223 lines
59 KiB
HTML
223 lines
59 KiB
HTML
<!DOCTYPE html>
|
||
<html lang="" xml:lang="" xmlns="http://www.w3.org/1999/xhtml"><head>
|
||
<meta charset="utf-8"/>
|
||
<meta content="pandoc" name="generator"/>
|
||
<meta content="width=device-width, initial-scale=1.0, user-scalable=yes" name="viewport"/>
|
||
<title>14 January, 2022</title>
|
||
<style type="text/css">
|
||
code{white-space: pre-wrap;}
|
||
span.smallcaps{font-variant: small-caps;}
|
||
span.underline{text-decoration: underline;}
|
||
div.column{display: inline-block; vertical-align: top; width: 50%;}
|
||
</style>
|
||
<title>Covid-19 Sentry</title><meta content="width=device-width, initial-scale=1.0" name="viewport"/><link href="styles/simple.css" rel="stylesheet"/><link href="../styles/simple.css" rel="stylesheet"/><link href="https://unpkg.com/aos@2.3.1/dist/aos.css" rel="stylesheet"/><script src="https://unpkg.com/aos@2.3.1/dist/aos.js"></script></head>
|
||
<body>
|
||
<h1 data-aos="fade-down" id="covid-19-sentry">Covid-19 Sentry</h1>
|
||
<h1 data-aos="fade-right" data-aos-anchor-placement="top-bottom" id="contents">Contents</h1>
|
||
<ul>
|
||
<li><a href="#from-preprints">From Preprints</a></li>
|
||
<li><a href="#from-clinical-trials">From Clinical Trials</a></li>
|
||
<li><a href="#from-pubmed">From PubMed</a></li>
|
||
<li><a href="#from-patent-search">From Patent Search</a></li>
|
||
</ul>
|
||
<h1 data-aos="fade-right" id="from-preprints">From Preprints</h1>
|
||
<ul>
|
||
<li><strong>Inferring effects of mutations on SARS-CoV-2 transmission from genomic surveillance data</strong> -
|
||
<div>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
||
New and more transmissible variants of SARS-CoV-2 have arisen multiple times over the course of the pandemic. Rapidly identifying mutations that affect transmission could facilitate outbreak control efforts and highlight new variants that warrant further study. Here we develop an analytical epidemiological model that infers the transmission effects of mutations from genomic surveillance data. Applying our model to SARS-CoV-2 data across many regions, we find multiple mutations that strongly affect the transmission rate, both within and outside the Spike protein. We also quantify the effects of travel and competition between different lineages on the inferred transmission effects of mutations. Importantly, our model detects lineages with increased transmission as they arise. We infer significant transmission advantages for the Alpha and Delta variants within a week of their appearances in regional data, when their regional frequencies were only around 1%. Our model thus enables the rapid identification of variants and mutations that affect transmission from genomic surveillance data.
|
||
</p>
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.12.31.21268591v2" target="_blank">Inferring effects of mutations on SARS-CoV-2 transmission from genomic surveillance data</a>
|
||
</div></li>
|
||
<li><strong>High Rate of Asymptomatic Carriage Associated with Variant Strain Omicron</strong> -
|
||
<div>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
||
The early widespread dissemination of Omicron indicates the urgent need to better understand the transmission dynamics of this variant, including asymptomatic spread among immunocompetent and immunosuppressed populations. In early December 2021, the Ubuntu clinical trial, designed to evaluate efficacy of the mRNA-1273 vaccine (Moderna) among persons living with HIV (PLWH), began enrolling participants. Nasal swabs are routinely obtained at the initial vaccination visit, which requires participants to be clinically well to receive their initial jab. Of the initial 230 participants enrolled between December 2 and December 17, 2021, 71 (31%) were PCR positive for SARS-CoV-2: all of whom were subsequently confirmed by S gene dropout to be Omicron; 48% of the tested samples had cycle threshold (CT) values <25 and 18% less than 20, indicative of high titers of asymptomatic shedding. Asymptomatic carriage rates were similar in SARS-CoV-2 seropositive and seronegative persons (27% respectively). These data are in stark contrast to COVID-19 vaccine studies conducted pre-Omicron, where the SARS-CoV-2 PCR positivity rate at the first vaccination visit ranged from <1%-2.4%, including a cohort of over 1,200 PLWH largely enrolled in South Africa during the Beta outbreak. We also evaluated asymptomatic carriage in a sub study of the Sisonke vaccine trial conducted in South African health care workers, which indicated 2.6% asymptomatic carriage during the Beta and Delta outbreaks and subsequently rose to 16% in both PLWH and PHLWH during the Omicron period. These findings strongly suggest that Omicron has a much higher rate of asymptomatic carriage than other VOC and this high prevalence of asymptomatic infection is likely a major factor in the widespread, rapid dissemination of the variant globally, even among populations with high prior rates of SARS-COV-2 infection.
|
||
</p>
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.12.20.21268130v2" target="_blank">High Rate of Asymptomatic Carriage Associated with Variant Strain Omicron</a>
|
||
</div></li>
|
||
<li><strong>Quantitative detection of SARS-CoV-2 Omicron variant in wastewater through allele-specific RT-qPCR</strong> -
|
||
<div>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
||
On November 26, 2021, the B.1.1.529 COVID-19 variant was named as the Omicron variant of concern. Reports of higher transmissibility and potential immune evasion triggered flight bans and heightened health control measures across the world to stem its distribution. Wastewater-based surveillance has demonstrated to be a useful complement for community-based tracking of SARS-CoV-2 variants. Using design principles of our previous assays that detect SARS-CoV-2 variants (Alpha and Delta), here we report an allele-specific RT-qPCR assay that simultaneously targets mutations Q493R, G496S and Q498R for quantitative detection of the Omicron variant in wastewater. This method is open-sourced and can be implemented using commercially available RT-qPCR protocols, and would be an important tool for tracking the spread and introduction of the Omicron variant in communities for informed public health responses.
|
||
</p>
|
||
</div>
|
||
<div class="article- link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.12.21.21268077v2" target="_blank">Quantitative detection of SARS-CoV-2 Omicron variant in wastewater through allele-specific RT- qPCR</a>
|
||
</div></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Communicate Hope to Motivate the Public During the COVID-19 Pandemic</strong> -
|
||
<div>
|
||
How should health authorities communicate to motivate the public to comply with health advice during a prolonged health crisis such as a pandemic? During the SARS-CoV-2 pandemic, for example, people have had to comply with successive restrictions as the world faced multiple races between controlling new waves of the virus and the development and implementation of vaccines. Here, we examine how health authorities and governments most effectively motivate the public by focusing on a specific race: between the Alpha variant and the implementation of the first generation of COVID-19 vaccinations in the winter of 2021. Following prior research on crisis communication, we focus on appeals to fear and hope using communicative aids in the form of visualizations based on epidemiological modelling. Using a population-based experiment conducted in United States (N = 3,022), we demonstrate that a hope-oriented visual communication aid, depicting the competing effects on the epidemic curve of (1) the more infectious variant and (2) vaccinations, motivates public action more effectively than a fear-oriented visual communication, focusing exclusively on the threat of the new variant. The importance of the implementation of such hope-oriented messages is further highlighted by cross-national representative surveys from eight countries (N = 3,995), which demonstrate that feelings of fear towards the Alpha variant alone were insufficient to activate strong compliance in isolation. Overall, these findings provide general insights into the importance of hope as a health communication strategy during the COVID-19 pandemic and beyond.
|
||
</div></li>
|
||
</ul>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://psyarxiv.com/gxcyn/" target="_blank">Communicate Hope to Motivate the Public During the COVID-19 Pandemic</a>
|
||
</div>
|
||
<ul>
|
||
<li><strong>Pathology and Anticatalytic Treatment of Exacerbated COVID-19</strong> -
|
||
<div>
|
||
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces immune-mediated inflammasome diseases. Moreover, its pathophysiology involves the angiotensin-converting enzyme 2 (ACE2) receptor, Toll-like receptor 4 (TLR4) pathway, neuropilin‑1 pathway, inflammasome activation pathway, sterile alpha motif (SAM) and histidine-aspartate domain (HD)-containing protein 1 (SAMHD1) tetramerization pathway, cytosolic DNA sensor cyclic-GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) signaling pathway, spike protein/inflammasome-genetic pathway, and immunological memory engram pathway. Therefore, it is necessary to prescribe anticatalytic treatments to alleviate the SARS-CoV-2 inflammasome, immunologic engram, and spike protein levels.
|
||
</div>
|
||
<div class="article-link article-html- link">
|
||
🖺 Full Text HTML: <a href="https://osf.io/t9wjz/" target="_blank">Pathology and Anticatalytic Treatment of Exacerbated COVID-19</a>
|
||
</div></li>
|
||
<li><strong>People with HIV Have Higher Risk of COVID-19 Diagnosis but Similar Outcomes than the General Population</strong> -
|
||
<div>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
||
Background We investigated the effect of HIV on COVID-19 outcomes with attention to selection bias due to differential testing and to comorbidity burden. Methods Retrospective cohort analysis using four hierarchical outcomes: positive SARS-CoV-2 test, COVID-19 hospitalization, intensive care unit (ICU) admission, and hospital mortality. The effect of HIV status was assessed using traditional covariate-adjusted, inverse probability weighted (IPW) analysis based on covariate distributions for testing bias (testing IPWs), HIV infection status (HIV IPWs), and combined models. Among PWH, we evaluated whether CD4 count and HIV plasma viral load (pVL) discriminated between those who did or did not develop study outcomes using receiver operating characteristic analysis. Results Between March and November 2020, 63,319 people were receiving primary care services at UCSD, of whom 4,017 were people living with HIV (PWH). PWH had 2.1 times the odds of a positive SARS-CoV-2 test compared to those without HIV after weighting for potential testing bias, comorbidity burden, and HIV-IPW (95% CI 1.6-2.8). Relative to persons without HIV, PWH did not have an increased rate of COVID-19 hospitalization after controlling for comorbidities and testing bias [adjusted incidence rate ratio (aIRR): 0.5, 95% CI: 0.1-1.4]. PWH had neither a different rate of ICU admission (aIRR:1.08, 95% CI; 0.31-3.80) nor in-hospital death (aIRR:0.92, 95% CI; 0.08-10.94) in any examined model. Neither CD4 count nor pVL predicted any of the hierarchical outcomes among PWH. Conclusions PWH have a higher risk of COVID-19 diagnosis but similar outcomes compared to those without HIV.
|
||
</p>
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2022.01.13.22269178v1" target="_blank">People with HIV Have Higher Risk of COVID-19 Diagnosis but Similar Outcomes than the General Population</a>
|
||
</div></li>
|
||
<li><strong>Hypercapnia limits β-catenin mediated alveolar type 2 cell progenitor function by altering Wnt production from adjacent fibroblasts</strong> -
|
||
<div>
|
||
Persistent symptoms and radiographic abnormalities suggestive of failed lung repair are among the most common symptoms in patients with COVID-19 after hospital discharge. In mechanically ventilated patients with ARDS secondary to SARS-CoV-2 pneumonia, low tidal volume ventilation to reduce ventilator-induced lung injury necessarily elevate blood CO2 levels, often leading to hypercapnia. The role of hypercapnia on lung repair after injury is not completely understood. Here, we show that hypercapnia limits {beta}-catenin signaling in alveolar type 2 (AT2) cells, leading to reduced proliferative capacity. Hypercapnia alters expression of major Wnts in PDGFR-fibroblasts from those maintaining AT2 progenitor activity and towards those that antagonize {beta}-catenin signaling and limit progenitor function. Activation of {beta}-catenin signaling in AT2 cells, rescues the effects of hypercapnia on proliferation. Inhibition of AT2 proliferation in hypercapnic patients may contribute to impaired lung repair after injury, preventing sealing of the epithelial barrier, increasing lung flooding, ventilator dependency and mortality.
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2022.01.12.475264v1" target="_blank">Hypercapnia limits β-catenin mediated alveolar type 2 cell progenitor function by altering Wnt production from adjacent fibroblasts</a>
|
||
</div></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>The SARS-CoV-2 Omicron (B.1.1.529) variant exhibits altered pathogenicity, transmissibility, and fitness in the golden Syrian hamster model</strong> -
|
||
<div>
|
||
The newly emerging SARS-CoV-2 Omicron (B.1.1.529) variant first identified in South Africa in November 2021 is characterized by an unusual number of amino acid mutations in its spike that renders existing vaccines and therapeutic monoclonal antibodies dramatically less effective. The in vivo pathogenicity, transmissibility, and fitness of this new Variant of Concerns are unknown. We investigated these virological attributes of the Omicron variant in comparison with those of the currently dominant Delta (B.1.617.2) variant in the golden Syrian hamster COVID-19 model. Omicron-infected hamsters developed significantly less body weight losses, clinical scores, respiratory tract viral burdens, cytokine/chemokine dysregulation, and tissue damages than Delta-infected hamsters. The Omicron and Delta variant were both highly transmissible (100% vs 100%) via contact transmission. Importantly, the Omicron variant consistently demonstrated about 10-20% higher transmissibility than the already-highly transmissible Delta variant in repeated non- contact transmission studies (overall: 30/36 vs 24/36, 83.3% vs 66.7%). The Delta variant displayed higher fitness advantage than the Omicron variant without selection pressure in both in vitro and in vivo competition models. However, this scenario drastically changed once immune selection pressure with neutralizing antibodies active against the Delta variant but poorly active against the Omicron variant were introduced, with the Omicron variant significantly outcompeting the Delta variant. Taken together, our findings demonstrated that while the Omicron variant is less pathogenic than the Delta variant, it is highly transmissible and can outcompete the Delta variant under immune selection pressure. Next-generation vaccines and antivirals effective against this new VOC are urgently needed.
|
||
</div></li>
|
||
</ul>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2022.01.12.476031v1" target="_blank">The SARS-CoV-2 Omicron (B.1.1.529) variant exhibits altered pathogenicity, transmissibility, and fitness in the golden Syrian hamster model</a>
|
||
</div>
|
||
<ul>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>An antibody targeting the N-terminal domain of SARS-CoV-2 disrupts the spike trimer</strong> -
|
||
<div>
|
||
The protective human antibody response to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus focuses on the spike (S) protein which decorates the virion surface and mediates cell binding and entry. Most SARS-CoV-2 protective antibodies target the receptor-binding domain or a single dominant epitope (supersite) on the N terminal domain (NTD). Here, using the single B cell technology LIBRA-seq, we isolated a large panel of NTD-reactive and SARS- CoV-2 neutralizing antibodies from an individual who had recovered from COVID-19. We found that neutralizing antibodies to the NTD supersite commonly are encoded by the IGHV1-24 gene, forming a genetic cluster that represents a public B cell clonotype. However, we also discovered a rare human antibody, COV2-3434, that recognizes a site of vulnerability on the SARS-CoV-2 S protein in the trimer interface and possesses a distinct class of functional activity. COV2-3434 disrupted the integrity of S protein trimers, inhibited cell-to-cell spread of virus in culture, and conferred protection in human ACE2 transgenic mice against SARS-CoV-2 challenge. This study provides insight about antibody targeting of the S protein trimer interface region, suggesting this region may be a site of virus vulnerability.
|
||
</div></li>
|
||
</ul>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2022.01.12.476120v1" target="_blank">An antibody targeting the N-terminal domain of SARS-CoV-2 disrupts the spike trimer</a>
|
||
</div>
|
||
<ul>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Immunogenicity of convalescent and vaccinated sera against clinical isolates of ancestral SARS-CoV-2, beta, delta, and omicron variants</strong> -
|
||
<div>
|
||
The omicron variant of concern (VOC) of SARS-CoV-2 was first reported in November 2021 in Botswana and South Africa. Omicron variant has evolved multiple mutations within the spike protein and the receptor binding domain (RBD), raising concerns of increased antibody evasion. Here, we isolated infectious omicron from a clinical specimen obtained in Canada. The neutralizing activity of sera from 65 coronavirus disease (COVID-19) vaccine recipients and convalescent individuals against clinical isolates of ancestral SARS-CoV-2, beta, delta, and omicron VOCs was assessed. Convalescent sera from unvaccinated individuals infected by the ancestral virus during the first wave of COVID-19 in Canada (July,</div></li>
|
||
</ul>
|
||
<ol start="2020" type="1">
|
||
<li>demonstrated reduced neutralization against beta, delta and omicron VOCs. Convalescent sera from unvaccinated individuals infected by the delta variant (May-June, 2021) neutralized omicron to significantly lower levels compared to the delta variant. Sera from individuals that received three doses of the Pfizer or Moderna vaccines demonstrated reduced neutralization of both delta and omicron variants relative to ancestral SARS-CoV-2. Sera from individuals that were naturally infected with ancestral SARS-CoV-2 and subsequently received two doses of the Pfizer vaccine induced significantly higher neutralizing antibody levels against ancestral virus and all VOCs. Importantly, infection alone, either with ancestral SARS-CoV-2 or the delta variant was not sufficient to induce high neutralizing antibody titers against omicron. This data will inform current booster vaccination strategies and we highlight the need for additional studies to identify longevity of immunity against SARS-CoV-2 and optimal neutralizing antibody levels that are necessary to prevent infection and/or severe COVID-19.
|
||
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2022.01.13.475409v1" target="_blank">Immunogenicity of convalescent and vaccinated sera against clinical isolates of ancestral SARS-CoV-2, beta, delta, and omicron variants</a>
|
||
</div></li>
|
||
</ol>
|
||
<ul>
|
||
<li><strong>matOptimize: A parallel tree optimization method enables online phylogenetics for SARS-CoV-2</strong> -
|
||
<div>
|
||
Phylogenetic tree optimization is necessary for precise analysis of evolutionary and transmission dynamics, but existing tools are inadequate for handling the scale and pace of data produced during the COVID-19 pandemic. One transformative approach, online phylogenetics, aims to incrementally add samples to an ever-growing phylogeny, but there are no previously-existing approaches that can efficiently optimize this vast phylogeny under the time constraints of the pandemic. Here, we present matOptimize, a fast and memory-efficient phylogenetic tree optimization tool based on parsimony that can be parallelized across multiple CPU threads and nodes, and provides orders of magnitude improvement in runtime and peak memory usage compared to existing state-of-the-art methods. We have developed this method particularly to address the pressing need during the COVID-19 pandemic for daily maintenance and optimization of a comprehensive SARS-CoV-2 phylogeny. Thus, our approach addresses an important need for daily maintenance and refinement of a comprehensive SARS-CoV-2 phylogeny.
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2022.01.12.475688v1" target="_blank">matOptimize: A parallel tree optimization method enables online phylogenetics for SARS-CoV-2</a>
|
||
</div></li>
|
||
<li><strong>COVID-19 infection and vaccination rates in healthcare workers in British Columbia, Canada: A Longitudinal Urban versus Rural Analysis of the Impact of the Vaccine Mandate</strong> -
|
||
<div>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
||
Purpose: Healthcare workers (HCWs) play a critical role in responding to the COVID-19 pandemic. Early in the pandemic, urban centres were hit hardest globally; rural areas gradually became more impacted. We compared COVID-19 infection and vaccine uptake in HCWs living in urban versus rural locations within, and between, two health authorities in British Columbia (BC), Canada. We also analyzed the impact of a vaccine mandate for HCWs. Methods: We tracked laboratory-confirmed SARS-CoV-2 infections, positivity rates, and vaccine uptake in 29,021 HCWs in Interior Health (IH) and 24,634 HCWs in Vancouver Coastal Health (VCH), by occupation, age, and home location, comparing to the general population in that region. We then evaluated the impact of infection rates as well as the mandate on vaccination uptake. Results: By October 27, 2021, the date that unvaccinated HCWs were prohibited from providing healthcare, only 1.6% in VCH yet 6.5% in IH remained unvaccinated. Rural workers in both areas had significantly higher unvaccinated rates compared with urban dwellers. Over 1,800 workers, comprising 6.4% of rural HCWs and 3.3% of urban HCWs, remained unvaccinated and set to be terminated from their employment. While the mandate prompted a significant increase in second doses, the impact on the unvaccinated was less clear. Conclusions: As rural areas often suffer from under-staffing, loss of HCWs could have serious impacts on healthcare provision as well as on the livelihoods of unvaccinated HCWs. Greater efforts are needed to understand how to better address the drivers of rural-related vaccine hesitancy as the pandemic continues.
|
||
</p>
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2022.01.13.22269078v1" target="_blank">COVID-19 infection and vaccination rates in healthcare workers in British Columbia, Canada: A Longitudinal Urban versus Rural Analysis of the Impact of the Vaccine Mandate</a>
|
||
</div></li>
|
||
<li><strong>Humoral and T-cell immune response after three doses of mRNA SARS-CoV-2 vaccines in fragile patients: the Italian VAX4FRAIL study</strong> -
|
||
<div>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
||
Background: Patients with solid or hematological tumors, neurological and immune-inflammatory disorders represent potentially fragile subjects with increased risk to experience severe COVID-19 and inadequate response to SARS-CoV2 vaccination. Methods: We designed a prospective Italian multicentric study to assess humoral and T-cell response to SARS-CoV2 vaccination in patients (n=378) with solid tumors (ST), hematological malignancies (HM), neurological (ND) and immuno-rheumatological diseases (ID). The immunogenicity of primary vaccination schedule and of the booster dose were analyzed. Results: Overall, patient seroconversion rate after two doses was 62.1%. A significant lower rate was observed in HM (52.4%) and ID (51.9%) patients compared to ST (95.6%) and ND (70.7%); a lower median level of antibodies was detected in HM and ID versus the others (p<0.0001). A similar rate of patients with a positive SARS-CoV2 T-cell response was observed in all disease groups, with a higher level observed in the ND group. The booster dose improved humoral responses in all disease groups, although with a lower response in HM patients, while the T-cell response increased similarly in all groups. In the multivariable logistic model, the independent predictors for seroconversion were disease subgroups, type of therapies and age. Notably, the ongoing treatment known to affect the immune system was associated with the worst humoral response to vaccination (p<0.0001), but had no effects on the T-cell responses. Conclusions: Immunosuppressive treatment more than disease type per se is a risk factor for low humoral response after vaccination. The booster dose can improve both humoral and T-cell response.
|
||
</p>
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2022.01.12.22269133v1" target="_blank">Humoral and T-cell immune response after three doses of mRNA SARS-CoV-2 vaccines in fragile patients: the Italian VAX4FRAIL study</a>
|
||
</div></li>
|
||
<li><strong>An ensemble prediction model for COVID-19 mortality risk</strong> -
|
||
<div>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
||
Background: It9s critical to identify COVID-19 patients with a higher death risk at early stage to give them better hospitalization or intensive care. However, thus far, none of the machine learning models has been shown to be successful in an independent cohort. We aim to develop a machine learning model which could accurately predict death risk of COVID-19 patients at an early stage in other independent cohorts. Methods: We used a cohort containing 4711 patients whose clinical features associated with patient physiological conditions or lab test data associated with inflammation, hepatorenal function, cardiovascular function and so on to identify key features. To do so, we first developed a novel data preprocessing approach to clean up clinical features and then developed an ensemble machine learning method to identify key features. Results: Finally, we identified 14 key clinical features whose combination reached a good predictive performance of AUC 0.907. Most importantly, we successfully validated these key features in a large independent cohort containing 15,790 patients. Conclusions: Our study shows that 14 key features are robust and useful in predicting the risk of death in patients confirmed SARS-CoV-2 infection at an early stage, and potentially useful in clinical settings to help in making clinical decisions.
|
||
</p>
|
||
</div>
|
||
<div class="article-link article-html- link">
|
||
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2022.01.10.22268985v1" target="_blank">An ensemble prediction model for COVID-19 mortality risk</a>
|
||
</div></li>
|
||
<li><strong>Extremely potent monoclonal antibodies neutralize Omicron and other SARS-CoV-2 variants</strong> -
|
||
<div>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
||
The ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has triggered a devastating global health, social and economic crisis. The RNA nature and broad circulation of this virus facilitate the accumulation of mutations, leading to the continuous emergence of variants of concern with increased transmissibility or pathogenicity1. This poses a major challenge to the effectiveness of current vaccines and therapeutic antibodies1,2. Thus, there is an urgent need for effective therapeutic and preventive measures with a broad spectrum of action, especially against variants with an unparalleled number of mutations such as the recently emerged Omicron variant, which is rapidly spreading across the globe3. Here, we used combinatorial antibody phage-display libraries from convalescent COVID-19 patients to generate monoclonal antibodies against the receptor-binding domain of the SARS-CoV-2 spike protein with ultrapotent neutralizing activity. One such antibody, NE12, neutralizes an early isolate, the WA-1 strain, as well as the Alpha and Delta variants with half-maximal inhibitory concentrations at picomolar level. A second antibody, NA8, has an unusual breadth of neutralization, with picomolar activity against both the Beta and Omicron variants. The prophylactic and therapeutic efficacy of NE12 and NA8 was confirmed in preclinical studies in the golden Syrian hamster model. Analysis by cryo-EM illustrated the structural basis for the neutralization properties of NE12 and NA8. Potent and broadly neutralizing antibodies against conserved regions of the SARS-CoV-2 spike protein may play a key role against future variants of concern that evade immune control.
|
||
</p>
|
||
</div>
|
||
<div class="article-link article-html-link">
|
||
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2022.01.12.22269023v1" target="_blank">Extremely potent monoclonal antibodies neutralize Omicron and other SARS-CoV-2 variants</a>
|
||
</div></li>
|
||
</ul>
|
||
<h1 data-aos="fade-right" id="from-clinical-trials">From Clinical Trials</h1>
|
||
<ul>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Evaluation of Safety & Efficacy of MIR 19 ® Inhalation Solution in Patients With Moderate COVID-19</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Drug: MIR 19 ®; Combination Product: Standard COVID-19 therapy<br/><b>Sponsors</b>: National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia; St. Petersburg Research Institute of Vaccines and Sera<br/><b>Completed</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Immunogenicity and Safety of a Booster Dose of the SpikoGen COVID-19 Vaccine</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Biological: SARS-CoV-2 recombinant spike protein + Advax-SM adjuvant; Biological: Saline placebo<br/><b>Sponsors</b>: Cinnagen; Vaxine Pty Ltd<br/><b>Active, not recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Plasma Exchange in Covid-19 Patients With Anti-interferon Autoantibodies</strong> - <b>Condition</b>: COVID-19<br/><b>Intervention</b>: Drug: Therapeutic plasma exchange<br/><b>Sponsor</b>: <br/>
|
||
Centre Hospitalier St Anne<br/><b>Recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Randomized Multicenter Study on the Efficacy and Safety of Favipiravir for Parenteral Administration Compared to Standard of Care in Hospitalized Patients With COVID-19</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Drug: Favipiravir; Drug: Remdesivir<br/><b>Sponsors</b>: Promomed, LLC; Solyur Pharmaceuticals Group<br/><b>Completed</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A Telemedicine Brief Mindfulness Intervention in Post-COVID-19</strong> - <b>Condition</b>: Post COVID-19<br/><b>Intervention</b>: Other: Mindfulness<br/><b>Sponsors</b>: <br/>
|
||
Fondazione Don Carlo Gnocchi Onlus; Catholic University of the Sacred Heart<br/><b>Recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Inhaled Heparin for Hospitalised Patients With Coronavirus Disease 2019 (COVID-19)</strong> - <b>Condition</b>: COVID-19<br/><b>Intervention</b>: Drug: unfractionated Heparin<br/><b>Sponsors</b>: <br/>
|
||
Australian National University; The George Institute; St George Hospital, Australia; St Vincent’s Hospital Melbourne; John Hunter Hospital; Royal North Shore Hospital<br/><b>Not yet recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Immunogenicity and Safety Study of a SCB-2019 Vaccine Booster Dose to Adults Who Previously Received Primary Series of Selected COVID-19 Vaccines</strong> - <b>Condition</b>: COVID-19<br/><b>Intervention</b>: Biological: Candidate vaccine, SCB-2019<br/><b>Sponsor</b>: Clover Biopharmaceuticals AUS Pty Ltd<br/><b>Not yet recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>IMPACT OF THERAPEUTIC PLASMA EXCHANGE ON ACQUIRED VACCINAL ANTI-SARS-CoV-2 ANTIBODIES.</strong> - <b>Condition</b>: COVID-19<br/><b>Intervention</b>: Diagnostic Test: Evolution of antibodies titre<br/><b>Sponsor</b>: Cliniques universitaires Saint-Luc- Université Catholique de Louvain<br/><b>Recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>COVID-19 Messaging for Vaccination</strong> - <b>Conditions</b>: Vaccination Refusal; COVID-19 Pandemic<br/><b>Interventions</b>: Behavioral: Doctor Videos; Behavioral: Sharing Videos; Behavioral: Sharing Videos (Influencers); Behavioral: Vaccine Ambassador; Behavioral: Video framing; Behavioral: Video order<br/><b>Sponsors</b>: Massachusetts Institute of Technology; Facebook, Inc.; Code3; Stanford University; Harvard University; Yale University; Johns Hopkins University; Massachusetts General Hospital; Ludwig-Maximilians - University of Munich; National Institutes of Health (NIH)<br/><b>Recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Spa Rehabilitation, Antioxidant and Bioenergetic Supportive Treatment of Patients With Post-Covid-19 Syndrome</strong> - <b>Condition</b>: COVID-19 Respiratory Infection<br/><b>Interventions</b>: Dietary Supplement: ubiquinol (reduced coenzyme Q10); Other: mountain spa rehabilitation; Diagnostic Test: 2x14 ml of peripheral blood collected in a tube with anticoagulant<br/><b>Sponsors</b>: Comenius University; Sanatórium of Dr. Guhr, n.o.<br/><b>Completed</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Randomized Study of Efficacy of Different Treatment Regimens of Olokizumab</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Drug: Olokizumab; Drug: Standard therapy<br/><b>Sponsors</b>: R-Pharm; Federal Budget Institution of Science “Central Research Institute of Epidemiology” of the Rospotrebnadzor; Group of companies Medsi, JSС<br/><b>Recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Study to Assess the Safety, Tolerability and Explore the Immunogenicity of EG-COVID in Healthy Adult Volunteers</strong> - <b>Condition</b>: COVID-19 Vaccine<br/><b>Interventions</b>: Drug: EG-COVID-003; Drug: EG-COVID-001<br/><b>Sponsors</b>: EyeGene Inc.; Novotech (Australia) Pty Limited<br/><b>Not yet recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Study to Evaluate the Effect of Nicotinamide Mononucleotide (NMN) As an Adjuvant to Standard of Care (SOC) On Fatigue Associated With COVID-19 Infection</strong> - <b>Condition</b>: COVID-19 Infection<br/><b>Interventions</b>: Other: Nicotinamide Mononucleotide; Other: Nicotinamide Mononucleotide with L-Leucine; Other: Placebo<br/><b>Sponsor</b>: <br/>
|
||
Vedic Lifesciences Pvt. Ltd.<br/><b>Recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>The Effect of Dietary Intervation on Endothelial Glycocalyx in COVID-19 Patients.</strong> - <b>Conditions</b>: COVID-19; Endothelial Dysfunction<br/><b>Interventions</b>: <br/>
|
||
Dietary Supplement: Food supplement Endocalyx; Dietary Supplement: Placebo<br/><b>Sponsor</b>: <br/>
|
||
University of Athens<br/><b>Not yet recruiting</b></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>The Effectiveness of RPSG Intervention for Nurses During the COVID-19</strong> - <b>Condition</b>: COVID-19 Acute Respiratory Distress Syndrome<br/><b>Interventions</b>: Behavioral: RPSG; Behavioral: AVMBM<br/><b>Sponsor</b>: National Taiwan University Hospital<br/><b>Not yet recruiting</b></p></li>
|
||
</ul>
|
||
<h1 data-aos="fade-right" id="from-pubmed">From PubMed</h1>
|
||
<ul>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>BRD2 inhibition blocks SARS-CoV-2 infection by reducing transcription of the host cell receptor ACE2</strong> - SARS-CoV-2 infection of human cells is initiated by the binding of the viral Spike protein to its cell-surface receptor ACE2. We conducted a targeted CRISPRi screen to uncover druggable pathways controlling Spike protein binding to human cells. Here we show that the protein BRD2 is required for ACE2 transcription in human lung epithelial cells and cardiomyocytes, and BRD2 inhibitors currently evaluated in clinical trials potently block endogenous ACE2 expression and SARS-CoV-2 infection of human…</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Quantitative in silico analysis of SARS-CoV-2 S-RBD omicron mutant transmissibility</strong> - Covid-19 variants transmissibility was quantitatively analyzed in silico to understand the reaction mechanisms and to find the reaction inhibitors. Especially, SARS-CoV-2 omicron mutant (omicron S-RBD) binding affinity with human angiotensin-converting enzyme-2 (ACE-2) was quantitatively analyzed using molecular interaction (MI) energy values (kcal<sup>(.)mol</sup>(-1)) between the S-RBD and ACE-2. The MI of their optimized complex structures demonstrated that omicron’s MI value (749.8) was 1.4 times…</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>The Omicron variant is highly resistant against antibody-mediated neutralization: Implications for control of the COVID-19 pandemic</strong> - The rapid spread of the SARS-CoV-2 Omicron variant suggests that the virus might become globally dominant. Further, the high number of mutations in the viral spike protein raised concerns that the virus might evade antibodies induced by infection or vaccination. Here, we report that the Omicron spike was resistant against most therapeutic antibodies but remained susceptible to inhibition by sotrovimab. Similarly, the Omicron spike evaded neutralization by antibodies from convalescent patients or…</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>An international, interlaboratory ring trial confirms the feasibility of an extraction-less “direct” RT-qPCR method for reliable detection of SARS-CoV-2 RNA in clinical samples</strong> - Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is used worldwide to test and trace the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). “Extraction-less” or “direct” real time-reverse transcription polymerase chain reaction (RT-PCR) is a transparent and accessible qualitative method for SARS-CoV-2 detection from nasopharyngeal or oral pharyngeal samples with the potential to generate actionable data more quickly, at a lower cost, and with fewer…</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>ACE2 is the critical in vivo receptor for SARS-CoV-2 in a novel COVID-19 mouse model with TNF- and IFNgamma-driven immunopathology</strong> - In silico modelling revealed how only three Spike mutations of maVie16 enhanced interaction with murine ACE2. MaVie16 induced profound pathology in BALB/c and C57BL/6 mice and the resulting mouse COVID-19 (mCOVID-19) replicated critical aspects of human disease, including early lymphopenia, pulmonary immune cell infiltration, pneumonia and specific adaptive immunity. Inhibition of the proinflammatory cytokines IFNg and TNF substantially reduced immunopathology. Importantly, genetic…</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>SARS-CoV-2 membrane protein causes the mitochondrial apoptosis and pulmonary edema via targeting BOK</strong> - Deaths caused by coronavirus disease 2019 (COVID-19) are largely due to the lungs edema resulting from the disruption of the lung alveolo-capillary barrier, induced by SARS-CoV-2-triggered pulmonary cell apoptosis. However, the molecular mechanism underlying the proapoptotic role of SARS-CoV-2 is still unclear. Here, we revealed that SARS-CoV-2 membrane</li>
|
||
</ul>
|
||
<ol start="13" type="A">
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">protein could induce lung epithelial cells mitochondrial apoptosis. Notably, M protein stabilized B-cell lymphoma 2 (BCL-2) ovarian killer…</li>
|
||
</ol>
|
||
<ul>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>SNX27 suppresses SARS-CoV-2 infection by inhibiting viral lysosome/late endosome entry</strong> - After binding to its cell surface receptor angiotensin converting enzyme 2 (ACE2), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters the host cell through directly fusing with plasma membrane (cell surface pathway) or undergoing endocytosis traveling to lysosome/late endosome for membrane fusion (endocytic pathway). However, the endocytic entry regulation by host cell remains elusive. Recent studies show ACE2 possesses a type I PDZ binding motif (PBM) through which it could…</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>SARS-CoV-2 main protease and papain-like protease inhibition by abietane-type diterpenes isolated from the branches of Glyptostrobus pensilis using molecular docking studies</strong> - Using various chromatographic methods, five abietane-type diterpenes were isolated from the branches of Glyptostrobus pensilis for the first time. The chemical structures of the isolates were identified by modern spectroscopic techniques, including ¹H and ^(13)C nuclear magnetic resonance spectroscopy and by comparison with the literature. In addition, the binding potential of the isolated compounds to replicase protein, SARS-CoV-2 main protease and papain-like protease, were examined using…</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Molecular dynamics simulations of the flexibility and inhibition of SARS-CoV-2 NSP 13 helicase</strong> - The helicase protein of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is both a good potential drug target and very flexible. The flexibility, and therefore its function, could be reduced through knowledge of these motions and identification of allosteric pockets. Using molecular dynamics simulations with enhanced sampling, we determined key modes of motion and sites on the protein that are at the interface between flexible domains of the proteins. We developed an approach to…</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Acriflavine, a clinically approved drug, inhibits SARS-CoV-2 and other betacoronaviruses</strong> - The COVID-19 pandemic caused by SARS-CoV-2 has been socially and economically devastating. Despite an unprecedented research effort and available vaccines, effective therapeutics are still missing to limit severe disease and mortality. Using high-throughput screening, we identify acriflavine (ACF) as a potent papain-like protease (PL^(pro)) inhibitor. NMR titrations and a co-crystal structure confirm that acriflavine blocks the PL^(pro) catalytic pocket in an unexpected binding mode. We show…</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Pathways and obstacles to social recovery following the elimination of SARS-CoV-2 from Aotearoa New Zealand: a qualitative cross-sectional study</strong> - CONCLUSIONS: Elimination strategies can successfully allow ‘normal social life’ to resume. However, this outcome is not guaranteed. People may encounter difficulties with re-establishing social connections in Zero-COVID settings. Measures designed to overcome such obstacles should be an integral part of elimination strategies.</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Seroconversion following COVID-19 vaccination: Can we optimize protective response in CD20-treated individuals?</strong> - Although there is an ever-increasing number of disease-modifying treatments for relapsing multiple sclerosis (MS), few appear to influence COVID-19 severity. There is concern about the use of anti-CD20-depleting monoclonal antibodies, due to the apparent increased risk of severe disease following SARS-CoV-2 infection and inhibition of protective anti- COVID-19 vaccine responses. These antibodies are given as maintenance infusions/injections and cause persistent depletion of CD20+ B cells, notably…</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Rapid SARS-CoV-2 Adaptation to Available Cellular Proteases</strong> - Recent emergence of SARS CoV-2 variants demonstrates the potential of this virus for targeted evolution, despite its overall genomic stability. Here we show the dynamics and the mechanisms behind the rapid adaptation of SARS-CoV-2 to growth in Vero E6 cells. The selective advantage for growth in Vero E6 cells is due to increased cleavage efficiency by cathepsins at the mutated S1/S2 site. S1/S2 site also constitutes a heparan sulfate (HS) binding motif that influenced virus growth in Vero E6…</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>MARCH8 Targets Cytoplasmic Lysine Residues of Various Viral Envelope Glycoproteins</strong> - The host transmembrane protein MARCH8 is a RING finger E3 ubiquitin ligase that downregulates various host transmembrane proteins, such as MHC-II. We have recently reported that MARCH8 expression in virus-producing cells impairs viral infectivity by reducing virion incorporation of not only HIV-1 envelope glycoprotein but also vesicular stomatitis virus G-glycoprotein through two different pathways. However, the MARCH8 inhibition spectrum remains largely unknown. Here, we show the antiviral…</p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>The adaptation of SARS-CoV-2 to humans</strong> - The process of adaptation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to humans probably had started decades ago, when its ancestor diverged from the bat coronavirus. The adaptive process comprises strategies the virus uses to overcome the respiratory tract defense barriers and replicate and shed in the host cells. These strategies include the impairment of interferon production, hiding immunogenic motifs, avoiding viral RNA detection, manipulating cell autophagy, triggering…</p></li>
|
||
</ul>
|
||
<h1 data-aos="fade-right" id="from-patent-search">From Patent Search</h1>
|
||
<ul>
|
||
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>IDENTIFICATION AND ALARM SYSTEM FOR FACIAL CORONA MASK USING CNN BASED IMAGE PROCESSING</strong> - tThe covid-19 epidemic is the world’s largest wake-up call for people to pay attention to their own and society’s health. One thing to keep in mind is that there is a segment of the population that has been exposed to the covid-19 virus and has generated antibodies without developing any significant illnesses and is continuing to be healthy. This indicates that a significant section of the population, even excluding the elderly, lacks the necessary bodily immunity to combat a Viral infection. As terrible as covid-19 is on a global scale, developing personal health standards and preventative measures for any pathogenic virus as a community would have spared many lives. In’this work, a camera is combined with an image processing system to recognise facial masks, which may be improved in a variety of ways. First and foremost, this method is meant to identify masks on a single person’s face. While this method is efficient in identifying someone has a mask, it does not ensure that they will wear it all of the time. The most effective update for this task is to install a camera with a wide field of view so that many individuals can be seen in the frame, and the faces of those who aren’t wearing markings can be identified, as well as the number of people and the timing. - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=IN346889253">link</a></p></li>
|
||
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>RNA 검출 방법</strong> - 본 발명은 RNA의 분석 및 검출 방법에 관한 것이다. 특히, 본 발명은 특히, 본 발명은 짧은 염기서열의 RNA까지 분석이 가능하면서도 높은 민감도 및 정확도로 정량적 검출까지 가능하여 감염증, 암 등 여러 질환의 진단 용도로도 널리 활용될 수 있다. - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=KR346026620">link</a></p></li>
|
||
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>REUNION OF PHOTOTHERMAL THERAPY WITH MXENE ADSORBED UREMIC TOXINS AND CYTOKINES: A SHILED FOR COVID-19 PATENTS</strong> - The COVID-19 pandemic has created havoc throughout the world. The disease has proved to be more fatalfor patients having comorbidities like diabetics, lungs and kidney infections, etc. In the case of COVID-19 patientsI having kidney injury, the. removal of uremic toxins from the blood is hindered and there is a rapid surge in the levelj of cytokine hormone resulting in the death of the patient in a short interval of time. To resolve this issue,iI; researchers have examined that the immediate removal of these toxins can improve the condition of the patient to a |greater extent. Studies have also found the presence of SARS CoV-2 viral RNAs in the blood of COVID-19patients, which risks their life as well as impacts the blood transfusion process, especially in the case ofasymptomatic patients. Hence it is required to control the surge of cytokines and uremic toxins as well as disinfectthe blood of the patient from the virus. MXenes, having a foam-like porous structure and hydrophilic negativesurface functionalization have greater adsorption efficiency as well as superior photothermal activity. Utilizingthese properties of MXenes, the MXene membranes can be used in the dialyzer that can help in the efficient andBiuick removal of the uremic toxins, cytokines, and other impurities from the blood. Along with this the greaterTJAdsorption efficiency of MXenes to amino acids result in the trapping of the SARS CoV-2 viruses on the surface J)3>f the MXene. Many researchers as well as the WHO have proved the efficient reduction of the viral copy numbersjjvith the increase of temperature. Hence, followed by the trapping of the viruses, the implementation of"Zphotothermal Therapy can result in the inactivation and denaturation of the viruses and their respective viral RNAsBJlby the produced heat. The same process can be repeated several times to get better results. This whole process canr>oQ-esult in impurity-free and infection-free blood, that can be returned back to the body of the patient or can be!— I Sitilized for the blood transfusion process without any risk of infection.IM - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=IN346889224">link</a></p></li>
|
||
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Hung Thanh Phan COVID-19 NEW SOLUTION</strong> - - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=AU344983394">link</a></p></li>
|
||
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A METHOD TO REVEAL MOTIF PATTERNS OF COVID-19 USING MULTIPLE SEQUENCE ALIGNMENT</strong> - This present invention consists of different levels of computation and work in a pipeline manner i.e., input of one will be output of another and it is sequential process. Input data given in form of nucleotide sequence (DNA) of different COVID-19 patients (1). Using these nucleotide sequence perform mutation if possible and arrange them in a sequential order (2). Arrange number of nucleotide sequences of different patients in row wise and also compute number of characters in each row. (3). Compute frequency of occurrence of character in column wise and create a matrix having 4 rows and maximum sequence length will be the column size (4). Find the character like A, T, C, and G which one has maximum score and similarly find for each column to produce a final sequence (5). - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=IN346039750">link</a></p></li>
|
||
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>REUSABILITY OF ANTIMICROBIAL MULTILAYER NANOFIBER MASK WITH HIGH PROTECTIVE</strong> - According to the present Invention, an antimicrobial multi-layer protective mask has a body section including at least first and second fabric layers having random fiber configuration; a middle layer including nanofiber membrane; and third and fourth fabric layers. There are two layers of fabric sandwiched between the nanofiber membrane and the third fabric layer. Fabric layers 1 through 4 each include a synergistic mixture of at least two metal oxide powders that exhibit synergistic antibacterial capabilities, such as the first metal’s mixed-oxidation state oxide and a second metal’s single-oxidation-state oxide. - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=IN346039053">link</a></p></li>
|
||
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>METHODS OF TREATING SARS-COV-2 INFECTION</strong> - - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=AU344309338">link</a></p></li>
|
||
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>一种具有广谱中和活性的新型冠状病毒重组蛋白及其制备方法</strong> - 本发明涉及一种具有广谱中和活性的新型冠状病毒重组蛋白及其制备方法,所述新型冠状病毒重组蛋白为CRM‑RBD重组蛋白,所述CRM‑RBD重组蛋白的氨基酸序列如SEQ ID NO:1所示,编码所述CRM‑RBD重组蛋白的核苷酸序列如SEQ ID</p></li>
|
||
</ul>
|
||
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">NO:2所示,利用所述核苷酸序列通过以下步骤制备得到重组纳米蛋白颗粒:构建得到大肠杆菌重组表达菌;培养大肠杆菌重组表达菌得到发酵液;获得包涵体粗提物;变性溶解得到包涵体变性蛋白;纯化得到纯化重组蛋白;复性得到复性后蛋白;对复性后蛋白进行分离纯化,得到重组纳米蛋白颗粒。本发明的新型冠状病毒重组蛋白对新冠病毒原型株、贝塔变异株、德尔塔变异株均具有中和保护效果。 - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=CN345743545">link</a></p>
|
||
<ul>
|
||
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>METHOD AND SYSTEM TO DETECT THE VITAL HEALTH PARAMETERS OF A PERSON</strong> - The present invention relates to detect the vital health parameters of a person through SPO2, a blood oxygen saturation sensor. The blood oxygen saturation sensor is arranged within a first shape body of a wearable glove; determining, a temperature through the temperature sensor, arranged within a second shape body of the wearable glove; determining, a pulse rate through a cardiac sensor, arranged within a third shape body of the wearable glove. Further, at a control unit, the detected blood oxygen level signal, temperature signal and pulse rate are received. The control unit is arranged on a palm shape body of the wearable glove to convert, segregate and transmit, the digital blood oxygen level signal, the digital temperature signal and the digital cardiac signal, on a cloud-based storage or a computing terminal. - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=IN346033920">link</a></p></li>
|
||
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>머신러닝 기반 수요예측을 이용한 피킹 로케이션 보충 서비스 제공 방법</strong> - 머신러닝 기반 수요예측을 이용한 피킹 로케이션 보충 서비스 제공 방법이 제공되며, 물류창고에 적재된 아이템의 카테고리, 부피 및 계절성을 포함하는 속성 데이터를 수집하는 단계, 적어도 하나의 인공지능 알고리즘을 이용하여 아이템의 1일 예상 출고량을 출력하는 단계, 물류창고 내 피킹 로케이션(Picking Location)의 부피를 아이템의 부피로 나누어 최대 재고수량을 산출하는 단계, 1일 예상 출고량의 제 1 배를 최소 출고수량으로 설정하고, 최대 재고수량의 제 2 배를 최소 재고수량으로 결정하는 단계, 피킹 로케이션 내 현재 재고수량을 추출하는 단계, 피킹 로케이션 내 현재 재고수량이 최소 출고수량 또는 최소 재고수량보다 작은지의 여부를 확인하는 단계 및 현재 재고수량이 최소 출고수량 또는 최소 재고수량보다 작은 경우, 보충수량을 계산하고 재고보충지시를 할당하는 단계를 포함한다. - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=KR346015824">link</a></p></li>
|
||
</ul>
|
||
|
||
|
||
<script>AOS.init();</script></body></html> |