206 lines
54 KiB
HTML
206 lines
54 KiB
HTML
|
<!DOCTYPE html>
|
|||
|
<html lang="" xml:lang="" xmlns="http://www.w3.org/1999/xhtml"><head>
|
|||
|
<meta charset="utf-8"/>
|
|||
|
<meta content="pandoc" name="generator"/>
|
|||
|
<meta content="width=device-width, initial-scale=1.0, user-scalable=yes" name="viewport"/>
|
|||
|
<title>21 May, 2021</title>
|
|||
|
<style type="text/css">
|
|||
|
code{white-space: pre-wrap;}
|
|||
|
span.smallcaps{font-variant: small-caps;}
|
|||
|
span.underline{text-decoration: underline;}
|
|||
|
div.column{display: inline-block; vertical-align: top; width: 50%;}
|
|||
|
</style>
|
|||
|
<title>Covid-19 Sentry</title><meta content="width=device-width, initial-scale=1.0" name="viewport"/><link href="styles/simple.css" rel="stylesheet"/><link href="../styles/simple.css" rel="stylesheet"/><link href="https://unpkg.com/aos@2.3.1/dist/aos.css" rel="stylesheet"/><script src="https://unpkg.com/aos@2.3.1/dist/aos.js"></script></head>
|
|||
|
<body>
|
|||
|
<h1 data-aos="fade-down" id="covid-19-sentry">Covid-19 Sentry</h1>
|
|||
|
<h1 data-aos="fade-right" data-aos-anchor-placement="top-bottom" id="contents">Contents</h1>
|
|||
|
<ul>
|
|||
|
<li><a href="#from-preprints">From Preprints</a></li>
|
|||
|
<li><a href="#from-clinical-trials">From Clinical Trials</a></li>
|
|||
|
<li><a href="#from-pubmed">From PubMed</a></li>
|
|||
|
<li><a href="#from-patent-search">From Patent Search</a></li>
|
|||
|
</ul>
|
|||
|
<h1 data-aos="fade-right" id="from-preprints">From Preprints</h1>
|
|||
|
<ul>
|
|||
|
<li><strong>Does face mask use elicit risk-compensation? Quasi-experimental evidence from Denmark during the SARS-CoV-2 pandemic</strong> -
|
|||
|
<div>
|
|||
|
Background: Public use of face masks has been widely adopted to halter the SARS-CoV-2 pandemic but a key concern has been whether the effectiveness of face mask use is limited due to the elicitation of false feelings of security that decrease the observance of other protective behaviors, so-called risk-compensation. Methods: We exploit quasi-experimental variation, prompted by three major changes in policy, to assess whether public use of face masks elicit risk-compensation by increasing the number of close contacts or decreasing attention to distancing and hygiene measured in daily nationally representative surveys (N = 106,880). Results: Number of close contacts: Face mask use prompted by the policy changes decrease the number of contacts in two of the three interventions. In the remaining intervention, it has no effect. Attention to hygiene: Across the changes face masks use does not affect people’s attention to hygiene. Attention to distancing: In two of three interventions, face mask use increase attention to distancing. In the remaining intervention, we see a decrease in attention. Conclusions: Overall, face mask may occasionally elicit a narrow form of risk-compensation; specifically, reducing engagement in physical distancing. However, such narrow forms of risk-compensation are limited: The results do not reveal any effects on the actual number of physical contacts, only on the psychological attention to distancing advice. Moreover, the negative effect only appears for one of three interventions. The other two interventions suggest that face mask use increases attention to physical distancing.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://psyarxiv.com/2aycn/" target="_blank">Does face mask use elicit risk-compensation? Quasi-experimental evidence from Denmark during the SARS-CoV-2 pandemic</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>The Psychological Impact of Threat & Lockdowns During the COVID-19 Pandemic</strong> -
|
|||
|
<div>
|
|||
|
This study aimed to investigate the psychological impact of the COVID-19 pandemic on mental health, particularly the effects of perceived threat and lockdown measures, and to elucidate individual and social factors exacerbating or mitigating its negative effects, particularly sense of control. An online survey was completed by participants (N=8,229) recruited from 79 countries. In line with pre-registered hypotheses, participants showed elevated levels of anxiety and depression worldwide. This poor mental health was predicted by perceived threat. The effect of threat on depression was further moderated by social isolation, but there was no effect of sense of control. Sense of control was low overall, and was predicted negatively by maladaptive coping, but positively by adaptive coping and the perception that the government is dealing with the outbreak. Social isolation increased with quarantine duration, but was mitigated by frequent communication with close ones. Engaging in individual actions to avoid contracting the virus was associated with higher anxiety, except when done professionally. We suggest that the psychological detrimental effects of the pandemic can be alleviated by individual actions such as maintaining frequent social contact and adaptive coping, and by governmental actions which demonstrate support in a public health crisis. Citizens and governments can work together to adapt better to restrictive but necessary measures during the current and future pandemics.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://psyarxiv.com/c8weq/" target="_blank">The Psychological Impact of Threat & Lockdowns During the COVID-19 Pandemic</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>COVID-19 and Government Responses</strong> -
|
|||
|
<div>
|
|||
|
The coronavirus disease (COVID-19), the worst pandemic since the Spanish flu, has spread rapidly across the world. This study investigates this pandemic from the perspective of government responses. The analyses are not limited to the effect of non-pharmaceutical interventions (NPIs) on deaths, but also cover the effect of confirmed COVID-19 cases and deaths on NPIs using daily cross-national data. This paper also shows the precise timing in which NPIs have a reduced effect on deaths. The results indicate that confirmed cases are more positively correlated with NPIs than deaths, and NPIs show a strong positive correlation with deaths in the short run and a negative correlation in the long run. The turnaround time is about 25 days. This means that NPIs take about one month to reduce the number of deaths.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://osf.io/preprints/socarxiv/xkswf/" target="_blank">COVID-19 and Government Responses</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>A COVID-19 Community Vulnerability Index to drive precision policy in the US</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
Background: In April 2020 we released the US COVID-19 Community Vulnerability Index (CCVI) to bring to life vulnerability to health, economic, and social impact of COVID-19 at the state, county, and census tract level. Here we describe the methodology, how vulnerability is distributed across the U.S., and assess the impact on vulnerable communities over the first year of the pandemic. Methods: The index combines 40 indicators into seven themes, drawing on both public and proprietary data. We associate timeseries of COVID-19 cases, deaths, test site access, and rental arrears with vulnerability. Results: Although overall COVID-19 vulnerability is concentrated in the South, the seven underlying themes show substantial spatial variability. As of May 13, 2021, the top-third of vulnerable counties have seen 21% more cases and 47% more deaths than the bottom-third of vulnerable counties, despite receiving 27% fewer tests (adjusted for population). Individual vulnerability themes vary over time in their relationship with mortality as the virus swept across the country. Over 20% of households in the top vulnerability tercile have fallen behind on rent. Poorer test site access for rural vulnerable populations early in the pandemic has since been alleviated. Conclusion: The CCVI captures greater risk of health and economic impact. It has enjoyed widespread use in response planning, and we share lessons learned about developing a data-driven tool in the midst of a fast-moving pandemic. The CCVI and an interactive data explorer are available at precisionforcovid.org/ccvi.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.05.19.21257455v1" target="_blank">A COVID-19 Community Vulnerability Index to drive precision policy in the US</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Saudi Arabian SARS-CoV-2 genomes implicate a mutant Nucleocapsid protein in modulating host interactions and increased viral load in COVID-19 patients</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
Monitoring SARS-CoV-2 spread and evolution through genome sequencing is essential in handling the COVID-19 pandemic. The availability of patient hospital records is crucial for linking the genomic sequence information to virus function during the course of infections. Here, we sequenced 892 SARS-CoV-2 genomes collected from patients in Saudi Arabia from March to August 2020. From the assembled sequences, we estimate the SARS-CoV-2 effective population size and infection rate and outline the epidemiological dynamics of import and transmission events during this period in Saudi Arabia. We show that two consecutive mutations (R203K/G204R) in the SARS-CoV-2 nucleocapsid (N) protein are associated with higher viral loads in COVID-19 patients. Our comparative biochemical analysis reveals that the mutant N protein displays enhanced viral RNA binding and differential interaction with key host proteins. We found hyper-phosphorylation of the adjacent serine site (S206) in the mutant N protein by mass-spectrometry analysis. Furthermore, analysis of the host cell transcriptome suggests that the mutant N protein results in dysregulated interferon response genes. We provide crucial information in linking the R203K/G204R mutations in the N protein as a major modulator of host-virus interactions and increased viral load and underline the potential of the nucleocapsid protein as a drug target during infection.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.05.06.21256706v2" target="_blank">Saudi Arabian SARS-CoV-2 genomes implicate a mutant Nucleocapsid protein in modulating host interactions and increased viral load in COVID-19 patients</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Differential interferon-α subtype immune signatures suppress SARS-CoV-2 infection</strong> -
|
|||
|
<div>
|
|||
|
Type I interferons (IFN-I) exert pleiotropic biological effects during viral infections, balancing virus control versus immune-mediated pathologies and have been successfully employed for the treatment of viral diseases. Humans express twelve IFN-alpha () subtypes, which activate downstream signalling cascades and result in distinct patterns of immune responses and differential antiviral responses. Inborn errors in type I IFN immunity and the presence of anti-IFN autoantibodies account for very severe courses of COVID-19, therefore, early administration of type I IFNs may be protective against life-threatening disease. Here we comprehensively analysed the antiviral activity of all IFN subtypes against SARS-CoV-2 to identify the underlying immune signatures and explore their therapeutic potential. Prophylaxis of primary human airway epithelial cells (hAEC) with different IFN subtypes during SARS-CoV-2 infection uncovered distinct functional classes with high, intermediate and low antiviral IFNs. In particular IFN5 showed superior antiviral activity against SARS-CoV-2 infection. Dose-dependency studies further displayed additive effects upon co-administered with the broad antiviral drug remdesivir in cell culture. Transcriptomics of IFN-treated hAEC revealed different transcriptional signatures, uncovering distinct, intersecting and prototypical genes of individual IFN subtypes. Global proteomic analyses systematically assessed the abundance of specific antiviral key effector molecules which are involved in type I IFN signalling pathways, negative regulation of viral processes and immune effector processes for the potent antiviral IFN5. Taken together, our data provide a systemic, multi-modular definition of antiviral host responses mediated by defined type I IFNs. This knowledge shall support the development of novel therapeutic approaches against SARS-CoV-2.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2021.05.20.444757v1" target="_blank">Differential interferon-α subtype immune signatures suppress SARS-CoV-2 infection</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>A CRISPR/Cas9 genetically engineered organoid biobank reveals essential host factors for coronaviruses</strong> -
|
|||
|
<div>
|
|||
|
Rapid identification of host genes essential for virus replication may expedite the generation of therapeutic interventions. Genetic screens are often performed in transformed cell lines that poorly represent viral target cells in vivo, leading to discoveries that may not be translated to the clinic. Intestinal organoids (IOs) are increasingly used to model human disease and are amenable to genetic engineering. To discern which host factors are reliable anti-coronavirus therapeutic targets, we generate mutant clonal IOs for 19 host genes previously implicated in coronavirus biology. We verify ACE2 and DPP4 as entry receptors for SARS-CoV/SARS-CoV-2 and MERS-CoV respectively. SARS-CoV-2 replication in IOs does not require the endosomal Cathepsin B/L proteases, but specifically depends on the cell surface protease TMPRSS2. Other TMPRSS family members were not essential. The newly emerging coronavirus variant B.1.1.7, as well as SARS-CoV and MERS-CoV similarly depended on TMPRSS2. These findings underscore the relevance of non-transformed human models for coronavirus research, identify TMPRSS2 as an attractive pan-coronavirus therapeutic target, and demonstrate that an organoid knockout biobank is a valuable tool to investigate the biology of current and future emerging coronaviruses.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2021.05.20.444952v1" target="_blank">A CRISPR/Cas9 genetically engineered organoid biobank reveals essential host factors for coronaviruses</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>4’-Fluorouridine is a broad-spectrum orally efficacious antiviral blocking respiratory syncytial virus and SARS-CoV-2 replication</strong> -
|
|||
|
<div>
|
|||
|
The COVID-19 pandemic has underscored the critical need for broad-spectrum therapeutics against respiratory viruses. Respiratory syncytial virus (RSV) is a major threat to pediatric patients and the elderly. We describe 4’-fluorouridine (4’-FlU, EIDD-2749), a ribonucleoside analog that inhibits RSV, related RNA viruses, and SARS-CoV-2 with high selectivity index in cells and well-differentiated human airway epithelia. Polymerase inhibition in in vitro RdRP assays established for RSV and SARS-CoV-2 revealed transcriptional pauses at positions i or i+3/4 post-incorporation. Once-daily oral treatment was highly efficacious at 5 mg/kg in RSV-infected mice or 20 mg/kg in ferrets infected with SARS-CoV-2 WA1/2020 or variant-of-concern (VoC) isolate CA/2020, initiated 24 or 12 hours after infection, respectively. These properties define 4’-FlU as a broad-spectrum candidate for the treatment of RSV, SARS-CoV-2 and related RNA virus infections.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2021.05.19.444875v1" target="_blank">4’-Fluorouridine is a broad-spectrum orally efficacious antiviral blocking respiratory syncytial virus and SARS-CoV-2 replication</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>An AAV-ie based Vaccine effectively protects against SARS-CoV-2 and Circulating Variants</strong> -
|
|||
|
<div>
|
|||
|
Prophylactic vaccines against SARS-CoV-2 have been extensively developed globally to overcome the COVID-19 pandemic. However, recently emerging SARS-CoV-2 variants B.1.1.7 and B.1.351 limit the vaccine protection effects and successfully escape antibody cocktail treatment. Herein, based on our previously engineered adeno-associated viral (AAV) vector, AAV-ie, and systematic immunogen screening, we developed an AAV-ie-S1 vaccine with thermostability, high efficiency, safety, and single-dose vaccination advantage. Importantly, the AAV-ie-S1 immune sera efficiently neutralize B.1.1.7 and B.1.351, indicating a potential to circumvent the spreading of SARS-CoV-2.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2021.05.19.444889v1" target="_blank">An AAV-ie based Vaccine effectively protects against SARS-CoV-2 and Circulating Variants</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Acute SARS-CoV-2 infection is associated with an expansion of bacteria pathogens in the nose including Pseudomonas aeruginosa</strong> -
|
|||
|
<div>
|
|||
|
Much of the research conducted on SARS-CoV-2 and COVID-19 has focused on the systemic host response, especially that generated by severely ill patients. Very few studies have investigated the impact of acute SARS-CoV-2 within the nasopharynx, the site of initial infection and viral replication. In this study we profiled changes in the nasal microbial communities as well as in host transcriptional profile during acute SARS-CoV-2 infection using 16S amplicon sequencing and RNA sequencing. These analyses were coupled to viral genome sequencing. Our microbiome analysis revealed that the nasal microbiome of COVID patients was unique and was marked by an expansion of bacterial pathogens. Some of these microbes (i.e. Acinetobacter) were shared with COVID negative health care providers from the same medical center but absent in COVID negative outpatients seeking care at the same institutions suggesting acquisition of nosocomial respiratory pathogens. Specifically, we report a distinct increase in the prevalence and abundance of the pathogen Pseudomonas aeruginosa in COVID patients that correlated with viral RNA load. These data suggest that the inflammatory environment caused by SARS-CoV-2 infection and potentially exposure to the hospital environment leads to an expansion of bacterial pathogens in the nasal cavity that could contribute to increased incidence of secondary bacterial infections. Additionally, we observed a robust host transcriptional response in the nasal epithelia of COVID patients, indicative of an antiviral innate immune repones and neuronal damage. Finally, analysis of viral genomes did not reveal an association between viral loads and viral sequences.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2021.05.20.445008v1" target="_blank">Acute SARS-CoV-2 infection is associated with an expansion of bacteria pathogens in the nose including Pseudomonas aeruginosa</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Single-dose AAV-based vaccine induces a high level of neutralizing antibodies and provides long-term protection against SARS-CoV-2 in rhesus macaques</strong> -
|
|||
|
<div>
|
|||
|
Coronavirus disease 2019 (COVID-19), which is triggered by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, continues to threaten global public health. Developing a vaccine that only requires single immunization but provides long-term protection for the prevention and control of COVID-19 is important. Here, we developed an adeno-associated virus (AAV)-based vaccine expressing a stable receptor-binding domain (SRBD) protein. The vaccine requires only single shot, but provides effective neutralizing antibodies (NAbs) over 300 days in rhesus macaques (Macaca mulatta). In addition, the NAbs are at much higher levels than seen in the sera of convalescent patients. It is worth to note that though we detected the pre-existing AAV2/9 NAbs before immunization, the vaccine still induced high and effective NAbs, and did not boost the AAV2/9 NAbs levels in rhesus macaques. Importantly, AAV-SRBD immune sera efficiently neutralized the SARS-CoV-2 P.1/P.2, B.1.1.7, and B.1.351 variants. Together, all the data suggest the vaccine has great potential in preventing the spread of SARS-CoV-2.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2021.05.19.444881v1" target="_blank">Single-dose AAV-based vaccine induces a high level of neutralizing antibodies and provides long-term protection against SARS-CoV-2 in rhesus macaques</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Alum:CpG adjuvant enables SARS-CoV-2 RBD-induced protection in aged mice and synergistic activation of human elder type 1 immunity</strong> -
|
|||
|
<div>
|
|||
|
Global deployment of vaccines that can provide protection across several age groups is still urgently needed to end the COVID-19 pandemic especially for low- and middle-income countries. While vaccines against SARS-CoV-2 based on mRNA and adenoviral-vector technologies have been rapidly developed, additional practical and scalable SARS-CoV-2 vaccines are needed to meet global demand. In this context, protein subunit vaccines formulated with appropriate adjuvants represent a promising approach to address this urgent need. Receptor-binding domain (RBD) is a key target of neutralizing antibodies (Abs) but is poorly immunogenic. We therefore compared pattern recognition receptor (PRR) agonists, including those activating STING, TLR3, TLR4 and TLR9, alone or formulated with aluminum hydroxide (AH), and benchmarked them to AS01B and AS03-like emulsion-based adjuvants for their potential to enhance RBD immunogenicity in young and aged mice. We found that the AH and CpG adjuvant formulation (AH:CpG) demonstrated the highest enhancement of anti-RBD neutralizing Ab titers in both age groups (~80-fold over AH), and protected aged mice from the SARS-CoV-2 challenge. Notably, AH:CpG-adjuvanted RBD vaccine elicited neutralizing Abs against both wild-type SARS-CoV-2 and B.1.351 variant at serum concentrations comparable to those induced by the authorized mRNA BNT162b2 vaccine. AH:CpG induced similar cytokine and chemokine gene enrichment patterns in the draining lymph nodes of both young adult and aged mice and synergistically enhanced cytokine and chemokine production in human young adult and elderly mononuclear cells. These data support further development of AH:CpG-adjuvanted RBD as an affordable vaccine that may be effective across multiple age groups.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2021.05.20.444848v1" target="_blank">Alum:CpG adjuvant enables SARS-CoV-2 RBD-induced protection in aged mice and synergistic activation of human elder type 1 immunity</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>One year of SARS-CoV-2: Genomic characterization of COVID-19 outbreak in Qatar</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
Qatar, a state that has a diverse population consisting mainly of foreign residents, has experienced a large COVID19 outbreak. In this study, we report on 2634 SARS-CoV-2 whole-genome sequences from infected patients in Qatar between March-2020 and March-2021, representing 1.5% of all positive cases in this period. Despite the restrictions on international travel, the viruses sampled from the populace of Qatar mirrored nearly the entire global population9s genomic diversity with nine predominant viral lineages that were sustained by local transmission chains and the emergence of mutations that are likely to have originated in Qatar. We reported an increased number of mutations and deletions in B.1.1.7 and B.1.351 lineages in a short period. These findings raise the imperative need to continue the ongoing genomic surveillance that has been an integral part of the national response to monitor the SARS-CoV-2 profile and re-emergence in Qatar.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.05.19.21257433v2" target="_blank">One year of SARS-CoV-2: Genomic characterization of COVID-19 outbreak in Qatar</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Clinical characteristics and COVID-19 outcomes in a regional cohort of pediatric patients with rheumatic diseases</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
Background: This study aimed to assess the baseline characteristics and clinical outcomes of coronavirus disease 2019 (COVID-19) in pediatric patients with rheumatic and musculoskeletal diseases (RMD) and identify the risk factors associated with symptomatic or severe disease defined as hospital admission, intensive care admission or death. Methods: An observational longitudinal study was conducted during the first year of pandemic SARS-CoV-2 (1st March 2020 to 1st March 2021). All pediatric patients attended at the rheumatology outpatient clinic of six tertiary hospital in Madrid, Spain, with a medical diagnosis of RMD and COVID-19 were included. Main outcomes were symptomatic disease and hospital admission. The covariates were sociodemographic, clinical, and treatments. We ran a multivariable logistic regression model to assess risk factors for outcomes. Results: The study population included 77 pediatric patients. Mean age was 11.88 (4.04) years Of these, 30 patients were asymptomatic, 41 had a mild or moderate disease and other 6 patients (7.79%) required hospital admission related to COVID-19. The median length of stay was 5 (2-20) days and there was no death. Previous comorbidities increased the risk for symptomatic disease and hospital admission. Compared with outpatients, the factor independently associated with hospital admission was the use of glucocorticoids (OR 1.08; p=0.00). No statistically significant findings for symptomatic COVID-19 were found in the final model. Conclusion: Our data found no differences in COVID-19 outcomes between children-onset rheumatic diseases. Our results suggest that associated comorbidities and being in treatment with glucocorticoids increase the risk of hospital admission.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.05.19.21257450v1" target="_blank">Clinical characteristics and COVID-19 outcomes in a regional cohort of pediatric patients with rheumatic diseases</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>CovidMulti-Net: A Parallel-Dilated Multi Scale Feature Fusion Architecture for the Identification of COVID-19 Cases from Chest X-ray Images</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
The COVID-19 pandemic is an emerging respiratory infectious disease, having a significant impact on the health and life of many people around the world. Therefore, early identification of COVID-19 patients is the fastest way to restrain the spread of the pandemic. However, as the number of cases grows at an alarming pace, most developing countries are now facing a shortage of medical resources and testing kits. Besides, using testing kits to detect COVID-19 cases is a time-consuming, expensive, and cumbersome procedure. Faced with these obstacles, most physicians, researchers, and engineers have advocated for the advancement of computer-aided deep learning models to assist healthcare professionals in quickly and inexpensively recognize COVID-19 cases from chest X-ray (CXR) images. With this motivation, this paper proposes a CovidMulti-Net architecture based on the transfer learning concept to classify COVID-19 cases from normal and other pneumonia cases using three publicly available datasets that include 1341, 1341, and 446 CXR images from healthy samples and 902, 1564, and 1193 CXR images infected with Viral Pneumonia, Bacterial Pneumonia, and COVID-19 diseases. In the proposed framework, features from CXR images are extracted using three well-known pre-trained models, including DenseNet-169, ResNet-50, and VGG-19. The extracted features are then fed into a concatenate layer, making a robust hybrid model. The proposed framework achieved a classification accuracy of 99.4%, 95.2%, and 94.8% for 2-Class, 3-Class, and 4-Class datasets, exceeding all the other state-of-the-art models. These results suggest that the CovidMulti-Net frameworks ability to discriminate individuals with COVID-19 infection from healthy ones and provides the opportunity to be used as a diagnostic model in clinics and hospitals. We also made all the materials publicly accessible for the research community at: https://github.com/saikat15010/CovidMulti-Net-Architecture.git.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.05.19.21257430v1" target="_blank">CovidMulti-Net: A Parallel-Dilated Multi Scale Feature Fusion Architecture for the Identification of COVID-19 Cases from Chest X-ray Images</a>
|
|||
|
</div></li>
|
|||
|
</ul>
|
|||
|
<h1 data-aos="fade-right" id="from-clinical-trials">From Clinical Trials</h1>
|
|||
|
<ul>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Recombinant Hyperimmune Polyclonal Antibody (GIGA-2050) in COVID-19 Patients</strong> - <b>Condition</b>: COVID-19<br/><b>Intervention</b>: Drug: GIGA-2050<br/><b>Sponsor</b>: GigaGen, Inc.<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Study to Evaluate the Effects of RO7496998 (AT-527) in Non-Hospitalized Adult and Adolescent Participants With Mild or Moderate COVID-19</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Drug: RO7496998; Drug: Placebo<br/><b>Sponsors</b>: Atea Pharmaceuticals, Inc.; Hoffmann-La Roche<br/><b>Recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A Phase 2 Study of APX-115 in Hospitalized Patients With Confirmed Mild to Moderate COVID-19.</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Drug: APX-115; Drug: Placebo<br/><b>Sponsors</b>: Aptabio Therapeutics, Inc.; Covance<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Mix and Match of the Second COVID-19 Vaccine Dose for Safety and Immunogenicity</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Biological: mRNA-1273 SARS-CoV-2 vaccine; Biological: BNT162b2; Biological: ChAdOx1-S [recombinant]; Other: 0, 28 day schedule; Other: 0, 112 day schedule<br/><b>Sponsors</b>: Canadian Immunization Research Network; Canadian Center for Vaccinology; BC Children’s Hospital Research Institute; Children’s Hospital Research Institute of Manitoba; CHU de Quebec-Universite Laval; Ottawa Hospital Research Institute; Northern Alberta Clinical Trials + Research Centre; Ontario Agency for Health Protection and Promotion; University of Toronto; Massachusetts General Hospital<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A Study to Evaluate the Safety and Effect of STC3141 Continuous Infusion in Subjects With Severe Corona Virus Disease 2019(COVID-19)Pneumonia</strong> - <b>Condition</b>: Severe COVID-19 Pneumonia<br/><b>Intervention</b>: Drug: STC3141<br/><b>Sponsors</b>: Grand Medical Pty Ltd.; Trium Clinical Consulting<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A Global Phase III Clinical Trial of Recombinant COVID-19 Vaccine (Sf9 Cells)</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Biological: Recombinant COVID-19 vaccine (Sf9 cells); Other: Placebo control<br/><b>Sponsors</b>: Jiangsu Province Centers for Disease Control and Prevention; WestVac Biopharma Co., Ltd.; West China Hospital<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>The Role of High Dose Co-trimoxazole in Severe Covid-19 Patients</strong> - <b>Condition</b>: COVID-19 Pneumonia<br/><b>Interventions</b>: Drug: Co-trimoxazole; Drug: Placebo<br/><b>Sponsor</b>: Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A Study of Bemcentinib for the Treatment of COVID-19 in Hospitalised Patients</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Drug: Bemcentinib; Other: SoC<br/><b>Sponsor</b>: BerGenBio ASA<br/><b>Active, not recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>The Proof of Concept Phase 2 Study to Evaluate the Safety and Efficacy of Clevudine in Patients With Mild and Moderate COVID-19</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Drug: Clevudine; Drug: Placebo<br/><b>Sponsor</b>: Bukwang Pharmaceutical<br/><b>Recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Breathing Effort in Covid-19 Pneumonia: Effects of Positive Pressure, Inspired Oxygen Fraction and Decubitus</strong> - <b>Condition</b>: COVID-19 Pneumonia<br/><b>Intervention</b>: Device: Esophageal catheter<br/><b>Sponsor</b>: San Luigi Gonzaga Hospital<br/><b>Recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>COVID-19 Infection Control Using H2O2 Mouth Wash and Nasal Spray</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Device: Hydrogen peroxide; Device: Placebo<br/><b>Sponsor</b>: EPISTATA<br/><b>Recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Lot-to-lot Consistency of an Inactivated SARS-CoV-2 Vaccine for Prevention of COVID-19 in Healthy Adults</strong> - <b>Condition</b>: COVID-19<br/><b>Intervention</b>: Biological: Inactivated SARS-CoV-2 Vaccine (Vero cell)<br/><b>Sponsor</b>: Sinovac Research and Development Co., Ltd.<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A Study to Test Whether BI 767551 Can Prevent COVID-19 in People Who Have Been Exposed to SARS-CoV-2</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Drug: BI 767551 intravenous; Drug: BI 767551 inhalation; Drug: Placebo intravenous; Drug: Placebo inhalation<br/><b>Sponsor</b>: Boehringer Ingelheim<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Using Text Messages to Improve COVID-19 Vaccination Uptake, an RCT.</strong> - <b>Condition</b>: Covid19<br/><b>Intervention</b>: Behavioral: Text message content<br/><b>Sponsors</b>: Imperial College Healthcare NHS Trust; Central London CCG; Imperial College Health Partners; Institute for Global Health Innovations; The Behavioural Insights Team<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>The Effect of Vitamin D Supplementation on COVID-19 Recovery</strong> - <b>Condition</b>: Covid19<br/><b>Interventions</b>: Drug: Vit-D 0.2 MG/ML Oral Solution [Calcidol]; Drug: Physiological Irrigating Solution<br/><b>Sponsors</b>: University of Monastir; Loussaief Chawki; Nissaf Ben Alaya; Cyrine Ben Nasrallah; Manel Ben Belgacem; Hela Abroug; Imen Zemni; Manel Ben fredj; Wafa Dhouib<br/><b>Completed</b></p></li>
|
|||
|
</ul>
|
|||
|
<h1 data-aos="fade-right" id="from-pubmed">From PubMed</h1>
|
|||
|
<ul>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Marine sulfated polysaccharides as potential antiviral drug candidates to treat Corona Virus disease (COVID-19)</strong> - The viral infection caused by SARS-CoV-2 has increased the mortality rate and engaged several adverse effects on the affected individuals. Currently available antiviral drugs have found to be unsuccessful in the treatment of COVID-19 patients. The demand for efficient antiviral drugs has created a huge burden on physicians and health workers. Plasma therapy seems to be less accomplishable due to insufficient donors to donate plasma and low recovery rate from viral infection. Repurposing of…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Azithromycin: Immunomodulatory and Antiviral Properties for SARS-CoV-2 Infection</strong> - Azithromycin, a member of the macrolide family of antibiotics, is commonly used to treat respiratory bacterial infections. Nevertheless, multiple pharmacological effects of the drug have been revealed in several investigations. Conceivably, the immunomodulatory properties of azithromycin are among its critical features, leading to its application in treating inflammatory diseases, such as asthma and chronic obstructive pulmonary disease (COPD). Additionally, azithromycin may directly inhibit…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>DC/L-SIGN recognition of spike glycoprotein promotes SARS-CoV-2 trans-infection and can be inhibited by a glycomimetic antagonist</strong> - The efficient spread of SARS-CoV-2 resulted in a unique pandemic in modern history. Despite early identification of ACE2 as the receptor for viral spike protein, much remains to be understood about the molecular events behind viral dissemination. We evaluated the contribution of C-type lectin receptors (CLRS) of antigen-presenting cells, widely present in respiratory mucosa and lung tissue. DC-SIGN, L-SIGN, Langerin and MGL bind to diverse glycans of the spike using multiple interaction areas….</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Interleukin-6 Inhibition Reduces Neuronal Injury In A Murine Model of Ventilator-Induced Lung Injury</strong> - Mechanical ventilation is a known risk factor for delirium, a cognitive impairment characterized by frontal cortex and hippocampal dysfunction. Although interleukin-6 (IL-6) is upregulated in mechanical ventilation-induced lung injury (VILI) and may contribute to delirium, it is not known whether inhibition of systemic IL-6 mitigates delirium-relevant neuropathology. To histologically define neuropathological effects of IL-6 inhibition in an experimental VILI model. VILI was simulated in…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Marine algal antagonists targeting 3CL protease and spike glycoprotein of SARS-CoV-2: a computational approach for anti-COVID-19 drug discovery</strong> - The COVID-19 pandemic has severely destructed human life worldwide, with no suitable treatment until now. SARS-CoV-2 virus is unprecedented, resistance against number of therapeutics and spreading rapidly with high mortality, which warrants the need to discover new effective drugs to combat this situation. This current study is undertaken to explore the antiviral potential of marine algal compounds to inhibit the viral entry and its multiplication using computational analysis. Among the proven…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Hypoxia reduces cell attachment of SARS-CoV-2 spike protein by modulating the expression of ACE2, neuropilin-1, syndecan-1 and cellular heparan sulfate</strong> - AbstractA main clinical parameter of COVID-19 pathophysiology is hypoxia. Here we show that hypoxia decreases the attachment of the receptor binding domain (RBD) and the S1 subunit (S1) of the spike protein of SARS-CoV-2 to epithelial cells. In Vero E6 cells, hypoxia reduces the protein levels of ACE2 and neuropilin-1 (NRP1), which might in part explain the observed reduction of the infection rate. In addition, hypoxia inhibits the binding of the spike to NCI-H460 human lung epithelial cells by…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Humoral immunogenicity of the seasonal influenza vaccine before and after CAR-T-cell therapy</strong> - Recipients of chimeric antigen receptor-modified T (CAR-T) cell therapies for B-cell malignancies are immunocompromised and at risk for serious infections. Vaccine immunogenicity is unknown in this population. We conducted a prospective observational study of the humoral immunogenicity of 2019-2020 inactivated influenza vaccines (IIV) in children and adults immediately prior to (n=7) or 13-57 months after (n=15) CD19-, CD20-, or BCMA-targeted CAR-T-cell therapy, as well as controls (n=8)….</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>SARS-CoV-2 ferritin nanoparticle vaccines elicit broad SARS coronavirus immunogenicity</strong> - The need for SARS-CoV-2 next-generation vaccines has been highlighted by the rise of variants of concern (VoC) and the long-term threat of other coronaviruses. Here, we designed and characterized four categories of engineered nanoparticle immunogens that recapitulate the structural and antigenic properties of prefusion Spike (S), S1 and RBD. These immunogens induced robust S-binding, ACE2-inhibition, and authentic and pseudovirus neutralizing antibodies against SARS-CoV-2 in mice. A…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>High neutralizing potency of swine glyco-humanized polyclonal antibodies against SARS-CoV-2</strong> - Perfusion of convalescent plasma (CP) has demonstrated a potential to improve the pneumonia induced by SARS-CoV-2, but procurement and standardization of CP are barriers to its wide usage. Many monoclonal antibodies (mAbs) have been developed but appear insufficient to neutralize SARS-CoV-2 unless two or three of them are being combined. Therefore, heterologous polyclonal antibodies of animal origin, that have been used for decades to fight against infectious agents might represent a highly…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Modulation of lysosomal function as a therapeutic approach for coronaviral infections</strong> - The endo-lysosomal pathway plays an important role in pathogen clearance and both bacteria and viruses have evolved complex mechanisms to evade this host system. Here, we describe a novel aspect of coronaviral infection, whereby the master transcriptional regulator of lysosome biogenesis - TFEB - is targeted for proteasomal-mediated degradation upon viral infection. Through mass spectrometry analysis and an unbiased siRNA screen, we identify that TFEB protein stability is coordinately regulated…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Unique mutations in the MHV macrodomain differentially attenuate virus replication, indicating multiple roles for the macrodomain in coronavirus replication</strong> - All coronaviruses (CoVs) contain a macrodomain, also termed Mac1, in non-structural protein 3 (nsp3) which binds and hydrolyzes mono-ADP-ribose (MAR) covalently attached to proteins. Despite several reports demonstrating that Mac1 is a prominent virulence factor, there is still a limited understanding of its cellular roles during infection. Currently, most of the information regarding the role of CoV Mac1 during infection is based on a single point mutation of a highly conserved asparagine…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Diverse Functional Autoantibodies in Patients with COVID-19</strong> - COVID-19 manifests with a wide spectrum of clinical phenotypes that are characterized by exaggerated and misdirected host immune responses^(1-6). While pathological innate immune activation is well documented in severe disease¹, the impact of autoantibodies on disease progression is less defined. Here, we used a high-throughput autoantibody (AAb) discovery technique called Rapid Extracellular Antigen Profiling (REAP)⁷ to screen a cohort of 194 SARS-CoV-2 infected COVID-19 patients and healthcare…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Virucidal and antiviral activity of astodrimer sodium against SARS-CoV-2 in vitro</strong> - An effective response to the ongoing coronavirus disease (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) will involve a range of complementary preventive modalities. The current studies were conducted to evaluate the in vitro SARS-CoV-2 antiviral and virucidal (irreversible) activity of astodrimer sodium, a dendrimer with broad spectrum antimicrobial activity, including against enveloped viruses in in vitro and in vivo models, that is marketed for…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Computational Approaches to Discover Novel Natural Compounds for SARS-CoV-2 Therapeutics</strong> - Scientists all over the world are facing a challenging task of finding effective therapeutics for the coronavirus disease (COVID-19). One of the fastest ways of finding putative drug candidates is the use of computational drug discovery approaches. The purpose of the current study is to retrieve natural compounds that have obeyed to drug-like properties as potential inhibitors. Computational molecular modelling techniques were employed to discover compounds with potential SARS-CoV-2 inhibition…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Pharmacological activation of STING blocks SARS-CoV-2 infection</strong> - Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic, resulting millions of infections and deaths with few effective interventions available. Here, we demonstrate that SARS-CoV-2 evades interferon (IFN) activation in respiratory epithelial cells, resulting in a delayed response in bystander cells. Since pretreatment with IFNs can block viral infection, we reasoned that pharmacological activation of innate immune pathways could control SARS-CoV-2 infection. To…</p></li>
|
|||
|
</ul>
|
|||
|
<h1 data-aos="fade-right" id="from-patent-search">From Patent Search</h1>
|
|||
|
<ul>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>IMPROVEMENTS RELATED TO PARTICLE, INCLUDING SARS-CoV-2, DETECTION AND METHODS THEREFOR</strong> - - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=AU323295937">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A COMPREHENSIVE DISINFECTION SYSTEM DURING PANDEMIC FOR PERSONAL ITEMS AND PROTECTIVE EQUIPMENT (PPE) TO SAFEGUARD PEOPLE</strong> - The current Covid-19 pandemic has led to an enormous demand for gadgets / objects for personal protection. To prevent the spread of virus, it is important to disinfect commonly touched objects. One of the ways suggested is to use a personal UV-C disinfecting box that is “efficient and effective in deactivating the COVID-19 virus. The present model has implemented the use of a UV transparent material (fused silica quartz glass tubes) as the medium of support for the objects to be disinfected to increase the effectiveness of disinfection without compromising the load bearing capacity. Aluminum foil, a UV reflecting material, was used as the inner lining of the box for effective utilization of the UVC light emitted by the UVC lamps. Care has been taken to prevent leakage of UVC radiation out of the system. COVID-19 virus can be inactivated in 5 minutes by UVC irradiation in this disinfection box - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=IN322882412">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>UBIQUITOUS COMPUTING SYSTEM FOR MENTAL HEALTH MONITORING OF PERSON DURING THE PANDEMIC OF COVID-19</strong> - - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=AU323295498">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>USE OF IMINOSUGAR COMPOUND IN PREPARATION OF ANTI-SARS-COV-2 VIRUS DRUG</strong> - - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=AU322897928">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>一种高灵敏SARS-CoV-2中和抗体的检测方法、检测试剂盒</strong> - 本发明公开了一种高灵敏SARS‑CoV‑2中和抗体的检测方法、检测试剂盒,属于生物医学检测技术领域,本发明试剂盒包括层析试纸、卡壳和样本稀释液,所述层析试纸包括底板、样品垫、结合垫、NC膜和吸水垫,所述NC膜上依次设置有捕获线、检测线和质控线,所述捕获线包被有ACE2蛋白,所述检测线包被有RBD蛋白,所述结合垫设置有RBD蛋白标记物;本发明采用阻断法加夹心法原理提高检测中和抗体的灵敏度,通过添加捕获线的方式,将靶向RBD的非中和抗体提前捕获,保证后续通过夹心法检测中和抗体的特异性。 - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=CN323798634">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>逆转录酶突变体及其应用</strong> - 本发明提供一种MMLV逆转录酶突变体,在野生型MMLV逆转录酶氨基酸序列(如SEQ ID No.1序列所示)中进行七个氨基酸位点的突变,氨基酸突变位点为:R205H;V288T;L304K;G525D;S526D;E531G;E574G。该突变体可以降低MMLV逆转录酶对Taq DNA聚合酶的抑制作用,大大提高了一步法RT‑qPCR的灵敏度。 - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=CN323494119">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Compositions and methods for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) infection</strong> - - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=AU321590214">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>用于检测新型冠状病毒的试纸和试剂盒</strong> - 本发明涉及生物技术和免疫检测技术领域,具体涉及一种用于检测新型冠状病毒的试纸和试剂盒。所述试纸或试剂盒含有抗体1和/或抗体2,所述抗体1的重、轻链可变区的氨基酸序列分别如SEQ ID NO:1‑2所示,所述抗体2的重、轻链可变区的氨基酸序列分别如SEQ ID NO:3‑4所示。本发明对于大批量的新型冠状病毒样本,包括新型冠状病毒突变(英国、南非)与非突变株的人血清、鼻咽拭子等样本的检测有普遍检测意义,避免突变株的漏检。 - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=CN322953478">link</a></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Fahrgastleitsystem und Verfahren zum Leiten von Fahrgästen</strong> -
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
</p><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">Die Erfindung betrifft ein Fahrgastleitsystem zum Leiten von mit einem Fahrzeug (1) mit wenigstens zwei Türen (2.L, 2.R) transportieren Fahrgästen (3), mit wenigstens einem Sensor (4) zur Überwachung der Fahrgäste (3), wenigstens einem Anzeigemittel (5) zur Ausgabe von Leitinformationen, wenigstens einem Aktor zum Öffnen oder Verriegeln einer Tür (2.L, 2.R) und wenigstens einer Recheneinheit (7). Das erfindungsgemäße Fahrgastleitsystem ist dadurch gekennzeichnet, dass die Recheneinheit (7) dazu eingerichtet ist durch Auswertung vom wenigstens einen Sensor (4) erzeugter Sensordaten zu erkennen an welcher Tür (2.L, 2.R) des Fahrzeugs (1) Fahrgäste (3) ein- und/oder aussteigen möchten und wenigstens eine Tür (2.L, 2.R) für einen Ausstieg festzulegen und/oder wenigstens eine Tür (2.L, 2.R) für einen Einstieg festzulegen, sodass eine Anzahl an Begegnungen von sich durch das Fahrzeug (1) bewegender Fahrgäste (3) und/oder aus dem Fahrzeug (1) aussteigenden und/oder in das Fahrzeug (1) einsteigenden Fahrgästen (3) minimiert wird.</p></li>
|
|||
|
</ul>
|
|||
|
<img alt="embedded image" id="EMI-D00000"/>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"></p>
|
|||
|
<ul>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=DE323289145">link</a></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Vorrichtung zum Desinfizieren, der Körperpflege oder dergleichen</strong> -
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
</p><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">Vorrichtung zum Desinfizieren, der Körperpflege oder dergleichen mittels einer flüssigen oder cremigen Substanz (20), dadurch gekennzeichnet, dass die Vorrichtung mit einem elektrisch betriebenen Erinnerungs-Modul und einem Vorratsbehälter (10) für die Substanz (20) versehen ist, die Substanz (20) in dosierter Menge zur Ausgabeöffnung (9) gefördert wird und die Vorrichtung dazu geeignet ist, am Körper oder der Kleidung einer Person getragen zu werden.</p></li>
|
|||
|
</ul>
|
|||
|
<img alt="embedded image" id="EMI-D00000"/>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"></p>
|
|||
|
<ul>
|
|||
|
<li><a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=DE323289850">link</a></li>
|
|||
|
</ul>
|
|||
|
|
|||
|
|
|||
|
<script>AOS.init();</script></body></html>
|