right" id="from-patent-search">From Patent Search</h1>
|
||
<ul>
|
||
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>5-(4-TERT-BUTOXY PHENYL)-3-(4N-OCTYLOXYPHENYL)-4,5-DIHYDROISOXAZOLE MOLECULE (C-I): A PROMISING DRUG FOR SARS-COV-2 (TARGET I) AND BLOOD CANCER (TARGET II)</strong> - The present invention relates to a method ofmolecular docking of crystalline compound (C-I) with SARS-COV 2 proteins and its repurposing with proteins of blood cancer, comprising the steps of ; employing an algorithmto carry molecular docking calculations of the crystalized compound (C-I); studying the compound computationally to understand the effect of binding groups with the atoms of the amino acids on at least four target proteins of SARS-COV 2; downloading the structure of the proteins; removing water molecules, co enzymes and inhibitors attached to the enzymes; drawing the structure using Chem Sketch software; converting the mol file into a PDB file; using crystalized compound (C-I) for comparative and drug repurposing with two other mutated proteins; docking compound into the groove of the proteins; saving format of docked molecules retrieved; and filtering and docking the best docked results. - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=IN320884617">link</a></p></li>
|
||
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>USING CLINICAL ONTOLOGIES TO BUILD KNOWLEDGE BASED CLINICAL DECISION SUPPORT SYSTEM FOR NOVEL CORONAVIRUS (COVID-19) WITH THE ADOPTION OF TELECONFERENCING FOR THE PRIMARY HEALTH CENTRES/SATELLITE CLINICS OF ROYAL OMAN POLICE IN SULTANATE OF OMAN</strong> - - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=AU320796026">link</a></p></li>
|
||
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Peptides and their use in diagnosis of SARS-CoV-2 infection</strong> - - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=AU319943278">link</a></p></li>
|
||
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A PROCESS FOR SUCCESSFUL MANAGEMENT OF COVID 19 POSITIVE PATIENTS</strong> - - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=AU319942709">link</a></p></li>
|
||
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>IN SILICO SCREENING OF ANTIMYCOBACTERIAL NATURAL COMPOUNDS WITH THE POTENTIAL TO DIRECTLY INHIBIT SARS COV 2</strong> - IN SILICO SCREENING OF ANTIMYCOBACTERIAL NATURAL COMPOUNDS WITH THE POTENTIAL TO DIRECTLY INHIBIT SARS COV 2Insilico screening of antimycobacterial natural compounds with the potential to directly inhibit SARS COV2 relates to the composition for treating SARS-COV-2 comprising the composition is about 0.1 – 99% and other pharmaceutically acceptable excipients. The composition also treats treating SARS, Ebola, Hepatitis-B and Hepatitis–C comprising the composition is about 0.1 – 99% and other pharmaceutically acceptable excipients. - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=IN320777840">link</a></p></li>
|
||
<li><strong>Aronia-Mundspray</strong> -
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
||
Anordnung zum Versprühen einer Substanz in die menschliche Mundhöhle und/oder in den Rachen oder zum Trinken, dadurch gekennzeichnet, dass die Anordnung eine Flasche mit einer Substanz aufweist, die wenigstens Aroniasaft und eine Alkoholkomponente aufweist und einen Sprühkopf besitzt.
|
||
</p>
|
||
<ul>
|
||
<li><a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=DE321222630">link</a></li>
|
||
</ul></li>
|
||
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>INTERFASE ANTIBACTERIANA Y VIRICIDA PARA VENTILACION MECANICA NO INVASIVA</strong> - - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=ES319943963">link</a></p></li>
|
||
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>一种用于检测新型冠状病毒COVID-19的引物组及试剂盒</strong> - 本发明涉及生物技术领域,特别是涉及一种用于检测冠状病毒的引物组及试剂盒,所述引物组包括以下中的一对或多对:外侧引物对:所述外侧引物对包括如SEQ ID NO:1所示的上游引物F3和如SEQ ID NO:2所示的下游引物B3;内侧引物对:所述内侧引物对包括如SEQ ID NO:3所示的上游引物FIP和如SEQ ID NO:4所示的下游引物BIP;环引物对:所述环引物对包括如SEQ ID NO:5所示的上游引物LF和如SEQ ID NO:6所示的下游引物LB。试剂盒包括所述引物组。本发明在一个管中整合了RT‑LAMP和CRISPR,能依据两次颜色变化检测病毒和各种靶标核酸。 - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=CN321132047">link</a></p></li>
|
||
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>新冠病毒中和性抗体检测试剂盒</strong> - 本发明提供一种新冠病毒中和性抗体检测试剂盒。所述试剂盒基于BAS‑HTRF技术,主要包含:生物素标记的hACE2、新冠病毒棘突蛋白RBD‑Tag1、能量供体Streptavidin‑Eu cryptate、能量受体MAb Anti‑Tag1‑d2和新冠病毒中和性抗体。本发明将BAS和HTRF两种技术相结合,用于筛选新型冠状病毒中和性抗体,3小时内即可实现筛选,且操作简单,无需经过多次洗板过程。BAS和HTRF联用大大提升了反应灵敏度,且两种体系都能最大限度地减少非特异的干扰,适用于血清样品的检测。该方法可实现高通量检测,对解决大批量样品的新冠病毒中和性抗体的检测具有重要意义。 - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=CN321131958">link</a></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Infektionsschutzmaske</strong> -
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
||
</p><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">Infektionsschutzmaske (1) zum Schutz vor Übertragung von Infektionskrankheiten mit einer Außen - und einer Innenseite (2,3) sowie Haltemitteln (5) zum Befestigen der Infektionsschutzmaske (1) am Kopf eines Maskenträgers, dadurch gekennzeichnet, dass an der Infektionsschutzmaske (1) mindestens eine Testoberfläche (6) zum Nachweis von Auslösern einer Infektionskrankheit derart angeordnet ist, dass diese bei korrekt angelegter Infektionsschutzmaske (1) mit der Ausatemluft des Maskenträgers unmittelbar in Kontakt gelangt.</p></li>
|
||
</ul>
|
||
<img alt="embedded image" id="EMI-D00000"/>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"></p>
|
||
<ul>
|
||
<li><a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=DE321222652">link</a></li>
|
||
</ul>
|
||
|
||
|
||
<script>AOS.init();</script></body></html> |