ABSTRACT Background: Concern about long waiting times for elective surgeries is not a recent phenomenon, but it has been heightened by the impact of the COVID-19 pandemic and its associated measures. One way to alleviate the problem might be to use prioritisation methods for patients on the waiting list and a wide range of research is available on such methods. However, significant variations and inconsistencies have been reported in prioritisation protocols from various specialties, institutions, and health systems. To bridge the evidence gap in existing literature, this comprehensive systematic review will synthesise global evidence on policy strategies with a unique insight to patient prioritisation methods to reduce waiting times for elective surgeries. This will provide evidence that might help with the tremendous burden of surgical disease that is now apparent in many countries because of operations that were delayed or cancelled due to the COVID-19 pandemic and inform policy for sustainable healthcare management systems. Methods: We searched PubMed, EMBASE, SCOPUS, Web of Science, and the Cochrane Library, with our most recent searches in January 2020. Articles published after 2013 on major elective surgery lists of adult patients were eligible, but cancer and cancer-related surgeries were excluded. Both randomised and non-randomised studies were eligible and the quality of studies was assessed with ROBINS-I and CASP tools. We registered the review in PROSPERO (CRD42019158455) and reported it in accordance with the PRISMA statement. Results: The electronic search in five bibliographic databases yielded 7543 records (PubMed, EMBASE, SCOPUS, Web of Science, and Cochrane) and 17 eligible articles were identified in the screening. There were four quasi-experimental studies, 11 observational studies and two systematic reviews. These demonstrated a moderate to low risk of bias in their research methods. Three studies tested generic approaches using common prioritisation systems for all elective surgeries in common. The other studies assessed specific prioritisation approaches for re-ordering the waiting list for a particular surgical specialty. Conclusions: Explicit prioritisation tools with a standardised scoring system based on clear evidence-based criteria are likely to reduce waiting times and improve equitable access to health care. Multiple attributes need to be considered in defining a fair prioritisation system to overcome limitations with local variations and discriminations. Collating evidence from a diverse body of research provides a single framework to improve the quality and efficiency of elective surgical care provision in a variety of health settings. Universal prioritisation tools with vertical and horizontal equity would help with re-ordering patients on waiting lists for elective surgery and reduce waiting times. Keywords: Patient prioritisation, elective surgery, waiting time, systematic review
Background: The COVID-19 pandemic led to changes in patterns of presentation to Emergency Departments (ED). Child health professionals were concerned that this could contribute to the delayed diagnosis of life-threatening conditions, including childhood cancer (CC) and type 1 diabetes (T1DM). Our multicentre, UK-based service evaluation assessed diagnostic intervals and disease severity for these conditions. Methods: We collected presentation route, timing and disease severity for children with newly diagnosed CC in three principal treatment centres, and T1DM in four centres between 1st January - 31st July 2020 and the corresponding period in 2019. We assessed the impact of lockdown on total diagnostic interval (TDI), patient interval (PI), system interval (SI) and disease severity. Findings: For CCs and T1DM, the route to diagnosis and severity of illness at presentation were unchanged across all time periods. Diagnostic intervals for CCs during lockdown were comparable to that in 2019 (TDI 4.6, PI 1.1 and SI 2.1 weeks), except for an increased PI in Jan-Mar 2020 (median 2.7 weeks). Diagnostic intervals for T1DM during lockdown were similar to that in 2019 (TDI 16 vs 15 and PI 14 vs 14 days), except for an increased PI in Jan-Mar 2020 (median 21 days). Interpretation: There is no evidence of diagnostic delay or increased illness severity for CC or T1DM, during the first phase of the pandemic across the participating centres. This provides reassuring data for children and families with these life-changing conditions.
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein (S) plays critical roles in host cell entry. Non-synonymous substitutions affecting S are not uncommon and have become fixed in a number of SARS-CoV-2 lineages. A subset of such mutations enable escape from neutralizing antibodies or are thought to enhance transmission through mechanisms such as increased affinity for the cell entry receptor, angiotensin-converting enzyme 2 (ACE2). Independent genomic surveillance programs based in New Mexico and Louisiana contemporaneously detected the rapid rise of numerous clade 20G (lineage B.1.2) infections carrying a Q677P substitution in S. The variant was first detected in the US on October 23, yet between 01 Dec 2020 and 19 Jan 2021 it rose to represent 27.8% and 11.3% of all SARS-CoV-2 genomes sequenced from Louisiana and New Mexico, respectively. Q677P cases have been detected predominantly in the south central and southwest United States; as of 03 Feb 2021, GISAID data show 499 viral sequences of this variant from the USA. Phylogenetic analyses revealed the independent evolution and spread of at least six distinct Q677H sub-lineages, with first collection dates ranging from mid-August to late November 2020. Four 677H clades from clade 20G (B.1.2), 20A (B.1.234), and 20B (B.1.1.220, and B.1.1.222) each contain roughly 100 or fewer sequenced cases, while a distinct pair of clade 20G clusters are represented by 754 and 298 cases, respectively. Although sampling bias and founder effects may have contributed to the rise of S:677 polymorphic variants, the proximity of this position to the polybasic cleavage site at the S1/S2 boundary are consistent with its potential functional relevance during cell entry, suggesting parallel evolution of a trait that may confer an advantage in spread or transmission. Taken together, our findings demonstrate simultaneous convergent evolution, thus providing an impetus to further evaluate S:677 polymorphisms for effects on proteolytic processing, cell tropism, and transmissibility.
SARS-CoV-2 (COVID-19) belongs to the beta-coronavirus family, which include: the severe acute respiratory syndrome coronavirus (SARS-CoV) and the Middle East respiratory syndrome coronavirus (MERS-CoV). Since its outbreak in South Africa in March 2020, it has lead to high mortality and thousands of people contracting the virus. Mathematical analysis of a model without controls was done and the basic reproduction number (R0) of the COVID-19 for the South African pandemic determined. We introduced permissible controls and formulate an optimal control problem using the Pontraygain Maximum Principle. Our numerical findings suggest that joint implementation of effective mask usage, physical distancing and active screening and testing, are effective measures to curtail the spread of the disease in the human population. The results obtained in this paper are of public health importance in the control and management of the spread for the novel coronavirus, SARS-CoV-2, in South Africa.
The novel SARS-CoV-2 Variant of Concern (VOC)-202012/01 (also known as B.1.1.7), first collected in United Kingdom on September 20, 2020, is a rapidly growing lineage that in January 2021 constituted 86% of all SARS-CoV-2 genomes sequenced in England. The VOC has been detected in 40 out of 46 countries that reported at least 50 genomes in January 2021. We have estimated that the replicative advantage of the VOC is in the range 1.83-2.18 [95% CI: 1.71-2.40] with respect to the 20A.EU1 variant that dominated in England in November 2020, and in range 1.65-1.72 [95% CI: 1.46-2.04] in Wales, Scotland, Denmark, and USA. As the VOC strain will likely spread globally towards fixation, it is important to monitor its molecular evolution. We have estimated growth rates of expanding mutations acquired by the VOC lineage to find that the L18F substitution in spike has initiated a substrain of high replicative advantage in relation to the remaining VOC substrains. The L18F substitution is of significance because it has been found to compromise binding of neutralizing antibodies. Of concern are immune escape mutations acquired by the VOC: E484K, F490S, S494P (in the receptor binding motif of spike) and Q677H, Q675H (in the proximity of the polybasic cleavage site at the S1/S2 boundary). These mutants may hinder efficiency of existing vaccines and expand in response to the increasing after-infection or vaccine-induced seroprevalence.
A fast-spreading SARS-CoV-2 variant identified in the United Kingdom in December 2020 has raised international alarm. We estimate that, in 16 out of 19 countries analyzed, there is at least a 50% chance the variant was imported by travelers from the United Kingdom by December 7th.
Background Human to human transmission of SARS-CoV-2 is driven by the respiratory route but little is known about the pattern and quantity of virus output from exhaled breath. We have previously shown that face-mask sampling (FMS) can detect exhaled tubercle bacilli and have adapted its use to quantify exhaled SARS-CoV-2 RNA in patients admitted to hospital with covid-19. Methods Between May and December 2020, we took two concomitant FMS and nasopharyngeal samples (NPS) over two days, starting within 24 hours of a routine virus positive NPS in patients hospitalised with covid-19, at University Hospitals of Leicester NHS Trust, UK. Participants were asked to wear a modified duckbilled facemask for 30 minutes, followed by a nasopharyngeal swab. Demographic, clinical, and radiological data, as well as International Severe Acute Respiratory and emerging Infections Consortium (ISARIC) mortality and deterioration scores were obtained. Exposed masks were processed by removal, dissolution and analysis of sampling matrix strips fixed within the mask by RT-qPCR. Viral genome copy numbers were determined and results classified as Negative; Low: less than or equal to 999 copies; Medium: 1,000-99,999 copies and High 100,000 or more copies per strip for FMS or per 100microlitres for NPS. Results 102 FMS and NPS were collected from 66 routinely positive patients; median age: 61 (IQR 49 - 77), of which FMS was positive in 37% of individuals and concomitant NPS was positive in 50%. Positive FMS viral loads varied over five orders of magnitude (<10-3.3 x 106 genome copies/strip); 21 (32%) patients were asymptomatic at the time of sampling. High FMS viral load was associated with respiratory symptoms at time of sampling and shorter interval between sampling and symptom onset (FMS High: median (IQR) 2 days (2-3) vs FMS Negative: 7 days (7-10), p=0.002). On multivariable linear regression analysis, higher FMS viral loads were associated with higher ISARIC mortality (Medium FMS vs Negative FMS gave an adjusted coefficient of 15.7, 95% CI 3.7-27.7, p=0.01) and deterioration scores (High FMS vs Negative FMS gave an adjusted coefficient of 37.6, 95% CI 14.0 to 61.3, p=0.002), while NPS viral loads showed no significant association. Conclusion We demonstrate a simple and effective method for detecting and quantifying exhaled SARS-CoV-2 in hospitalised patients with covid-19. Higher FMS viral loads were more likely to be associated with developing severe disease compared to NPS viral loads. Similar to NPS, FMS viral load was highest in early disease and in those with active respiratory symptoms, highlighting the potential role of FMS in understanding infectivity.
Wastewater surveillance for SARS-CoV-2 provides an approach for assessing the infection burden across a city. For these data to be useful for public health, measurement variability and the relationship to case data need to be established. We measured SARS-CoV-2 RNA concentrations in the influent of twelve wastewater treatment plants from August 2020 to January 2021. Replicate samples demonstrated that N1 gene target concentrations varied by 21% RSD between technical replicate filters and by 14% RSD between duplicate assays. COVID-19 cases were correlated significantly (rho≥0.70) to wastewater SARS-CoV-2 RNA concentrations for seven plants, including large and small cities. SARS-CoV-2 data normalized to flow improved correlations to reported COVID-19 cases for some plants but normalizing to a spiked recovery control (BCoV) or a fecal marker (PMMoV or HF183) generally reduced correlations. High frequency sampling demonstrated that a minimum of two samples collected per week was needed to maintain accuracy in trend analysis. We found a significantly different ratio of COVID-19 cases to SARS-CoV-2 loads in one of three large communities, suggesting a higher rate of undiagnosed cases. These data demonstrate that SARS-CoV-2 wastewater surveillance can provide a useful community-wide metric to assess the course of the COVID-19 pandemic.
Aim and Background: We aimed at identifying vaccination strategies that minimize loss of life in the Covid-19 pandemic. Covid-19 mainly kills the elderly, but the pandemic is driven by social contacts that are more frequent in the young. Vaccines elicit stronger immune responses per dose in younger persons. As vaccine production is a bottleneck, many countries have adopted a strategy of first vaccinating the elderly and vulnerable, while postponing vaccination of the young. Methods: Based on published age-stratified immunogenicity data of the Moderna mRNA-1273 vaccine, we compared the established ′one dose fits all′ approach with tailored strategies: The known differential immunogenicity of vaccine doses in different age groups is exploited to vaccinate the elderly at full dose, while the young receive a reduced dose, amplifying the number of individuals receiving the vaccine early. A modeling approach at European Union scale with population structure, Covid-19 case and death rates similar to Europe in late January 2021 is used. Results: When the elderly were vaccinated preferentially, the pandemic initially continued essentially unchecked, as it was dominantly driven by social contacts in other age groups. Tailored strategies, including regular dosing in the elderly but reduced dose vaccination in the young, multiplied early vaccination counts, and even with some loss in protection degree for the individual person, the protective effect towards stopping the pandemic and protecting lives was enhanced, even for the elderly. In the European Union, pandemic duration (threshold >100′000 cases/day) was shortened from 53 to 18-24 days; cumulative death count over 100 days was reduced by >30′000. Conclusion: Protecting the vulnerable, minimizing overall deaths and stopping the pandemic is best achieved by an adaptive vaccination strategy using an age-tailored vaccine dose, in this model parameterized to European demographics, coronavirus transmission observations and vaccine characteristics.
Protecting Native Families From COVID-19 - Condition: COVID-19
Interventions: Behavioral: Motivational Interviewing; Behavioral: COVID-19 Symptom Monitoring System; Behavioral: Motivational Interviewing and COVID-19 Symptom Monitoring System; Other: Supportive Services
Sponsor: Johns Hopkins Bloomberg School of Public Health
Not yet recruiting
Efficacy and Safety of Tofacitinib in Patients With COVID-19 Pneumonia - Condition: COVID-19
Intervention: Drug: Tofacitinib
Sponsor: I.M. Sechenov First Moscow State Medical University
Completed
Improvement of the Nutritional Status Regarding Nicotinamide (Vitamin B3) and the Disease Course of COVID-19 - Condition: COVID-19
Interventions: Dietary Supplement: Nicotinamide; Dietary Supplement: Placebo
Sponsor: University Hospital Schleswig-Holstein
Recruiting
A Study to Assess the Safety and Immunogenicity of the Coronavac Vaccine Against COVID-19 - Condition: COVID-19
Intervention: Biological: Adsorbed COVID-19 (inactivated) Vaccine
Sponsors: D’Or Institute for Research and Education; Butantan Institute
Not yet recruiting
COVID-19 Treatment Cascade Optimization Study - Condition: COVID-19 Testing
Interventions: Behavioral: Navigation Services; Behavioral: Critical Dialogue; Behavioral: Brief Counseling; Behavioral: Referral and Digital Brochure
Sponsors: University of Illinois at Urbana-Champaign; North Jersey Community Research Initiative; National Institute on Minority Health and Health Disparities (NIMHD); University of Michigan
Recruiting
Study to Evaluate the Efficacy and Safety of Remdesivir in Participants With Severely Reduced Kidney Function Who Are Hospitalized for Coronavirus Disease 2019 (COVID-19) - Condition: COVID-19
Interventions: Drug: Remdesivir; Drug: RDV Placebo; Drug: Standard of Care
Sponsor: Gilead Sciences
Not yet recruiting
COVID-19 Convalescent Plasma Therapy - Conditions: SARS-CoV-2 Infection; COVID-19 Infection
Intervention: Biological: Convalescent plasma
Sponsors: Angelica Samudio; Consejo Nacional de Ciencias y Tecnología, Paraguay; Ministerio de Salud Pública y Bienestar Social, Paraguay; Centro de información y recursos para el desarrollo, Paraguay
Completed
COVID Antithrombotic Rivaroxaban Evaluation - Condition: COVID-19
Intervention: Drug: Rivaroxaban 10 mg
Sponsors: Hospital Alemão Oswaldo Cruz; Bayer; Hospital Israelita Albert Einstein; Hospital do Coracao; Hospital Sirio-Libanes; Hospital Moinhos de Vento; Brazilian Research In Intensive Care Network; Brazilian Clinical Research Institute
Recruiting
A Study to Evaluate the Efficacy and Safety of Prothione™ Capsules for Mild to Moderate Coronavirus Disease 2019 (COVID-19) - Condition: Coronavirus Disease 2019 (COVID-19)
Interventions: Drug: Placebo; Drug: Prothione™ (6g)
Sponsor: Prothione, LLC
Not yet recruiting
Adoptive SARS-CoV-2 Specific T Cell Transfer in Patients at Risk for Severe COVID-19 - Condition: Moderate COVID-19-infection
Interventions: Drug: IMP 1,000 plus SoC; Drug: IMP 5,000 plus SoC; Drug: IMP RP2D plus SoC; Drug: SoC
Sponsors: Universitätsklinikum Köln; ZKS Köln; MMH Institute for Transfusion Medicine; Miltenyi Biomedicine GmbH
Not yet recruiting
A Safety and Immunogenicity Study of Inactivated SARS-CoV-2 Vaccine (Vero Cells) in Healthy Population Aged 18 Years and Above(COVID-19) - Condition: COVID-19
Interventions: Biological: medium dosage inactivated SARS-CoV-2 vaccine; Biological: high dosage inactivated SARS-CoV-2 vaccine; Biological: Placebo
Sponsors: Beijing Minhai Biotechnology Co., Ltd; Shenzhen Kangtai Biological Products Co., LTD; Jiangsu Province Centers for Disease Control and Prevention
Active, not recruiting
A Study to Evaluate Safety and Immunogenicity of Inactivated SARS-CoV-2 Vaccine (Vero Cells) in Healthy Population Aged 18 Years and Above(COVID-19) - Condition: COVID-19
Interventions: Biological: medium dosage inactivated SARS-CoV-2 vaccine; Biological: high dosage inactivated SARS-CoV-2 vaccine; Biological: Placebo
Sponsors: Beijing Minhai Biotechnology Co., Ltd; Shenzhen Kangtai Biological Products Co., LTD; Jiangsu Province Centers for Disease Control and Prevention
Active, not recruiting
An Effectiveness Study of the Sinovac’s Adsorbed COVID-19 (Inactivated) Vaccine - Condition: Covid19
Intervention: Biological: Adsorbed COVID-19 (Inactivated) Vaccine
Sponsor: Butantan Institute
Enrolling by invitation
Effect of Prone Position onV/Q Matching in Non-intubated Patients With COVID-19 - Condition: Covid19
Intervention: Other: prone position
Sponsor: Southeast University, China
Not yet recruiting
Study of the Kinetics of COVID-19 Antibodies for 24 Months in Patients With Confirmed SARS-CoV-2 Infection - Conditions: Covid19; SARS-CoV 2
Intervention: Other: Sampling by venipuncture
Sponsor: Centre Hospitalier Régional d’Orléans
Recruiting
DNA Nanostructures in the Fight Against Infectious Diseases - Throughout history, humanity has been threatened by countless epidemic and pandemic outbreaks of infectious diseases, from the Justinianic Plague to the Spanish flu to COVID-19. While numerous antimicrobial and antiviral drugs have been developed over the last 200 years to face these threats, the globalized and highly connected world of the 21st century demands for an ever-increasing efficiency in the detection and treatment of infectious diseases. Consequently, the rapidly evolving field of…
Antibacterial and Antiviral Functional Materials: Chemistry and Biological Activity toward Tackling COVID-19-like Pandemics - The ongoing worldwide pandemic due to COVID-19 has created awareness toward ensuring best practices to avoid the spread of microorganisms. In this regard, the research on creating a surface which destroys or inhibits the adherence of microbial/viral entities has gained renewed interest. Although many research reports are available on the antibacterial materials or coatings, there is a relatively small amount of data available on the use of antiviral materials. However, with more research geared…
Nanotechnology: an emerging approach to combat COVID-19 - The recent outbreak of coronavirus disease (COVID-19) has challenged the survival of human existence in the last 1 year. Frontline healthcare professionals were struggling in combating the pandemic situation and were continuously supported with literature, skill set, research activities, and technologies developed by various scientists/researchers all over the world. To handle the continuously mutating severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) requires amalgamation of…
Stapled ACE2 peptidomimetics designed to target the SARS-CoV-2 spike protein do not prevent virus internalization - COVID-19 is caused by a novel coronavirus called severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2). Virus cell entry is mediated through a protein-protein interaction (PPI) between the SARS-CoV-2 spike protein and angiotensin-converting enzyme 2 (ACE2). A series of stapled peptide ACE2 peptidomimetics based on the ACE2 interaction motif were designed to bind the coronavirus S-protein RBD and inhibit binding to the human ACE2 receptor. The peptidomimetics were assessed for antiviral…
The Perspectives of Biomarkers based Electrochemical Immunosensors, Artificial intelligence and the Internet of Medical Things towards COVID-19 Diagnosis and Management - The WHO has declared the COVID-19 an international health emergency due to the severity of infection progression which become more severe due to its continuous spread globally and the unavailability of appropriate therapy and diagnostics systems. Thus, there is a need for efficient devices to detect SARS-CoV-2 infection at an early stage. Nowadays, the RT-PCR technique is being applied for detecting this virus around the globe; however, factors such as stringent expertise, long diagnostic times,…
Corrigendum to “mTOR inhibition and p53 activation, microRNAs: The possible therapy against pandemic COVID-19” [Gene Rep. 20 (2020) 100765] - [This corrects the article DOI: 10.1016/j.genrep.2020.100765.].
Virus-Free and Live-Cell Visualizing SARS-CoV-2 Cell Entry for Studies of Neutralizing Antibodies and Compound Inhibitors - The ongoing corona virus disease 2019 (COVID-19) pandemic, caused by SARS-CoV-2 infection, has resulted in hundreds of thousands of deaths. Cellular entry of SARS-CoV-2, which is mediated by the viral spike protein and ACE2 receptor, is an essential target for the development of vaccines, therapeutic antibodies, and drugs. Using a mammalian cell expression system, a genetically engineered sensor of fluorescent protein (Gamillus)-fused SARS-CoV-2 spike trimer (STG) to probe the viral entry…
Social mobilization and polarization can create volatility in COVID-19 pandemic control - During the COVID-19 pandemic, political polarization has emerged as a significant threat that inhibits coordinated action of central and local institutions reducing the efficacy of non-pharmaceutical interventions (NPIs). Yet, it is not well-understood to what extent polarization can affect grass-roots, voluntary social mobilization targeted at mitigating the pandemic spread. Here, we propose a polarized mobilization model amidst the pandemic for demonstrating the differential responses to…
In silico Exploration of Inhibitors for SARS-CoV-2’s Papain-Like Protease - Coronavirus disease 2019 (COVID-19) is an ongoing global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with very limited treatments so far. Demonstrated with good druggability, two major proteases of SARS-CoV-2, namely main protease (Mpro) and papain-like protease (PLpro) that are essential for viral maturation, have become the targets for many newly designed inhibitors. Unlike Mpro that has been heavily investigated, PLpro is not well-studied so far. Here, we…
In Silico Study of Coumarins and Quinolines Derivatives as Potent Inhibitors of SARS-CoV-2 Main Protease - The pandemic that started in Wuhan (China) in 2019 has caused a large number of deaths, and infected people around the world due to the absence of effective therapy against coronavirus 2 of the severe acute respiratory syndrome (SARS-CoV-2). Viral maturation requires the activity of the main viral protease (M^(pro)), so its inhibition stops the progress of the disease. To evaluate possible inhibitors, a computational model of the SARS-CoV-2 enzyme M^(pro) was constructed in complex with 26…
Landscape Profiling Analysis of DPP4 in Malignancies: Therapeutic Implication for Tumor Patients With Coronavirus Disease 2019 - Severe coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is characterized by pneumonia, lymphopenia, and cytokine storms. Patients with underlying conditions, and especially cancer patients with impaired immunity, are particularly vulnerable to SARS-CoV-2 infection and complications. Although angiotensin converting enzyme II (ACE2) has been identified as a cellular binding receptor for SARS-CoV-2, immunopathological changes in severe…
Corilagin inhibits SARS-CoV-2 replication by targeting viral RNA-dependent RNA polymerase - Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has become one major threat to human population health. The RNA-dependent RNA polymerase (RdRp) presents an ideal target of antivirals, whereas nucleoside analogs inhibitor is hindered by the proofreading activity of coronavirus. Herein, we report that corilagin (RAI-S-37) as a non-nucleoside inhibitor of SARS-CoV-2 RdRp, binds directly to RdRp, effectively inhibits the polymerase activity in both cell-free and cell-based assays, fully…
Tuning intrinsic disorder predictors for virus proteins - Many virus-encoded proteins have intrinsically disordered regions that lack a stable, folded three-dimensional structure. These disordered proteins often play important functional roles in virus replication, such as down-regulating host defense mechanisms. With the widespread availability of next-generation sequencing, the number of new virus genomes with predicted open reading frames is rapidly outpacing our capacity for directly characterizing protein structures through crystallography. Hence,…
Properties of the Novel Chinese Herbal Medicine Formula Qu Du Qiang Fei I Hao Fang Warrant Further Research to Determine Its Clinical Efficacy in COVID-19 Treatment - Introduction: COVID-19, the infectious disease induced by the virus severe acute respiratory syndrome-related coronavirus-2, has caused increasing global health concerns, and novel strategies to prevent or ameliorate the condition are needed. Traditional Chinese Medicine (TCM) herbal formulas have been used in the treatment of epidemics in China for over 2000 years. This study investigated the therapeutic effects of Qu Du Qiang Fei I Hao Fang (QDQF1) "Eliminating Virus and Strengthening…
Case Report: Adequate T and B Cell Responses in a SARS-CoV-2 Infected Patient After Immune Checkpoint Inhibition - After the COVID-19 outbreak, non-evidence based guidelines were published to advise clinicians on the adjustment of oncological treatment during this pandemic. As immune checkpoint inhibitors directly affect the immune system, concerns have arisen about the safety of immunotherapy during this pandemic. However, data on the immune response in oncology patients treated with immunotherapy are still lacking. Here, we present the adaptive immune response in a SARS-CoV-2 infected patient who was…
SARS-COV-2 BINDING PROTEINS - - link
Compositions and methods for detecting SARS-CoV-2 spike protein - - link
SELF-CLEANING AND GERM-KILLING REVOLVING PUBLIC TOILET FOR COVID 19 - - link
Deep Learning Based System for the Detection of COVID-19 Infections - - link
新冠病毒疫苗表达抗原蛋白的电化学发光免疫检测试剂盒 - 本发明提供一种新冠病毒疫苗表达抗原蛋白的电化学发光免疫检测试剂盒,所述试剂盒至少包含:包被有链霉亲和素的孔板、生物素标记的抗新冠棘突蛋白抗体1、SULFO标记的抗新冠棘突蛋白抗体2、洗涤液、读数液、新冠病毒S蛋白标准品和新冠病毒RBD蛋白标准品。本发明以生物素标记的抗新冠棘突蛋白的抗体1与链霉亲和素板进行连接作为固定相,以新冠S蛋白、RBD蛋白作为参照品,可被SULFO标记的抗体2识别,从而检测新冠抗原的表达情况。该试剂盒能准确灵敏地定量检测不同基质中的新冠S蛋白、RBD蛋白,样品的前处理过程简单,耗时少,可同时检测大量样品。本发明对于大批量样品的新冠病毒疫苗表达抗原的检测具有重要意义。 - link
陶瓷复合涂料、杀毒陶瓷复合涂料及其制备方法和涂层 - 本发明是关于一种陶瓷复合涂料、杀毒陶瓷复合涂料及其制备方法和涂层。该涂料包括3099.9%无机树脂、0.170%氮化硅、010%功能助剂、018%无机颜料和02%其他功能助剂;无机树脂由有机烷氧基硅烷、有机溶剂和硅溶胶混合、反应,抽醇,添加去离子水获得;有机烷氧基硅烷、有机溶剂和硅溶胶的质量比为11.6:0.5~0.8:1。所要解决的技术问题是如何制备一种贮存稳定性好、可常温固化且膜层的物理化学性能优异的涂料;该涂料VOC含量低,具有良好的安全生产性,且涂料成膜过程中的VOC排放很低,利于环保;该膜层的硬度高、柔韧性好,不易开裂,且可以接触性杀灭病毒和细菌;该涂料既可常温固化,也可加热固化,无需现场两个剂型调配,施工方便,成本节约,从而更加适于实用。 - link
SARS-CoV-2 antibodies - - link
利用BLI技术检测新型冠状病毒中和性抗体的方法 - 本发明提供一种利用BLI技术检测新型冠状病毒中和性抗体的方法,先将同一浓度的人ACE2蛋白捕获到生物传感器表面上,再将新型冠状病毒棘突蛋白RBD分别与不同浓度的待测中和性抗体预混,再将各混合液分别与捕获到生物传感器表面上的人ACE2蛋白接触,根据基于BLI技术的分子互作仪器检测到的干涉光谱的相对位移强度变化计算抑制率,绘制抑制曲线,计算IC50。本发明操作简单,快速高效,检测全过程无需包被和反复加样、洗板,15min内即可得到实验结果。检测反应在黑色孔板中进行,可实现大批量样品的新冠中和抗体的检测,与传统定性检测不同,通过计算IC50值,可以快速比较不同新冠中和性抗体的抑制能力。 - link
SARS-CoV-2 antibodies - - link
能够抑制冠状病毒Spike蛋白与ACE2相互作用的化合物的用途 - 本发明公开了能够抑制冠状病毒Spike蛋白与ACE2相互作用的化合物的用途。结构如下,该类化合物在制备治疗和/或预防SARS‑CoV‑2新型冠状病毒感染的药物中的用途。同时,化合物不仅能够抑制冠状病毒Spike蛋白与ACE2蛋白的相互作用,IC50<1μM,同时能够促使Spike‑ACE2复合物的解离。在细胞水平上可以有效的抑制新型冠状病毒SARS‑CoV‑2假病毒入侵,IC50<2μM。所述化合物能特异性的结合在Spike蛋白的RBD区域,KD<6μM,表明该类化合物对于制备治疗和/或预防冠状病毒感染药物具有非常积极的作用。 - link