- De novo-designed minibinders expand the synthetic biology sensing repertoire -
Synthetic and chimeric receptors capable of recognizing and responding to user-defined antigens have enabled "smart" therapeutics based on engineered cells. These cell engineering tools depend on antigen sensors which are most often derived from antibodies. Advances in the de novo design of proteins have enabled the design of protein binders with the potential to target epitopes with unique properties and faster production timelines compared to antibodies. Building upon our previous work combining a de novo-designed minibinder of the Spike protein of SARS-CoV-2 with the synthetic receptor synNotch (SARSNotch), we investigated whether minibinders can be readily adapted to a diversity of cell engineering tools. We show that the Spike minibinder LCB1 easily generalizes to a next-generation proteolytic receptor SNIPR that performs similarly to our previously reported SARSNotch. LCB1-SNIPR successfully enables the detection of live SARS-CoV-2, an improvement over SARSNotch which can only detect cell-expressed Spike. To test the generalizability of minibinders to diverse applications, we tested LCB1 as an antigen sensor for a chimeric antigen receptor (CAR). LCB1-CAR enabled CD8+ T cells to cytotoxically target Spike-expressing cells. Our findings suggest that minibinders represent a novel class of antigen sensors that have the potential to dramatically expand the sensing repertoire of cell engineering tools.
- mRNA-LNP COVID-19 vaccine lipids induce low level complement activation and production of proinflammatory cytokines: Mechanisms, effects of complement inhibitors, and relevance to adverse reactions -
Messenger RNA-containing lipid nanoparticles (mRNA-LNPs) enabled widespread COVID-19 vaccination with a small fraction of vaccine recipients displaying acute or sub-acute inflammatory symptoms. The molecular mechanism of these adverse events (AEs) remains undetermined. Here we report that the mRNA-LNP vaccine, Comirnaty, triggers low-level complement (C) activation and production of inflammatory cytokines, which may be key underlying processes of inflammatory AEs. In serum, Comirnaty and the control PEGylated liposome (Doxebo) caused different rises of C split products, C5a, sC5b-9, Bb and C4d, indicating stimulation of the classical pathway of C activation mainly by the liposomes, while a stronger stimulation of the alternative pathway was equal with the vaccine and the liposomes. Spikevax had similar C activation as Comirnaty, but viral or synthetic mRNAs had no such effect. In autologous serum-supplemented peripheral blood mononuclear cell (PBMC) cultures, Comirnaty caused increases in the levels of sC5b-9 and proinflammatory cytokines in the following order: IL-1 < IFN-{gamma} < IL-1{beta} < TNF- < IL-6 < IL-8, whereas heat-inactivation of serum prevented the rises of IL-1, IL-1{beta}, and TNF-. Clinical C inhibitors, Soliris and Berinert, suppressed vaccine-induced C activation in serum but did not affect cytokine production when applied individually. These findings suggest that the PEGylated lipid coating of mRNA-LNP nanoparticles can trigger C activation mainly via the alternative pathway, which may be causally related to the induction of some, but not all inflammatory cytokines. While innate immune stimulation is essential for the vaccine's efficacy, concurrent production of C- and PBMC-derived inflammatory mediators may contribute to some of the AEs. Pharmacological attenuation of harmful cytokine production using C inhibitors likely requires blocking the C cascade at multiple points.
- Primate-specific BTN3A2 protects against SARS-CoV-2 infection by interacting with and reducing ACE2 -
Coronavirus disease 2019 (COVID-19) is an immune-related disorder caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 invades cells via the entry receptor angiotensin-converting enzyme 2 (ACE2). While several attachment factors and co-receptors for SARS-CoV-2 have been identified, the complete pathogenesis of the virus remains to be determined. Unraveling the molecular mechanisms governing SARS-CoV-2 interactions with host cells is crucial for the formulation of effective prophylactic measures and the advancement of COVID-19 therapeutics. Here, we identified butyrophilin subfamily 3 member A2 (BTN3A2) as a potent inhibitor of SARS-CoV-2 infection. The mRNA level of BTN3A2 was correlated with COVID-19 severity. Upon re-analysis of a human lung single-cell RNA sequencing dataset, BTN3A2 expression was predominantly identified in epithelial cells. Moreover, this expression was elevated in pathological epithelial cells from COVID-19 patients and co-occurred with ACE2 expression in the same cellular subtypes in the lung. Additionally, BTN3A2 primarily targeted the early stage of the viral life cycle by inhibiting SARS-CoV-2 attachment through direct interactions with the receptor-binding domain (RBD) of the Spike protein and ACE2. Furthermore, BTN3A2 inhibited ACE2-mediated SARS-CoV-2 infection by reducing ACE2 in vitro and in a BTN3A2 transgenic mouse model. These results reveal a key role of BTN3A2 in the fight against COVID-19 and broaden our understanding of the pathobiology of SARS-CoV-2 infection. Identifying potential monoclonal antibodies that target BTN3A2 may facilitate disruption of SARS-CoV-2 infection, providing a therapeutic avenue for COVID-19.
- Intestinal helminth infection impairs vaccine-induced T cell responses and protection against SARS-CoV-2 -
Although vaccines have reduced COVID-19 disease burden, their efficacy in helminth infection endemic areas is not well characterized. We evaluated the impact of infection by Heligmosomoides polygyrus bakeri (Hpb), a murine intestinal hookworm, on the efficacy of an mRNA vaccine targeting the Wuhan-1 spike protein of SARS-CoV-2. Although immunization generated similar B cell responses in Hpb-infected and uninfected mice, polyfunctional CD4+ and CD8+ T cell responses were markedly reduced in Hpb-infected mice. Hpb-infected and mRNA vaccinated mice were protected against the ancestral SARS-CoV-2 strain WA1/2020, but control of lung infection was diminished against an Omicron variant compared to animals immunized without Hpb infection. Helminth mediated suppression of spike-specific CD8+ T cell responses occurred independently of STAT6 signaling, whereas blockade of IL-10 rescued vaccine-induced CD8+ T cell responses. In mice, intestinal helminth infection impairs vaccine induced T cell responses via an IL-10 pathway and compromises protection against antigenically shifted SARS-CoV-2 variants.
- Different vaccine platforms result in distinct antibody responses to the same antigen in haemodialysis patients -
Generalised immune dysfunction in chronic kidney disease, especially in patients requiring haemodialysis (HD), significantly enhances the risk of severe infections. Moreover, vaccine-induced immunity is typically reduced in HD populations, but the full mechanisms behind this remain unclear. The SARS-CoV-2 pandemic provided an opportunity to examine the magnitude and functionality of antibody responses in HD patients to a previously unencountered antigen, Spike (S)-glycoprotein, after vaccination with different vaccine platforms (viral vector (VV); mRNA (mRV)). Here, we compared total and functional anti-S antibody responses (cross-variant neutralisation and complement binding) in 187 HD patients and 43 healthy controls 21-28 days after serial immunisation. After 2 doses of the same vaccine, HD patients had anti-S antibody levels and complement binding capacity comparable to controls. However, 2 doses of mRV induced greater polyfunctional antibody responses than VV, yet previous SARS-CoV-2 infection or an mRV boost after 2 doses of VV significantly enhanced antibody functionality in HD patients. Therefore, HD patients can generate near-normal, functional antigen-specific antibody responses following serial vaccination to a novel antigen, suggesting largely intact B cell memory. Encouragingly, exploiting immunological memory by using mRNA vaccines and boosting may improve the success of vaccination strategies in this vulnerable patient population.
- Lipid nanoparticle composition for adjuvant formulation modulates disease after influenza virus infection in QIV vaccinated mice. -
Adjuvants can enhance vaccine effectiveness of currently licensed influenza vaccines. We tested influenza vaccination in a mouse model with two adjuvants: Sendai virus derived defective interfering (SDI) RNA, a RIG-I agonist, and an amphiphilic imidazoquinoline (IMDQ-PEG-Chol), TLR7/8 adjuvant. The negatively charged SDI RNA was formulated into lipid nanoparticles (LNPs) facilitating the direct delivery of a RIG-I agonist to the cytosol. We have previously tested SDI and IMDQ-PEG-Chol as standalone and combination adjuvants for influenza and SARS-CoV-2 vaccines. Here we tested two different ionizable lipids, K-Ac7-Dsa and S-Ac7-Dog, for LNP formulations. The adjuvanticity of IMDQ-PEG-Chol with and without empty or SDI-loaded LNPs was validated in a licensed vaccine setting (quadrivalent influenza vaccine or QIV) against H1N1 influenza virus, showing robust induction of antibody titres and T cell responses. Depending on the adjuvant combination and LNP lipid composition (K-Ac7-Dsa or S-Ac7-Dog lipids), humoral and cellular vaccine responses could be tailored towards type 1 or type 2 host responses with specific cytokine profiles that correlated with protection during viral infection. The extent of protection conferred by different vaccine/LNP/adjuvant combinations was examined against challenge with the vaccine-matching strain of H1N1 influenza A virus. Groups that received either LNP formulated with SDI, IMDQ-PEG-Chol or both showed very low levels of viral replication in their lungs at five days post virus infection. LNP ionizable lipid composition as well as loading (empty versus SDI) also skewed host responses to infection, as reflected in the cytokine and chemokine levels in lungs of vaccinated animals upon infection. These studies show the potential of LNPs as adjuvant delivery vehicles for licensed vaccines and illustrate the importance of LNP composition for subsequent host responses to infection, an important point of consideration for vaccine safety.
- Eliminating the missing cone challenge through innovative approaches -
Microcrystal electron diffraction (MicroED) has emerged as a powerful technique for unraveling molecular structures from microcrystals too small for X-ray diffraction. However, a significant hurdle arises with plate-like crystals that consistently orient themselves flat on the electron microscopy grid. If, as is typically the case, the normal of the plate correlates with the axes of the crystal lattice, the crystal orientations accessible for measurement are restricted because the grid cannot be arbitrarily rotated. This limits the information that can be acquired, resulting in a missing cone of information. We recently introduced a novel crystallization strategy called suspended drop crystallization and proposed that this method could effectively address the challenge of preferred crystal orientation. Here we demonstrate the success of the suspended drop crystallization approach in eliminating the missing cone in two samples that crystallize as thin plates: bovine liver catalase and the COVID-19 main protease (Mpro). This innovative solution proves indispensable for crystals exhibiting preferred orientations, unlocking new possibilities for structure determination by MicroED.
- Human mobility patterns to inform sampling sites for early pathogen detection and routes of spread: a network modeling and validation study -
Background: Detecting and foreseeing pathogen dispersion is crucial in preventing widespread disease transmission. Human mobility is a critical issue in human transmission of infectious agents. Through a mobility data-driven approach, we determined municipalities in Brazil that could make up an advanced sentinel network, allowing for early detection of circulating pathogens and their associated transmission routes. Methods: We compiled a comprehensive dataset on intercity mobility spanning air, road, and waterway transport, and constructed a graph-based representation of Brazil9s mobility network. The Ford-Fulkerson algorithm, coupled with centrality measures, were employed to rank cities according to their suitability as sentinel hubs. Findings: Our results disentangle the complex transportation network of Brazil, with flights alone transporting 79.9 million (CI 58.3 to 10.1 million) passengers annually during 2017-22, seasonal peaks occurring in late spring and summer, and roadways with a maximum capacity of 78.3 million passengers weekly. We ranked the 5,570 Brazilian cities to offer flexibility in prioritizing locations for early pathogen detection through clinical sample collection. Our findings are validated by epidemiological and genetic data independently collected during the SARS-CoV-2 pandemic period. The mobility-based spread model defined here was able to recapitulate the actual dissemination patterns observed during the pandemic. By providing essential clues for effective pathogen surveillance, our results have the potential to inform public health policy and improve future pandemic response efforts. Interpretation: Our results unlock the potential of designing country-wide clinical sample collection networks using data-informed approaches, an innovative practice that can improve current surveillance systems.
- Critically-ill COVID-19 susceptibility gene CCR3 shows natural selection in sub-Saharan Africans -
The prevalence of COVID-19 critical illness varies across ethnicities, with recent studies suggesting that genetic factors may contribute to this variation. The aim of this study was to investigate natural selection signals of genes associated with critically-ill COVID-19 in sub-Saharan Africans. Severe COVID-19 SNPs were obtained from the HGI website. Selection signals were assessed in 661 sub-Sahara Africans from 1000 Genomes Project using integrated haplotype score (iHS), cross-population extended haplotype homozygosity (xpEHH), and fixation index (Fst). Allele frequency trajectory analysis of ancient DNA samples were used to validate the existing of selection in sub-Sahara Africans. We also used Mendelian randomization to decipher the correlation between natural selection and critically-ill COVID-19. We identified that CCR3 exhibited significant natural selection signals in sub-Sahara Africans. Within the CCR3 gene, rs17217831-A showed both high iHS (Standardized iHS = 2) and high XP-EHH (Standardized XP-EHH = 2.5) in sub-Sahara Africans. Allele frequency trajectory of CCR3 rs17217831-A revealed natural selection occurring in the recent 1,500 years. Natural selection resulted in increased CCR3 expression in sub-Sahara Africans. Mendelian Randomization provided evidence that increased blood CCR3 expression and eosinophil counts lowered the risk of critically ill COVID-19. Our findings suggest that sub-Saharan Africans are less vulnerable to critically ill COVID-19 due to natural selection and identify CCR3 as a potential novel therapeutic target.
- Risk factors for experiencing Long-COVID symptoms: Insights from two nationally representative surveys -
Background: Long COVID (LC) is a complex and multisystemic condition marked by a diverse range of symptoms, yet its associated risk factors remain poorly defined. Methods: Leveraging data from the 2022 Behavioral Risk Factor Surveillance System (BRFSS) and National Health Interview Survey (NHIS), both representative of the United States population, this study aimed to identify demographic characteristics associated with LC. The sample was restricted to individuals aged 18 years and older who reported a positive COVID-19 test or doctor9s diagnosis. We performed a descriptive analysis comparing characteristics between participants with and without LC. Furthermore, we developed multivariate logistic regression models on demographic covariates that would have been valid at the time of the COVID-19 infection. Results: Among the 124,313 individuals in BRFSS and 10,131 in the NHIS reporting either a positive test or doctor9s diagnosis for COVID-19 (Table), 26,783 (21.5%) in BRFSS and 1,797 (17.1%) in NHIS reported LC. In the multivariate logistic regression model, we found middle age, female gender, Hispanic ethnicity, lack of a college degree, and residence in non-metropolitan areas associated with higher risk of LC. Notably, the initial severity of acute COVID-19 was strongly associated with LC risk. In contrast, significantly lower ORs were reported for Non-Hispanic Asian and Black Americans compared to Non-Hispanic White. Conclusions: In the United States, there is marked variation in the risk of LC by demographic factors and initial infection severity. Further research is needed to understand the underlying cause of these observations.
- Estimated number of lives directly saved by COVID-19 vaccination programs in the WHO European Region, December 2020 to March 2023 -
Background: By March 2023, 54 countries, areas and territories (thereafter “CAT”) reported over 2.2 million coronavirus disease 2019 (COVID-19) deaths to the World Health Organization (WHO) Regional Office for Europe (1). Here, we estimate how many lives were directly saved by vaccinating adults in the Region, from December 2020 through March 2023. Methods: We estimated the number of lives directly saved by age-group, vaccine dose and circulating Variant of Concern (VOC) period, both regionally and nationally, using weekly data on COVID-19 mortality and COVID-19 vaccine uptake reported by 34 CAT, and vaccine effectiveness (VE) data from the literature. We calculated the percentage reduction in the number of expected and reported deaths. Findings: We found that vaccines reduced deaths by 57% overall (CAT range: 15% to 75%), representing ~1.4 million lives saved in those aged ≥25 years (range: 0.7 million to 2.6 million): 96% of lives saved were aged ≥60 years and 52% were aged ≥80 years; first boosters saved 51%, and 67% were saved during the Omicron period. Interpretation: Over nearly 2.5 years, most lives saved by COVID-19 vaccination were in older adults by first booster dose and during the Omicron period, reinforcing the importance of up-to-date vaccination among these most at-risk individuals. Further modelling work should evaluate indirect effects of vaccination and public health and social measures.
- The relationship between gut and nasopharyngeal microbiome composition can predict the severity of COVID-19 -
Background: Coronavirus disease 2019 (COVID-19) is a respiratory illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that displays great variability in clinical phenotype. Many factors have been described to be correlated with its severity but no specific determinants of infection outcome have been identified yet, maybe due the complex pathogenic mechanisms. The microbiota could play a key role in the infection and in the progression and outcome of the disease. Hence, SARS-CoV-2 infection has been associated with nasopharyngeal and gut dysbiosis and higher abundance of opportunistic pathogens. Methods: To identify new prognostic markers for the disease, a multicenter prospective observational cohort study was carried out in COVID-19 patients that were divided in three cohorts according to their symptomatology: mild (n=24), moderate (n=51) and severe/critical (n=31). Faecal and nasopharyngeal samples were taken and the microbiota was analysed. Results: Microbiota composition could be associated with the severity of the symptoms and the linear discriminant analysis identified the genera Mycoplasma and Prevotella as severity biomarkers in nasopharyngeal samples, and Allistipes, Enterococcus and Escherichia in faecal samples. Moreover, M. salivarium was defined as a unique microorganism in COVID-19 patients' nasopharyngeal microbiota while P. bivia and P. timonensis were defined in faecal microbiota. A connection between faecal and nasopharyngeal microbiota in COVID-19 patients was also identified as a strong positive correlation between P. timonensis (faeces) towards P. dentalis and M. salivarium(nasopharyngeal) was found in critically ill patients. Conclusions: This ratio could be used as a novel prognostic biomarker for severe COVID-19 patients.
- Drug Discovery in Low Data Regimes: Leveraging a Computational Pipeline for the Discovery of Novel SARS-CoV-2 Nsp14-MTase Inhibitors -
The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has led to significant global morbidity and mortality. A crucial viral protein, the non-structural protein 14 (nsp14), catalyzes the methylation of viral RNA and plays a critical role in viral genome replication and transcription. Due to the low mutation rate in the nsp region among various SARS-CoV-2 variants, nsp14 has emerged as a promising therapeutic target. However, discovering potential inhibitors remains a challenge. In this work, we introduce a computational pipeline for the rapid and efficient identification of potential nsp14 inhibitors by leveraging virtual screening and the NCI open compound collection, which contains 250,000 freely available molecules for researchers worldwide. The introduced pipeline provides a cost-effective and efficient approach for early-stage drug discovery by allowing researchers to evaluate promising molecules without incurring synthesis expenses. Our pipeline successfully identified seven promising candidates after experimentally validating only 40 compounds. Notably, we discovered NSC620333, a compound that exhibits a strong binding affinity to nsp14 with a dissociation constant of 427 {+/-} 84 nM. In addition, we gained new insights into the structure and function of this protein through molecular dynamics simulations. We identified new conformational states of the protein and determined that residues Phe367, Tyr368, and Gln354 within the binding pocket serve as stabilizing residues for novel ligand interactions. We also found that metal coordination complexes are crucial for the overall function of the binding pocket. Lastly, we present the solved crystal structure of the nsp14-MTase complexed with SS148 (PDB:8BWU), a potent inhibitor of methyltransferase activity at the nanomolar level (IC50 value of 70 {+/-} 6 nM). Our computational pipeline accurately predicted the binding pose of SS148, demonstrating its effectiveness and potential in accelerating drug discovery efforts against SARS-CoV-2 and other emerging viruses.
- Intestinal microbiota programming of alveolar macrophages influences severity of respiratory viral infection -
Susceptibility to respiratory virus infections (RVIs) varies widely across individuals. Because the gut microbiome impacts immune function, we investigated the influence of intestinal microbiota composition on RVI and determined that segmented filamentous bacteria (SFB), naturally acquired or exogenously administered, protected mice against influenza virus (IAV) infection. Such protection, which also applied to respiratory syncytial virus and SARS-CoV-2, was independent of interferon and adaptive immunity but required basally resident alveolar macrophages (AM). In SFB-negative mice, AM were quickly depleted as RVI progressed. In contrast, AM from SFB-colonized mice were intrinsically altered to resist IAV-induced depletion and inflammatory signaling. Yet, AM from SFB-colonized mice were not quiescent. Rather, they directly disabled IAV via enhanced complement production and phagocytosis. Accordingly, transfer of SFB-transformed AM into SFB-free hosts recapitulated SFB-mediated protection against IAV. These findings uncover complex interactions that mechanistically link the intestinal microbiota with AM functionality and RVI severity.
- Neural Network-Assisted Humanization of COVID-19 Hamster scRNAseq Data Reveals Matching Severity States in Human Disease -
Translating findings from animal models to human disease is essential for dissecting disease mechanisms, developing and testing precise therapeutic strategies. The coronavirus disease 2019 (COVID-19) pandemic has highlighted this need, particularly for models showing disease severity-dependent immune responses. Single-cell transcriptomics (scRNAseq) is well poised to reveal similarities and differences between species at the molecular and cellular level with unprecedented resolution. However, computational methods enabling detailed matching are still scarce. Here, we provide a structured scRNAseq-based approach that we applied to scRNAseq from blood leukocytes originating from humans and hamsters affected with moderate or severe COVID-19. Integration of COVID-19 patient data with two hamster models that develop moderate (Syrian hamster, Mesocricetus auratus) or severe (Roborovski hamster, Phodopus roborovskii) disease revealed that most cellular states are shared across species. A neural network-based analysis using variational autoencoders quantified the overall transcriptomic similarity across species and severity levels, showing highest similarity between neutrophils of Roborovski hamsters and severe COVID-19 patients, while Syrian hamsters better matched patients with moderate disease, particularly in classical monocytes. We further used transcriptome-wide differential expression analysis to identify which disease stages and cell types display strongest transcriptional changes. Consistently, hamster's response to COVID-19 was most similar to humans in monocytes and neutrophils. Disease-linked pathways found in all species specifically related to interferon response or inhibition of viral replication. Analysis of candidate genes and signatures supported the results. Our structured neural network-supported workflow could be applied to other diseases, allowing better identification of suitable animal models with similar pathomechanisms across species.
Sodium Citrate in Smell Retraining for People With Post-COVID-19 Olfactory Dysfunction - Conditions: Long Haul COVID-19; Post-Acute COVID-19 Syndrome; Anosmia; Olfaction Disorders
Interventions: Drug: Sodium Citrate; Drug: Normal Saline; Other: Olfactory Training Kit - “The Olfactory Kit, by AdvancedRx”
Sponsors: University of North Carolina, Chapel Hill
Recruiting
Phase II, Double Blind, Randomized Trial of CX-4945 in Viral Community Acquired Pneumonia - Conditions: Community-acquired Pneumonia; SARS-CoV-2 -Associated Pneumonia; Influenza With Pneumonia
Interventions: Drug: CX-4945 (SARS-CoV-2 domain); Drug: Placebo (SARS-CoV-2 domain); Drug: CX-4945 (Influenza virus domain); Drug: Placebo (Influenza virus domain)
Sponsors: Senhwa Biosciences, Inc.
Not yet recruiting
Edge AI-deployed DIGItal Twins for PREDICTing Disease Progression and Need for Early Intervention in Infectious and Cardiovascular Diseases Beyond COVID-19 - Investigation of Biomarkers in Dermal Interstitial Fluid - Conditions: Heart Failure
Interventions: Device: Use of the PELSA System for dISF extraction
Sponsors: Charite University, Berlin, Germany
Not yet recruiting
Phase III Clinical Study Evaluating the Efficacy and Safety of WPV01 in Patients With Mild/Moderate COVID-19 - Conditions: Mild to Moderate COVID-19
Interventions: Drug: WPV01; Drug: Placebo
Sponsors: Westlake Pharmaceuticals (Hangzhou) Co., Ltd.
Recruiting
Integrated Mindfulness-based Health Qigong Intervention for COVID-19 Survivors and Caregivers - Conditions: COVID-19 Infection
Interventions: Other: Mindfulness-based Health Qigong Intervention
Sponsors: The Hong Kong Polytechnic University
Recruiting
Effect of Aerobic Exercises Versus Incentive Spirometer Device on Post-covid Pulmonary Fibrosis Patients - Conditions: Lung Fibrosis Interstitial; Post-COVID-19 Syndrome
Interventions: Other: Aerobic Exercises; Device: Incentive Spirometer Device; Other: Traditional Chest Physiotherapy
Sponsors: McCarious Nahad Aziz Abdelshaheed Stephens; Cairo University
Active, not recruiting
SARS-CoV-2 and Influenza A/B in Point-of-Care and Non-Laboratory Settings - Conditions: SARS-CoV-2 Infection; Influenza A; Influenza B
Interventions: Diagnostic Test: Aptitude Medical Systems Metrix COVID/Flu Test
Sponsors: Aptitude Medical Systems; Biomedical Advanced Research and Development Authority
Recruiting
Can Doctors Reduce COVID-19 Misinformation and Increase Vaccine Uptake in Ghana? A Cluster-randomised Controlled Trial - Conditions: COVID-19
Interventions: Behavioral: Motivational Interviewing, AIMS; Behavioral: Facility engagement
Sponsors: London School of Economics and Political Science; Innovations for Poverty Action; Ghana Health Services
Not yet recruiting
Long COVID Ultrasound Trial - Conditions: Long Covid
Interventions: Device: Splenic Ultrasound
Sponsors: SecondWave Systems Inc.; University of Minnesota; MCDC (United States Department of Defense)
Recruiting
Immunogenicity After COVID-19 Vaccines in Adapted Schedules - Conditions: Coronavirus Disease 2019; COVID-19
Interventions: Drug: BNT162b2 30µg; Drug: BNT162b2 20µg; Drug: BNT162b2 6µg; Drug: mRNA-1273 100µg; Drug: mRNA-1273 50µg; Drug: ChAdOx1-S [Recombinant]
Sponsors: Universiteit Antwerpen
Completed
Update on monkeypox virus infection: Focusing current treatment and prevention approaches - CONCLUSION: This review highlights the pathogenesis of the virus, disease manifestations, drugs, and vaccines that are being used and those under pipeline for the treatment and prevention of Mpox.
SARS-CoV-2 infection and dysregulation of nuclear factor erythroid-2-related factor 2 (Nrf2) pathway - Coronavirus disease 2019 (COVID-19) is a recent pandemic caused by a novel severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) leading to pulmonary and extra-pulmonary manifestations due to the development of oxidative stress (OS) and hyperinflammation. The underlying cause for OS and hyperinflammation in COVID-19 may be related to the inhibition of nuclear factor erythroid 2-related factor 2 (Nrf2), a master regulator of antioxidative responses and cellular homeostasis. The Nrf2…
Alarming Rise in Global Rabies Cases Calls for Urgent Attention: Current Vaccination Status and Suggested Key Countermeasures - In the wake of rising rabies cases worldwide, especially after the COVID-19 pandemic, it is time to understand the scenario better and suggest technically sound and plausible countermeasures. This article is an attempt at this perspective. Although a critical zoonotic viral disease, rabies is preventable. Medico-legally, the ailment is classified as furious rabies and paralytic rabies. The four world bodies, namely, the World Health Organisation (WHO), the Food and Agriculture Organisation…
Identification and evaluation of antiviral activity of novel compounds targeting SARS-CoV-2 virus by enzymatic and antiviral assays, and computational analysis - The viral genome of the SARS-CoV-2 coronavirus, the aetiologic agent of COVID-19, encodes structural, non-structural, and accessory proteins. Most of these components undergo rapid genetic variations, though to a lesser extent the essential viral proteases. Consequently, the protease and/or deubiquitinase activities of the cysteine proteases M^(pro) and PL^(pro) became attractive targets for the design of antiviral agents. Here, we develop and evaluate new bis(benzylidene)cyclohexanones (BBC)…
In silico network pharmacology study on Glycyrrhiza glabra: Analyzing the immune-boosting phytochemical properties of Siddha medicinal plant against COVID-19 - Immunosenescence is a pertinent factor in the mortality rate caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The changes in the immune system are strongly associated with age and provoke the deterioration of the individual’s health. Traditional medical practices in ancient India effectively deal with COVID-19 by boosting natural immunity through medicinal plants. The anti-inflammatory and antiviral properties of Glycyrrhiza glabra are potent in fighting against COVID-19…
Discovery of furopyridine-based compounds as novel inhibitors of Janus kinase 2: In silico and in vitro studies - Janus kinase 2 (JAK2), one of the JAK isoforms participating in a JAK/STAT signaling cascade, has been considered a potential clinical target owing to its critical role in physiological processes involved in cell growth, survival, development, and differentiation of various cell types, especially immune and hematopoietic cells. Substantial studies have proven that the inhibition of this target could disrupt the JAK/STAT pathway and provide therapeutic outcomes for cancer, immune disorders,…
Massively parallel profiling of RNA-targeting CRISPR-Cas13d - CRISPR-Cas13d cleaves RNA and is used in vivo and for diagnostics. However, a systematic understanding of its RNA binding and cleavage specificity is lacking. Here, we describe an RNA Chip-Hybridized Association-Mapping Platform (RNA-CHAMP) for measuring the binding affinity for > 10,000 RNAs containing structural perturbations and other alterations relative to the CRISPR RNA (crRNA). Deep profiling of Cas13d reveals that it does not require a protospacer flanking sequence but is exquisitely…
Human conjunctiva organoids to study ocular surface homeostasis and disease - The conjunctival epithelium covering the eye contains two main cell types: mucus-producing goblet cells and water-secreting keratinocytes, which present mucins on their apical surface. Here, we describe long-term expanding organoids and air-liquid interface representing mouse and human conjunctiva. A single-cell RNA expression atlas of primary and cultured human conjunctiva reveals that keratinocytes express multiple antimicrobial peptides and identifies conjunctival tuft cells. IL-4/-13…
Inactivation mechanism of cold plasma combined with 222 nm ultraviolet for spike protein and its application in disinfecting of SARS-CoV-2 - Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible virus that has precipitated a worldwide pandemic of coronavirus disease since 2019. Developing an effective disinfection strategy is crucial to prevent the risk of surface cross-contamination by SARS-CoV-2. This study employed pseudovirus and the receptor-binding domain (RBD) protein of SARS-CoV-2 as models to investigate the spike protein inactivation process and its underlying mechanisms using a novel…
Role of TNF-α in the Pathogenesis of Migraine - CONCLUSION: To this end, TNF-α plays a critical role in chronification, and inhibiting its signaling would likely be a crucial strategy for migraine therapy.
TXM peptides inhibit SARS-CoV-2 infection, syncytia formation, and lower inflammatory consequences - After three years of the SARS-CoV-2 pandemic, the search and availability of relatively low-cost benchtop therapeutics for people not at high risk for a severe disease are still ongoing. Although vaccines and new SARS-CoV-2 variants reduce the death toll, the long COVID-19 along with neurologic symptoms can develop and persist even after a mild initial infection. Reinfections, which further increase the risk of sequelae in multiple organ systems as well as the risk of death, continue to require…
Natural flavonoid pectolinarin computationally targeted as a promising drug candidate against SARS-CoV-2 - Coronavirus disease-2019 (COVID-19) has become a global pandemic, necessitating the development of new medicines. In this investigation, we identified potential natural flavonoids and compared their inhibitory activity against spike glycoprotein, which is a target of SARS-CoV-2 and SARS-CoV. The target site for the interaction of new inhibitors for the treatment of SARS-CoV-2 has 82% sequence identity and the remaining 18% dissimilarities in RBD S1-subunit, S2-subunit, and 2.5% others. Molecular…
Structure-based Virtual Screening from Natural Products as Inhibitors of SARS-CoV-2 Spike Protein and ACE2-h Receptor Binding and their Biological Evaluation In vitro - CONCLUSION: Compound B-8 can be used as a scaffold to develop new and more efficient antiviral drugs.
Lipid Metabolism Modulation during SARS-CoV-2 Infection: A Spotlight on Extracellular Vesicles and Therapeutic Prospects - Extracellular vesicles (EVs) have a significant impact on the pathophysiological processes associated with various diseases such as tumors, inflammation, and infection. They exhibit molecular, biochemical, and entry control characteristics similar to viral infections. Viruses, on the other hand, depend on host metabolic machineries to fulfill their biosynthetic requirements. Due to potential advantages such as biocompatibility, biodegradation, and efficient immune activation, EVs have emerged as…
FHL2 Inhibits SARS-CoV-2 Replication by Enhancing IFN-β Expression through Regulating IRF-3 - SARS-CoV-2 triggered the global COVID-19 pandemic, posing a severe threat to public health worldwide. The innate immune response in cells infected by SARS-CoV-2 is primarily orchestrated by type I interferon (IFN), with IFN-β exhibiting a notable inhibitory impact on SARS-CoV-2 replication. FHL2, acting as a docking site, facilitates the assembly of multiprotein complexes and regulates the transcription of diverse genes. However, the association between SARS-CoV-2 and FHL2 remains unclear. In…