We study allocation of COVID-19 vaccines to individuals based on the structural properties of their underlying social contact network. Even optimistic estimates suggest that most countries will likely take 6 to 24 months to vaccinate their citizens. These time estimates and the emergence of new viral strains urge us to find quick and effective ways to allocate the vaccines and contain the pandemic. While current approaches use combinations of age-based and occupation-based prioritizations, our strategy marks a departure from such largely aggregate vaccine allocation strategies. We propose a novel approach motivated by recent advances in (i) science of real-world networks that point to efficacy of certain vaccination strategies and (ii) digital technologies that improve our ability to estimate some of these structural properties. Using a realistic representation of a social contact network for the Commonwealth of Virginia, combined with accurate surveillance data on spatiotemporal cases and currently accepted models of within- and between-host disease dynamics, we study how a limited number of vaccine doses can be strategically distributed to individuals to reduce the overall burden of the pandemic. We show that allocation of vaccines based on individuals9 degree (number of social contacts) and total social proximity time is significantly more effective than the currently used age-based allocation strategy in terms of number of infections, hospitalizations and deaths. Our results suggest that in just two months, by March 31, 2021, compared to age-based allocation, the proposed degree-based strategy can result in reducing an additional 56−110k infections, 3.2− 5.4k hospitalizations, and 700−900 deaths just in the Commonwealth of Virginia. Extrapolating these results for the entire US, this strategy can lead to 3−6 million fewer infections, 181−306k fewer hospitalizations, and 51−62k fewer deaths compared to age-based allocation. The overall strategy is robust even: (i) if the social contacts are not estimated correctly; (ii) if the vaccine efficacy is lower than expected or only a single dose is given; (iii) if there is a delay in vaccine production and deployment; and (iv) whether or not non-pharmaceutical interventions continue as vaccines are deployed. For reasons of implementability, we have used degree, which is a simple structural measure and can be easily estimated using several methods, including the digital technology available today. These results are significant, especially for resource-poor countries, where vaccines are less available, have lower efficacy, and are more slowly distributed.
Background: We aimed at minimizing loss of lives in the Covid-19 pandemic in the USA by identifying optimal vaccination strategies during a 100-day period with limited vaccine supplies. While lethality is highest in the elderly, transmission and case numbers are highest in the younger. A strategy of first vaccinating the elderly is widely used, thought to protect the vulnerable, elderly best. Despite lower immunogenicity in the elderly, mRNA vaccines retain high efficacy, implying that in the younger, reduced vaccine doses might suffice, thereby increasing vaccination counts with a given vaccine supply. Methods: Using published immunogenicity data of the Moderna mRNA-1273 vaccine, we examined the value of tailored-dose vaccination strategies, using a modeling approach incorporating age-related vaccine immunogenicity, social contact patterns, population structure, Covid-19 case and death rates in the USA in late January 2021. An increase if the number of persons that can be vaccinated and a potential reduction of the individual protective efficacy was accounted for. Results: Age-tailored dosing strategies reduced cases faster, shortening the pandemic, reducing the delay to reaching <100′000 cases/day from 64 to 30 days and avoiding 25′000 deaths within 100 days in the USA. In an ′elderly first′ vaccination strategy, mortality is higher even in the elderly. Findings were robust with transmission blocking efficacies of reduced dose vaccination between 30% to 90%, and with a vaccine supply from 1 to 3 million full dose vaccinations per day. Conclusion: Rapid reduction of Covid-19 case and death rate in the USA in 100 days with a limited vaccine supply is best achieved when personalized, age-tailored dosing for highly effective vaccines is used. Protecting the vulnerable is most effectively achieved by dose tailored vaccination of all population segments, while an ′elderly first′ approach costs more lives, even in the elderly.
Study to Evaluate the Safety and Efficacy of a Single Dose of STI-2020 (COVI-AMG™) to Treat COVID-19 - Condition: Covid19
Interventions: Biological: COVI-AMG; Drug: Placebo
Sponsor: Sorrento Therapeutics, Inc.
Not yet recruiting
An Effectiveness Study of the Sinovac’s Adsorbed COVID-19 (Inactivated) Vaccine - Condition: Covid19
Intervention: Biological: Adsorbed COVID-19 (Inactivated) Vaccine
Sponsor: Butantan Institute
Enrolling by invitation
Telerehabilitation in Covid-19 After Hospital Discharge - Condition: Covid19
Interventions: Other: Standard Physiotherapy program; Other: Telerehabilitation
Sponsor: Universidad de Granada
Not yet recruiting
Study of the Kinetics of COVID-19 Antibodies for 24 Months in Patients With Confirmed SARS-CoV-2 Infection - Conditions: Covid19; SARS-CoV 2
Intervention: Other: Sampling by venipuncture
Sponsor: Centre Hospitalier Régional d’Orléans
Recruiting
Effect of Prone Position onV/Q Matching in Non-intubated Patients With COVID-19 - Condition: Covid19
Intervention: Other: prone position
Sponsor: Southeast University, China
Not yet recruiting
COVID-19 Convalescent Plasma Therapy - Conditions: SARS-CoV-2 Infection; COVID-19 Infection
Intervention: Biological: Convalescent plasma
Sponsors: Angelica Samudio; Consejo Nacional de Ciencias y Tecnología, Paraguay; Ministerio de Salud Pública y Bienestar Social, Paraguay; Centro de información y recursos para el desarrollo, Paraguay
Completed
Oxidative Stress Parameters, Trace Element and Quality of Life in Women Before and After Covid-19 Vaccines - Condition: Covid-19 Vaccine
Intervention: Biological: CoronoVac Vaccine
Sponsors: Izmir Bakircay University; Cigli Regional Training Hospital; Muğla Sıtkı Koçman University
Not yet recruiting
Effectiveness of Ivermectin in SARS-CoV-2/COVID-19 Patients - Condition: Covid19
Intervention: Drug: Ivermectin
Sponsor: FMH College of Medicine and Dentistry
Completed
COVID Antithrombotic Rivaroxaban Evaluation - Condition: COVID-19
Intervention: Drug: Rivaroxaban 10 mg
Sponsors: Hospital Alemão Oswaldo Cruz; Bayer; Hospital Israelita Albert Einstein; Hospital do Coracao; Hospital Sirio-Libanes; Hospital Moinhos de Vento; Brazilian Research In Intensive Care Network; Brazilian Clinical Research Institute
Recruiting
AGILE (Early Phase Platform Trial for COVID-19) - Condition: Covid19
Interventions: Drug: CST-2: EIDD-2801; Drug: CST-2: Placebo
Sponsors: University of Liverpool; University of Southampton; Liverpool School of Tropical Medicine; Lancaster University; Liverpool University Hospitals NHS Foundation Trust
Recruiting
A Study to Evaluate the Efficacy and Safety of Prothione™ Capsules for Mild to Moderate Coronavirus Disease 2019 (COVID-19) - Condition: Coronavirus Disease 2019 (COVID-19)
Interventions: Drug: Placebo; Drug: Prothione™ (6g)
Sponsor: Prothione, LLC
Not yet recruiting
Pulmonary Rehabilitation of Patients With a History of COVID-19 - Condition: Covid19
Intervention: Procedure: Pulmonary rehabilitation
Sponsor: University of Rzeszow
Enrolling by invitation
Ivermectin Role in Covid-19 Clinical Trial - Condition: Covid19
Interventions: Drug: ivermectin; Drug: hydroxychloroquine; Drug: Placebo
Sponsors: Elaraby Hospital; Shebin-Elkom Teaching Hospital
Completed
Safety, Tolerability and Efficacy Of S-1226 in Moderate Severity Covid-19 Bronchiolitis/Pneumonia - Conditions: Covid19; SARS-CoV-2 Infection
Intervention: Drug: S-1226
Sponsor: SolAeroMed Inc.
Not yet recruiting
Community Network-driven COVID-19 Testing of Vulnerable Populations in the Central US - Condition: Covid19
Intervention: Other: Social Network Strategy + COVID-19 messaging
Sponsor: University of Chicago
Not yet recruiting
Evidence that Ginkgo Biloba could use in the influenza and coronavirus COVID-19 infections - Coronavirus COVID-19 pandemic invades the world. Public health evaluates the incidence of infections and death, which should be reduced and need desperately quarantines for infected individuals. This article review refers to the roles of Ginkgo Biloba to reduce the risk of infection in the respiratory tract, the details on the epidemiology of corona COVID-19 and influenza, and it highlights how the Ginko Biloba could have been used as a novel treatment.Ginkgo Biloba can reduce the risk of…
Nonstructural protein 7 and 8 complexes of SARS-CoV-2 - The pandemic outbreak of coronavirus disease 2019 (COVID-19) across the world has led to millions of infection cases and caused a global public health crisis. Current research suggests that SARS-CoV-2 is a highly contagious coronavirus that spreads rapidly through communities. To understand the mechanisms of viral replication, it is imperative to investigate coronavirus viral replicase, a huge protein complex comprising up to 16 viral nonstructural and associated host proteins, which is the most…
Potent, Novel SARS-CoV-2 PLpro Inhibitors Block Viral Replication in Monkey and Human Cell Cultures - Antiviral agents blocking SARS-CoV-2 viral replication are desperately needed to complement vaccination to end the COVID-19 pandemic. Viral replication and assembly are entirely dependent on two viral cysteine proteases: 3C-like protease (3CLpro) and the papain-like protease (PLpro). PLpro also has deubiquitinase (DUB) activity, removing ubiquitin (Ub) and Ub-like modifications from host proteins, disrupting the host immune response. 3CLpro is inhibited by many known cysteine protease…
Quantifying Absolute Neutralization Titers against SARS-CoV-2 by a Standardized Virus Neutralization Assay Allows for Cross-Cohort Comparisons of COVID-19 Sera - The global coronavirus disease 2019 (COVID-19) pandemic has mobilized efforts to develop vaccines and antibody-based therapeutics, including convalescent-phase plasma therapy, that inhibit viral entry by inducing or transferring neutralizing antibodies (nAbs) against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein (CoV2-S). However, rigorous efficacy testing requires extensive screening with live virus under onerous biosafety level 3 (BSL3) conditions, which…
The Role of Sialylation in Respiratory Viral Infection and Treatment - Respiratory infections caused by viruses such as influenza and coronavirus are a serious global problem due to their high infection rates and potential to spark pandemics, such as the current COVID-19 pandemic. Although preventing these infections by using vaccines has been the most successful strategy to date, effective vaccines are not always available. Therefore, developing broad-spectrum anti-viral drugs to treat such infections is essential, especially in the case of immunocompromised…
Coronavirus helicases: attractive and unique targets of antiviral drug-development and therapeutic patents - INTRODUCTION: Coronaviruses encode a helicase that is essential for viral replication and represents an excellent antiviral target. However, only a few coronavirus helicase inhibitors have been patented. These patents include drug-like compound SSYA10-001, aryl diketo acids (ADK), and dihydroxychromones. Additionally, adamantane-derived bananins, natural flavonoids, one acrylamide derivative [(E)-3-(furan-2-yl)-N-(4-sulfamoylphenyl)acrylamide], a purine derivative…
SARS-CoV-2 infection remodels the host protein thermal stability landscape - The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global threat to human health and has compromised economic stability. In addition to the development of an effective vaccine, it is imperative to understand how SARS-CoV-2 hijacks host cellular machineries on a system-wide scale so that potential host-directed therapies can be developed. In situ proteome-wide abundance and thermal stability measurements using thermal proteome profiling (TPP) can inform on global changes in…
Medicinal plants: Treasure for antiviral drug discovery - The pandemic of viral diseases like novel coronavirus (2019-nCoV) prompted the scientific world to examine antiviral bioactive compounds rather than nucleic acid analogous, protease inhibitors, or other toxic synthetic molecules. The emerging viral infections significantly associated with 2019-nCoV have challenged humanity’s survival. Further, there is a constant emergence of new resistant viral strains that demand novel antiviral agents with fewer side effects and cell toxicity. Despite…
In vitro selection of an RNA aptamer yields an interleukin-6/interleukin-6 receptor interaction inhibitor - Interleukin-6 (IL-6) binds to the IL-6 receptor (IL-6R) subunit, related to autoimmune diseases and cytokine storm in COVID-19. In this study, we performed systematic evolution of ligands by exponential enrichment and identified a novel RNA aptamer. This RNA aptamer not only bound to IL-6R with a dissociation constant of 200 n m, but also inhibited the interaction of IL-6R with IL-6.
De novo design of new chemical entities for SARS-CoV-2 using artificial intelligence - Background: The novel coronavirus SARS-CoV-2 has severely affected the health and economy of several countries. Multiple studies are in progress to design novel therapeutics against the potential target proteins in SARS-CoV-2, including 3CL protease, an essential protein for virus replication. Materials & methods: In this study we employed deep neural network-based generative and predictive models for de novo design of small molecules capable of inhibiting the 3CL protease. The generative model…
Are vanadium complexes druggable against the main protease m(pro) of sars-cov-2? - a computational approach - In silico techniques helped explore the binding capacities of the SARS-CoV-2 main protease (M^(pro)) for a series of metalloorganic compounds. Along with small size vanadium complexes a vanadium-containing derivative of the peptide-like inhibitor N3 (N-[(5-methylisoxazol-3-yl)carbonyl]alanyl-l-valyl-N1-((1R,2Z)-4-(benzyloxy)-4-oxo-1-{[(3R)-2-oxopyrrolidin-3-yl] methyl }but-2-enyl)-l-leucinamide) was designed from the crystal structure with PDB entry code 6LU7. On theoretical grounds our…
Effect of Chloroquine and Hydroxychloroquine on COVID-19 Virological Outcomes: An Updated Meta-Analysis - As anti-malarial drugs have been found to inhibit Corona viruses in vitro, studies have evaluated the effect of these drugs inCOVID-19 infection. We conducted an updated meta-analysis of clinical trials and observational studies published till June 2020. Patients with reverse transcription polymerase chain reaction (RT-PCR) confirmed Severe Acute Respiratory Syndrome Coronavirus 2 (COVID-19) infection were included. The drugs used in the intervention group are Chloroquine (CQ)/Hydroxychloroquine…
EGCG, a green tea polyphenol, inhibits human coronavirus replication in vitro - COVID-19 pandemic results in record high deaths in many countries. Although a vaccine for SARS-CoV-2 is now available, effective antiviral drugs to treat coronavirus diseases are not available yet. Recently, EGCG, a green tea polyphenol, was reported to inhibit SARS-CoV-2 3CL-protease, however the effect of EGCG on coronavirus replication is unknown. In this report, human coronavirus HCoV-OC43 (beta coronavirus) and HCoV-229E (alpha coronavirus) were used to examine the effect of EGCG on…
Discovery and structural optimization of 3-O-beta-chacotriosyl oleanane-type triterpenoids as potent entry inhibitors of SARS-CoV-2 virus infections - Currently, SARS-CoV-2 virus is an emerging pathogen that has posed a serious threat to public health worldwide. However, no agents have been approved to treat SARS-CoV-2 infections to date, underscoring the great need for effective and practical therapies for SARS-CoV-2 outbreaks. We reported that a focused screen of OA saponins identified 3-O-β-chacotriosyl OA benzyl ester 2 as a novel small molecule inhibitor of SARS-CoV-2 virus entry, via binding to SARS-CoV-2 glycoprotein (S). We performed…
Neutralizing antibodies targeting the SARS-CoV-2 receptor binding domain isolated from a naive human antibody library - Infection with SARS-CoV-2 elicits robust antibody responses in some patients, with a majority of the response directed at the receptor binding domain (RBD) of the spike surface glycoprotein. Remarkably, many patient-derived antibodies that potently inhibit viral infection harbor few to no mutations from the germline, suggesting that naïve antibody libraries are a viable means for discovery of novel SARS-CoV-2 neutralizing antibodies. Here, we used a yeast surface-display library of human naïve…
Compositions and methods for detecting SARS-CoV-2 spike protein - - link
新冠病毒疫苗表达抗原蛋白的电化学发光免疫检测试剂盒 - 本发明提供一种新冠病毒疫苗表达抗原蛋白的电化学发光免疫检测试剂盒,所述试剂盒至少包含:包被有链霉亲和素的孔板、生物素标记的抗新冠棘突蛋白抗体1、SULFO标记的抗新冠棘突蛋白抗体2、洗涤液、读数液、新冠病毒S蛋白标准品和新冠病毒RBD蛋白标准品。本发明以生物素标记的抗新冠棘突蛋白的抗体1与链霉亲和素板进行连接作为固定相,以新冠S蛋白、RBD蛋白作为参照品,可被SULFO标记的抗体2识别,从而检测新冠抗原的表达情况。该试剂盒能准确灵敏地定量检测不同基质中的新冠S蛋白、RBD蛋白,样品的前处理过程简单,耗时少,可同时检测大量样品。本发明对于大批量样品的新冠病毒疫苗表达抗原的检测具有重要意义。 - link
陶瓷复合涂料、杀毒陶瓷复合涂料及其制备方法和涂层 - 本发明是关于一种陶瓷复合涂料、杀毒陶瓷复合涂料及其制备方法和涂层。该涂料包括3099.9%无机树脂、0.170%氮化硅、010%功能助剂、018%无机颜料和02%其他功能助剂;无机树脂由有机烷氧基硅烷、有机溶剂和硅溶胶混合、反应,抽醇,添加去离子水获得;有机烷氧基硅烷、有机溶剂和硅溶胶的质量比为11.6:0.5~0.8:1。所要解决的技术问题是如何制备一种贮存稳定性好、可常温固化且膜层的物理化学性能优异的涂料;该涂料VOC含量低,具有良好的安全生产性,且涂料成膜过程中的VOC排放很低,利于环保;该膜层的硬度高、柔韧性好,不易开裂,且可以接触性杀灭病毒和细菌;该涂料既可常温固化,也可加热固化,无需现场两个剂型调配,施工方便,成本节约,从而更加适于实用。 - link
SARS-CoV-2 antibodies - - link
SARS-CoV-2 antibodies - - link
病毒核酸提取或保存试剂、引物探针组合、病毒扩增试剂、试剂盒及其应用 - 本发明涉及病毒检测领域,特别涉及病毒核酸提取或保存试剂、引物探针组合、病毒扩增试剂、试剂盒及其应用。本发明病毒检测装置提供了一种简单易行的病毒核酸提取方法,整个过程大约5‑15分钟,回收纯化的核酸,可用于病毒核酸的检测。包括PCR、NASBA、LAMP、RPA等。相比较于传统的病毒提取方法,本方法病毒核酸回收率高、用时少、操作方便、易于临床推广。本发明涉及单管同时检测新型冠状病毒COVID‑19 N和ORF基因以及人源内参基因的等温扩增引物、探针组合序列和反应缓冲液,该体系特异性好,灵敏度高(50 cp/mL),特异性高,只需20 min的检测时间,最快可在10 min左右报阳性。 - link
一种侧链修饰的聚氨基酸及其制备方法和用途 - 本发明提供了一种侧链修饰的聚氨基酸及其制备方法,所述侧链修饰的聚氨基酸具有如下优势:(1)主链和侧链结构及其连接方式都可以灵活选取,使制得的聚合物胶束具有良好生物相容性和靶向递送效率,(2)聚氨基酸主链的电荷极性为电正性,对主链的电荷调节促进胶束的pH值响应,帮助RNA从“溶酶体陷阱”中逃离进入胞浆,(3)通过量化侧链修饰脂肪链的链长、饱和度和脂肪链数量来控制侧链的疏水性部分,精确调节疏水部分的体积和缔合作用强度,(4)由于RNA和DNA在结构和负电性上的相似性,高效构建包裹和递送体,(5)通过双亲性功能高分子的侧链修饰引入不同的生物功能基团,实现递送体系对靶点组织和部位的特异性结合,提高靶向递送效果。 - link
靶向SARS-CoV-2冠状病毒的抗体及其诊断和检测用途 - 本发明涉及靶向SARS‑CoV‑2冠状病毒的抗体及其诊断和检测用途。具体涉及特异性结合冠状病毒S蛋白的抗体或其抗原结合片段和抗体对以及包含所述抗体或其抗原结合片段和抗体对的检测产品。本发明还涉及编码所述抗体或抗原结合片段的核酸及包含其的宿主细胞,以及制备所述抗体或抗原结合片段的方法。此外,本发明涉及所述抗体或其抗原结合片段、抗体对的预防、治疗或诊断用途。相较于常规的IgG/IgM检测,该检测方法直接检测样本中病毒的RBD蛋白,可以有效避免可能的样本中无关IgG/IgM对于检测的干扰,有效提高检测的灵敏度。所述抗体或抗体对可用于诊断和/或检测冠状病毒。 - link
A PHARMACEUTICAL COMPOSITION OF NITAZOXANIDE AND MEFLOQUINE AND METHOD THEREOF - A pharmaceutical composition for treating Covid-19 virus comprising a therapeutically effective amount of a nitazoxanide or its pharmaceutically acceptable salts thereof and an mefloquine or its pharmaceutically acceptable salts thereof is disclosed. The pharmaceutical composition comprises the nitazoxanide in the ratio of 0.05% to 66% w/v and the mefloquine in the ratio of 0.05% to 90% w/v. The composition is found to be effective for the treatment of COVID -19 (SARS-CoV2). The pharmaceutical composition of nitazoxanide and mefloquine has been found to be effective and is unexpectedly well tolerated with a low rate of side-effects, and equally high cure-rates than in comparable treatments. - link
TREATMENT OF COVID-19 WITH REBAMIPIDE - - link