89 lines
28 KiB
HTML
89 lines
28 KiB
HTML
|
<!DOCTYPE html>
|
|||
|
<html lang="" xml:lang="" xmlns="http://www.w3.org/1999/xhtml"><head>
|
|||
|
<meta charset="utf-8"/>
|
|||
|
<meta content="pandoc" name="generator"/>
|
|||
|
<meta content="width=device-width, initial-scale=1.0, user-scalable=yes" name="viewport"/>
|
|||
|
<title>22 December, 2021</title>
|
|||
|
<style type="text/css">
|
|||
|
code{white-space: pre-wrap;}
|
|||
|
span.smallcaps{font-variant: small-caps;}
|
|||
|
span.underline{text-decoration: underline;}
|
|||
|
div.column{display: inline-block; vertical-align: top; width: 50%;}
|
|||
|
</style>
|
|||
|
<title>Covid-19 Sentry</title><meta content="width=device-width, initial-scale=1.0" name="viewport"/><link href="styles/simple.css" rel="stylesheet"/><link href="../styles/simple.css" rel="stylesheet"/><link href="https://unpkg.com/aos@2.3.1/dist/aos.css" rel="stylesheet"/><script src="https://unpkg.com/aos@2.3.1/dist/aos.js"></script></head>
|
|||
|
<body>
|
|||
|
<h1 data-aos="fade-down" id="covid-19-sentry">Covid-19 Sentry</h1>
|
|||
|
<h1 data-aos="fade-right" data-aos-anchor-placement="top-bottom" id="contents">Contents</h1>
|
|||
|
<ul>
|
|||
|
<li><a href="#from-preprints">From Preprints</a></li>
|
|||
|
<li><a href="#from-clinical-trials">From Clinical Trials</a></li>
|
|||
|
<li><a href="#from-pubmed">From PubMed</a></li>
|
|||
|
<li><a href="#from-patent-search">From Patent Search</a></li>
|
|||
|
</ul>
|
|||
|
<h1 data-aos="fade-right" id="from-preprints">From Preprints</h1>
|
|||
|
<h1 data-aos="fade-right" id="from-clinical-trials">From Clinical Trials</h1>
|
|||
|
<ul>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Trial to Evaluate Nitazoxanide for Treatment of Mild COVID-19 in Subjects Not at High Risk of Severe Illness</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Drug: Nitazoxanide; Drug: Placebo; Dietary Supplement: Vitamin Super-B Complex<br/><b>Sponsor</b>: Romark Laboratories L.C.<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Trial to Evaluate Nitazoxanide for Treatment of Mild or Moderate COVID-19 in Subjects at High Risk of Severe Illness</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Drug: Nitazoxanide; Dietary Supplement: Vitamin Super-B Complex; Drug: Placebo; Other: Standard of Care<br/><b>Sponsor</b>: <br/>
|
|||
|
Romark Laboratories L.C.<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A Double-blind Randomized Controlled Trial of Ivermectin With Favipiravir in Mild-to-moderate COVID-19 Patients</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Drug: Ivermectin Tablets; Other: Placebo<br/><b>Sponsors</b>: Mahidol University; Prince of Songkla University<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Australian Phase 2/3b Study to Assess Effectiveness of a Protein-based Covid-19 Vaccine (Spikogen)</strong> - <b>Condition</b>: COVID-19<br/><b>Intervention</b>: Biological: Spikogen/Covax-19<br/><b>Sponsors</b>: <br/>
|
|||
|
Vaxine Pty Ltd; Australian Respiratory and Sleep Medicine Institute; Cinnagen<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Study of GRT-R910 Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Boost Vaccine in Healthy Volunteers</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Biological: GRT-R910 booster 113 days after prime; Biological: GRT-R910 booster 28 days after prime<br/><b>Sponsor</b>: Gritstone Oncology, Inc.<br/><b>Recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A Safety, Tolerability, and Efficacy Study of IBI314 in Ambulatory Patients With COVID-19</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Biological: IBI314; Other: Placebo<br/><b>Sponsor</b>: Innovent Biologics (Suzhou) Co. Ltd.<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Adrecizumab (HAM8101) to Improve Prognosis and Outcomes in COVID-19 Trial</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Biological: Adrecizumab (HAM 8101); Drug: Placebo<br/><b>Sponsor</b>: Universitätsklinikum Hamburg-Eppendorf<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Safety, Tolerability, and Treatment Effect of Belnacasan in Patients With COVID-19</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Drug: Belnacasan; Drug: Placebo<br/><b>Sponsor</b>: <br/>
|
|||
|
MedStar Health<br/><b>Recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A Study Evaluating Tocilizumab in Pediatric Patients Hospitalized With COVID-19</strong> - <b>Condition</b>: COVID-19<br/><b>Intervention</b>: Drug: Tocilizumab<br/><b>Sponsor</b>: Hoffmann- La Roche<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Immunogenicity Study of the Covid-19 (Recombinante) Vaccine With a 4 or 8 Week Interval Between the First Doses.</strong> - <b>Condition</b>: COVID-19<br/><b>Intervention</b>: Biological: Covid-19 (recombinante) vaccine<br/><b>Sponsor</b>: The Immunobiological Technology Institute (Bio-Manguinhos) / Oswaldo Cruz Foundation (Fiocruz)<br/><b>Active, not recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A Study to Evaluate Efficacy and Safety of the Combination of SCTA01 & SCTA01C in Outpatients With COVID-19</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Drug: SCTA01 and SCTA01C; Drug: Placebo<br/><b>Sponsor</b>: Sinocelltech Ltd.<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Efficacy,Immunogenicity and Safety of COVID-19 Vaccine , Inactivated Booster Dose in Adults Aged 18 Years and Above</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Biological: Medium-dosage COVID-19 Vaccine,Inactivated; Biological: High-dosage COVID-19 Vaccine,Inactivated; Biological: Placebo-comparator group<br/><b>Sponsor</b>: <br/>
|
|||
|
Sinovac Research and Development Co., Ltd.<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Communities Fighting COVID-19!</strong> - <b>Condition</b>: Covid19<br/><b>Interventions</b>: Other: COVID-19 Testing Home-based (Aim 1); Other: COVID-19 Testing Mobile (Aim 1); Other: COVID-19 Testing Mobile Approach 1 (Aim 2); Other: COVID-19 Testing Mobile Approach 2 (Aim 2)<br/><b>Sponsors</b>: San Diego State University; National Cancer Institute (NCI)<br/><b>Recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Safety and Immunogenicity Study of Booster Vaccination in Different Doses of COVID-19 Vaccine (Vero Cell),Inactivated for Prevention of COVID-19</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Biological: High-dosage of COVID-19 vaccine (Vero cell), Inactivated; Biological: Medium-dose COVID-19 Vaccine(Vero Cell),Inactivated<br/><b>Sponsor</b>: <br/>
|
|||
|
Sinovac Research and Development Co., Ltd.<br/><b>Active, not recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Clinical Trial for Oral Formula of Vanillin and Wheat Germ Oil for Treatment of Mild and Moderate COVID-19 Viral Disease</strong> - <b>Condition</b>: Mild-to-moderate COVID-19<br/><b>Intervention</b>: Drug: Oral Capsule<br/><b>Sponsors</b>: <br/>
|
|||
|
Alexandria University; Assoc. Prof. Ayman Baeis; Dr. Noha Alaa Eldine Hassan Hamdy; Ph. Hanya Hesham Sweilam<br/><b>Recruiting</b></p></li>
|
|||
|
</ul>
|
|||
|
<h1 data-aos="fade-right" id="from-pubmed">From PubMed</h1>
|
|||
|
<ul>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>The Inhibition of SARS-CoV-2 3CL M(pro) by Graphene and Its Derivatives from Molecular Dynamics Simulations</strong> - At present, the most powerful new drugs for COVID-19 are antibody proteins. In addition, there are some star small molecule drugs. However, there are few studies on nanomaterials. Here, we study the intact graphene (IG), defective graphene (DG), and graphene oxide (GO) interacting with COVID-19 protein. We find that they show progressive inhibition of COVID-19 protein. By using molecular dynamics simulations, we study the interactions between SARS-CoV-2 3CL M^(pro) and graphene-related materials…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Membrane-dependent relief of translation elongation arrest on pseudouridine- and N1-methyl-pseudouridine-modified mRNAs</strong> - Expression of therapeutically important proteins has benefited dramatically from the advent of chemically modified mRNAs that feature decreased lability and immunogenicity. This had a momentous effect on the rapid development of COVID-19 mRNA vaccines. Incorporation of the naturally occurring pseudouridine (Ψ) or N1-methyl-pseudouridine (N1mΨ) into in vitro transcribed mRNAs prevents the activation of unwanted immune responses by blocking eIF2α phosphorylation, which inhibits translation. Here,…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>pH Shock-promoted lysozyme corona for efficient pathogenic infections treatment: Effects of surface chemistry of mesoporous silica nanoparticles and loading method</strong> - The emergence of antibiotic resistant bacteria because of the antibiotics abusement was the motivation to develop the effective alternatives to traditional antibiotics. Hence, various lysozyme corona were prepared through the physical and covalent attachment of lysozyme molecules onto either the bare or carboxyl-functionalized mesoporous silica particles. The prepared samples were characterized by STEM, TGA/DTA, zeta potential, FTIR, UV-vis and CD spectroscopic methods. All the prepared…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>RBC-hitchhiking chitosan nanoparticles loading methylprednisolone for lung-targeting delivery</strong> - Hyper-inflammation associated with cytokine storm syndrome causes high mortality in patients with COVID-19. Glucocorticoids, such as methylprednisolone sodium succinate (MPSS), effectively inhibit this inflammatory response. However, frequent and chronic administration of glucocorticoids at high doses leads to hormone dependence and serious side effects. The aim of the present study was to combine nanoparticles with erythrocytes for the targeted delivery of MPSS to the lungs. Chitosan…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>The seven constitutive respiratory defense barriers against SARS-CoV-2 infection</strong> - Before eliciting an adaptive immune response, SARS-CoV-2 must overcome seven constitutive respiratory defense barriers. The first is the mucus covering the respiratory tract’s luminal surface, which entraps inhaled particles, including infectious agents, and eliminates them by mucociliary clearance. The second barrier comprises various components present in the airway lining fluid, the surfactants. Besides providing low surface tension that allows efficient gas exchange at the alveoli,…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Elevated temperature inhibits SARS-CoV-2 replication in respiratory epithelium independently of IFN-mediated innate immune defenses</strong> - The pandemic spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the etiological agent of Coronavirus Disease 2019 (COVID-19), represents an ongoing international health crisis. A key symptom of SARS-CoV-2 infection is the onset of fever, with a hyperthermic temperature range of 38 to 41°C. Fever is an evolutionarily conserved host response to microbial infection that can influence the outcome of viral pathogenicity and regulation of host innate and adaptive immune responses….</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>In silico study of potential immunonutrient-based sports supplements against COVID-19 via targeting ACE2 inhibition using molecular docking and molecular dynamics simulations</strong> - Use of some sports supplements can inhibit angiotensin-converting enzyme II (ACE2), a receptor for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as reviewed through molecular docking and sequent molecular dynamics</li>
|
|||
|
</ul>
|
|||
|
<ol start="1500" type="I">
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">simulations against this condition. The crystal structures of ACE2 receptors of SARS-CoV-2 and SARS-CoV, applied in docking analysis, were taken from the Protein Data Bank (PDB). The receptors were then prepared using the Molecular Operating Environment (MOE),…</li>
|
|||
|
</ol>
|
|||
|
<ul>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Effect and Mechanism of Qingfei Paidu Decoction in the Management of Pulmonary Fibrosis and COVID-19</strong> - Qingfei Paidu decoction (QFPD) has been repeatedly recommended for the clinical treatment of novel coronavirus disease 2019 (COVID-19) in multiple provinces throughout China. A possible complication of COVID-19 lung involvement is pulmonary fibrosis, which causes chronic breathing difficulties and affects the patient’s quality of life. Therefore, there is an important question regarding whether QFPD can alleviate the process of pulmonary fibrosis and its potential mechanisms. To explore this…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Sequential infections with rhinovirus and influenza modulate the replicative capacity of SARS-CoV-2 in the upper respiratory tract</strong> - AbstractAlthough frequently reported since the beginning of the pandemic, questions remain regarding the impact of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) interaction with circulating respiratory viruses in coinfected patients. We here investigated dual infections involving early-pandemic SARS-CoV-2 and the Alpha variant and three of the most prevalent respiratory viruses, rhinovirus (RV) and Influenza A and B viruses (IAV and IBV), in reconstituted respiratory airway…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Cell Surface SARS-CoV-2 Nucleocapsid Protein Modulates Innate and Adaptive Immunity</strong> - SARS-CoV-2 nucleocapsid protein (N) induces strong antibody and T cell responses. Although considered to be localized in the cytosol, we readily detect N on the surface of live cells. N released by SARS-CoV-2 infected cells or N-expressing transfected cells binds to neighboring cells by electrostatic high-affinity binding to heparan sulfate and heparin, but not other sulfated glycosaminoglycans. N binds with high affinity to 11 human chemokines, including CXCL12β, whose chemotaxis of leukocytes…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Quantification of nuclear transport inhibition by SARS-CoV-2 ORF6 using a broadly applicable live-cell dose-response pipeline</strong> - SARS coronavirus ORF6 inhibits the classical nuclear import pathway to antagonize host antiviral responses. Several models were proposed to explain its inhibitory function, but quantitative measurement is needed for model evaluation and refinement. We report a broadly applicable live-cell method for calibrated dose-response characterization of the nuclear transport alteration by a protein of interest. Using this method, we found that SARS-CoV-2 ORF6 is ∼5 times more potent than SARS-CoV-1 ORF6…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Cell Surface SARS-CoV-2 Nucleocapsid Protein Modulates Innate and Adaptive Immunity</strong> - SARS-CoV-2 nucleocapsid protein (N) induces strong antibody and T cell responses. Although considered to be localized in the cytosol, we readily detect N on the surface of live cells. N released by SARS-CoV-2 infected cells or N-expressing transfected cells binds to neighboring cells by electrostatic high-affinity binding to heparan sulfate and heparin, but not other sulfated glycosaminoglycans. N binds with high affinity to 11 human chemokines, including CXCL12β, whose chemotaxis of leukocytes…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Iota-carrageenan extracted from red algae is a potent inhibitor of SARS-CoV-2 infection in reconstituted human airway epithelia</strong> - Iota-carrageenan (IC) nasal spray, a medical device approved for treating respiratory viral infections, has previously been shown to inhibit the ability of a variety of respiratory viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), to enter and replicate in the cell by interfering with the virus binding to the cell surface. The aim of this study was to further investigate the efficacy and safety of IC in SARS-CoV-2 infection in advanced in vitro models of the human…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>The Possible Role of Bruton Tyrosine Kinase (BTK) Inhibitors in the Treatment of COVID-19: A Review</strong> - CONCLUSIONS: Some data support the use of BTK inhibitors for treating COVID-19. It is recommended that patients continue their medications in this class if they develop COVID-19 and were receiving these agents before the disease developed. The use of BTK inhibitors might enable patients to experience less severe immune responses to the SARS-CoV-2 virus. Well-designed studies are needed to evaluate the effectiveness of BTKis in the management of COVID-19.</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Coronavirus disease 2019-induced hypercoagulability and its clinical implications</strong> - Coronavirus disease 2019 is the disease produced by severe acute respiratory syndrome-coronavirus-2, which is introduced into the host’s cell thanks to the angiotensin-converting enzyme 2 receptor. Once there, it uses the cell’s machinery to multiply itself. In this process, it generates an immune response that stimulates the lymphocytes to produce cytokines and reactive oxygen species that begin to deteriorate the endothelial cell. Complement activation, through the complement attack complex…</p></li>
|
|||
|
</ul>
|
|||
|
<h1 data-aos="fade-right" id="from-patent-search">From Patent Search</h1>
|
|||
|
<ul>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Hung Thanh Phan COVID-19 NEW SOLUTION</strong> - - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=AU344983394">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>METHODS OF TREATING SARS-COV-2 INFECTION</strong> - - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=AU344309338">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>REAL-TIME REST BREAK MANAGEMENT SYSTEM FOR WORKPLACE</strong> - The present invention relates to a real-time rest break management system for workplace that comprises of a work desk, wherein first portion is incorporated with a biometric unit 4 for authenticating first user, and a second portion with a telescopic panel 2 associated with a weight sensor 6 and timer unit 7 calculating weight of head/hand manifesting user presence and their resting time period is mounted with an inflated cushion 5, an interactive primary display unit 1 attached over desk enables user to set first/second threshold time for sleeping/taking break, further linked with a tracking interface keeping track of activities and a vibrating unit crafted inside the cushion 5 which is linked to a secondary display unit 8 of second user, giving them access to actuate vibrating unit generating impulses to wake first user when threshold time period is exceeded by the first user. - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=IN342791215">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>P2P 네트워크를 이용한 내장된 화상회의 시스템</strong> - 본 발명은 P2P 네트워크를 이용한 내장된 화상회의 시스템에 관한 것으로, 상태표시부(1), 영상송출부(2), 제어부(3), 광고부(4), 입력부(5)를 포함한다. - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=KR342781397">link</a></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>小分子化合物肌醇六磷酸酯钠水合物在制备抗SARS-CoV-2药物中的应用</strong> - 本发明公开了小分子化合物肌醇六磷酸酯钠水合物在制备抗严重急性呼吸综合征冠状病毒2(SARS‑CoV‑2)药物中的应用,所述抗SARS‑CoV‑2药物是以肌醇六磷酸酯钠水合物为唯一的活性成份,或包含肌醇六磷酸酯钠水合物的药物组合物,所述抗SARS‑CoV‑2药物是指预防或治疗SARS‑CoV‑2感染的药物。本发明利用SARS‑CoV‑2的易感细胞系,包括非洲绿猴肾细胞Vero</p></li>
|
|||
|
</ul>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">E6以及人肺腺癌细胞Calu‑3,检测肌醇六磷酸酯钠水合物的抗SARS‑CoV‑2活性。实验结果显示,肌醇六磷酸酯钠水合物能有效抑制SARS‑CoV‑2对上述易感细胞的感染,且细胞毒性较小,有希望作为有效抗SARS‑CoV‑2感染的药物,具有应用前景。 - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=CN344462859">link</a></p>
|
|||
|
<ul>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A DOORBELL SYSTEM FOR MONITORING AND RECORDING A PHYSIOLOGICAL DATA OF A PERSON</strong> - AbstractTitle: A doorbell system for monitoring and recording a physiological data of a person The present invention provides a doorbell system 500 for monitoring and recording a physiological data of a person. The doorbell system 500 having a transmitter module 100 and a receiving module 200. The transmitter module 100 is having a TOF sensor module 110, an ultrasound detector 120, and an infrared detector 130. Further, a speech recognition system 150, a facial recognition system 160, and a temperature detector 190 are provided for recognizing speech, face, and temperature of the person by comparing pre-stored data. A controlling module 180 is set with a predefined commands for communicating with the transmitter module 100 and receiving module 200. The collected facial and speech data is compared and matched with the pre-stored data then the temperature detector 190 triggers and the door opens when the captured body temperature of the person is matched within the predefined range of temperature.Figure 1 - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=IN340503637">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A study of contemporary trends in investing patterns, household savings, and economic investment.</strong> - Because household savings and household investments are intertwined and interdependent, they are discussed briefly in this paper. Household savings account for more than half of a country’s capital formation, which fluctuates due to a variety of economic factors such as inflation and interest rates. Households should gradually shift their savings and investments from physical assets to financial assets to avoid a sudden change in wealth. They should also save and invest using a variety of platforms. Trends in investing and saving will be easier to track and measure this way. This year’s domestic saving rate in India is 2.3 percent lower than last year’s and 1.2 percent lower than the year before. Since 2011, general domestic savings have been steadily declining, with the trend continuing into the following year. According to official data, the GDP in 2020 shrank by 23.9%, the least in previous years and the least since the Covid-19 pandemic in previous years. As a result, the information presented in this paper is drawn from and evaluated from other sources - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=IN340502149">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>靶向刺激体液免疫和细胞免疫的新冠病毒mRNA疫苗</strong> - 本发明公开了一种靶向刺激体液免疫和细胞免疫的新冠病毒mRNA疫苗。本申请的第一方面提供一种分离的DNA分子组合,该DNA分子组合包括第一DNA分子和第二DNA分子和第三DNA分子中的至少一种。通过第一DNA分子以及第二DNA分子和/或第三DNA分子的组合,利用第一DNA分子最终合成的mRNA诱导高滴度的交叉中和抗体,利用第二DNA分子和/或第三DNA分子最终合成的mRNA诱导新冠病毒特异性的细胞毒性T淋巴细胞,从而高效地同时激活相对独立的体液免疫应答和细胞免疫应答,应对新冠病毒在流行传播过程中产生的突变毒株所引发的突破性感染。 - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=CN343418093">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>跨膜丝氨酸蛋白酶2抑制剂在制备治疗和/或预防冠状病毒感染药物中的用途</strong> - 本发明公开了跨膜丝氨酸蛋白酶2抑制剂在制备治疗和/或预防冠状病毒感染药物中的用途。本发明通过亲和垂钓及活性导向分离获得3种化合物,证实该类化合物可以直接地与跨膜丝氨酸蛋白酶2结合,KD<13μM,且能够显著抑制跨膜丝氨酸蛋白酶2的催化活性。在细胞水平上可以有效的抑制新型冠状病毒SARS‑CoV‑2假病毒入侵,表明该类化合物对于制备治疗和/或预防病毒感染药物具有非常积极的作用。化合物1 化合物2 化合物3。 - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=CN343418164">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>PROLIPOSOMAL DRY POWDER INHALER OF REMDESIVIR</strong> - The present invention is related to Proliposomal Dry Powder Inhaler of Remdesivir and its method thereof for the treatment of viral infections such Coronaviridae (including COVID-19 infection). - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=IN342291904">link</a></p></li>
|
|||
|
</ul>
|
|||
|
|
|||
|
|
|||
|
<script>AOS.init();</script></body></html>
|