205 lines
52 KiB
HTML
205 lines
52 KiB
HTML
|
<!DOCTYPE html>
|
|||
|
<html lang="" xml:lang="" xmlns="http://www.w3.org/1999/xhtml"><head>
|
|||
|
<meta charset="utf-8"/>
|
|||
|
<meta content="pandoc" name="generator"/>
|
|||
|
<meta content="width=device-width, initial-scale=1.0, user-scalable=yes" name="viewport"/>
|
|||
|
<title>25 September, 2021</title>
|
|||
|
<style type="text/css">
|
|||
|
code{white-space: pre-wrap;}
|
|||
|
span.smallcaps{font-variant: small-caps;}
|
|||
|
span.underline{text-decoration: underline;}
|
|||
|
div.column{display: inline-block; vertical-align: top; width: 50%;}
|
|||
|
</style>
|
|||
|
<title>Covid-19 Sentry</title><meta content="width=device-width, initial-scale=1.0" name="viewport"/><link href="styles/simple.css" rel="stylesheet"/><link href="../styles/simple.css" rel="stylesheet"/><link href="https://unpkg.com/aos@2.3.1/dist/aos.css" rel="stylesheet"/><script src="https://unpkg.com/aos@2.3.1/dist/aos.js"></script></head>
|
|||
|
<body>
|
|||
|
<h1 data-aos="fade-down" id="covid-19-sentry">Covid-19 Sentry</h1>
|
|||
|
<h1 data-aos="fade-right" data-aos-anchor-placement="top-bottom" id="contents">Contents</h1>
|
|||
|
<ul>
|
|||
|
<li><a href="#from-preprints">From Preprints</a></li>
|
|||
|
<li><a href="#from-clinical-trials">From Clinical Trials</a></li>
|
|||
|
<li><a href="#from-pubmed">From PubMed</a></li>
|
|||
|
<li><a href="#from-patent-search">From Patent Search</a></li>
|
|||
|
</ul>
|
|||
|
<h1 data-aos="fade-right" id="from-preprints">From Preprints</h1>
|
|||
|
<ul>
|
|||
|
<li><strong>Unrecognized introductions of SARS-CoV-2 into the state of Georgia shaped the early epidemic</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
In early 2020, as SARS-CoV-2 diagnostic and surveillance responses ramped up, attention focused primarily on returning international travelers. Here, we build on existing studies characterizing early patterns of SARS-CoV-2 spread within the U.S. by analyzing detailed clinical, molecular, and viral genomic data from the state of Georgia through March 2020. We find evidence for multiple early introductions into Georgia, despite relatively sparse sampling. Most sampled sequences likely stemmed from a single introduction from Asia at least two weeks prior to the states first detected infection. Our analysis of sequences from domestic travelers demonstrates widespread circulation of closely- related viruses in multiple U.S. states by the end of March 2020. Our findings indicate that the early attention directed towards identifying SARS-CoV-2 in returning international travelers may have led to a failure to recognize locally circulating infections for several weeks, and points towards a critical need for rapid and broadly-targeted surveillance efforts in the future.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.09.19.21262615v1" target="_blank">Unrecognized introductions of SARS- CoV-2 into the state of Georgia shaped the early epidemic</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Who Can I Count On: Honor and Self-Reliance During the COVID-19 Pandemic</strong> -
|
|||
|
<div>
|
|||
|
During the COVID-19 pandemic, people differed in the extent to which they took matters into their own hands rather than follow COVID-19-related public health guidelines. In the current paper, we take a culture-as-situated cognition perspective to suggest that one reason for this variability may be that the pandemic triggered honor concerns. Honor is a cultural mindset focused on protecting oneself and one’s family by maintaining reputation. To demonstrate honor, people may take matters into their own hands in contexts in which this is possible. Indeed, during the pandemic, Americans (Studies 1, 2) who valued honor acted independently of governmental measures because they preferred relying on themselves (N = 1,179). This was not the case for Iranians (Study 3), for whom higher honor values increased adherence to public health guidelines. Our results imply that how demonstrating honor values translates to action depends on contextual features that affect how people construe self-reliance.
|
|||
|
</div>
|
|||
|
<div class="article-link article- html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://psyarxiv.com/h26pt/" target="_blank">Who Can I Count On: Honor and Self- Reliance During the COVID-19 Pandemic</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Apixaban, an orally available anticoagulant, inhibits SARS-CoV-2 replication by targeting its major protease in a non-competitive way</strong> -
|
|||
|
<div>
|
|||
|
Anticoagulants are associated with clinical benefit against the 2019 coronavirus disease (COVID-19), preventing COVID-19 associated coagulopathy. Blood coagulation factor Xa (FXa) and SARS-CoV-2 major protease (Mpro) share over 80% homology at the three-dimensional protein level. Thus, it is worth interrogating whether there is crosstalk between inhibitors and substrates between these enzymes. Here, we found that the clinically-approved FXa inhibitor apixaban targets SARS-CoV-2 Mpro with a 21-fold higher potency than boceprevir (GC376). Apixaban displayed a non-competitive mechanism of inhibition towards Mpro, since it targets the enzyme/substrate complex and the allosteric site onto the viral protease. Enzymatic assays were further validated in infected Calu-3 cells, which reveal that apixaban decreases the production of infectious viral particles in a dose-dependent manner, with an inhibitory potency in the micromolar range. Our results are in line with the proposed early use of anticoagulants, including FXa inhibitors, to improve clinical outcome of COVID-19 patients. In this context, apixaban may display a dual mechanism of action by targeting FXa to prevent coagulopathy and, at some level, SARS-CoV-2 Mpro.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2021.09.23.461605v1" target="_blank">Apixaban, an orally available anticoagulant, inhibits SARS-CoV-2 replication by targeting its major protease in a non-competitive way</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Potential Autoimmunity or Antibody Dependent COVID-19 Enhancement of SARS CoV-2 Vaccination or Convalescent Plasma: A Moral, Legal and Constitutional Right to Know.</strong> -
|
|||
|
<div>
|
|||
|
This preprint has been published: https://juniperpublishers.com/ijoprs/IJOPRS.MS.ID.555658.php mRNA based and adenovirus vectored vaccines, types of nucleic acid-based vaccination, were first ever or first commercially ever approved for the public, respectively. However, these new types possess a potential risk to induce auto-immune diseases more possibly in the short yet potentially the long term as well. On the other hand, all SARS CoV-2 types of vaccines, depending on the spike protein immunogenicity, especially the conventional inactivated ones might increase the likelihood of COVID-19 severity upon re-infection through antibody dependent enhancement which might also reason for some of the serious adverse effects encountered with administration of convalescent plasma to COVID-19 patients. Thus, a moral, legal, and constitutional public right to know and decide basing on a personalized risk benefit ratio must be secured. In this manuscript, we analyze the theoretical autoimmunity potential of SARS CoV-2 adenovirus vectored vaccines, after we have previously discussed the same potential for mRNA-based ones. Further, we explore the vulnerable groups of vaccines recipients who are generally more liable to develop autoimmune diseases and how might these groups modify the risk if decided to receive the vaccines.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://osf.io/s8c2e/" target="_blank">Potential Autoimmunity or Antibody Dependent COVID-19 Enhancement of SARS CoV-2 Vaccination or Convalescent Plasma: A Moral, Legal and Constitutional Right to Know.</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Potential Autoimmunity or Antibody Dependent COVID-19 Enhancement of SARS CoV-2 Vaccination or Convalescent Plasma: A Potential Man-Made Hades.</strong> -
|
|||
|
<div>
|
|||
|
This preprint has been published: https://juniperpublishers.com/ijoprs/IJOPRS.MS.ID.555658.php Nucleic acid based - mRNA based and adenovirus vectored - vaccines, were first ever or first commercially ever approved for the public, respectively. However, these newly emergency approved types possess a potential risk to induce auto-immune diseases e.g., thrombocytopenia, myocarditis and immune induced thrombosis and thromboembolism that might be fatal and could reason for some of the post vaccination sudden death reports. Moreover, all SARS CoV-2 types of vaccines, depending on the spike protein immunogenicity, especially the conventional inactivated ones might increase the likelihood of COVID-19 severity upon re-infection through antibody dependent enhancement which might reason for the recently described abundance of hospital admissions within seven days of vaccination and might also reason for some of the serious adverse effects encountered with administration of convalescent plasma to COVID-19 patients as well as they might share in development of some lethal SARS CoV-2 variants. Importantly, we suggest that SARS CoV-2 mass vaccination campaigns were the worst ever decision made and that making these COVID-19 vaccines compulsory or administering them to children or pregnant participants might be considered as a crime against humanity to the extent that no prior companies- governmental agreements would ever secure impunity. Finally, a full informed personalized risk benefit ratio especially for some described high-risk groups must be secured while suggesting that the subunit vaccines are the least hazardous ones.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://osf.io/hqtnp/" target="_blank">Potential Autoimmunity or Antibody Dependent COVID-19 Enhancement of SARS CoV-2 Vaccination or Convalescent Plasma: A Potential Man-Made Hades.</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>It’s Contagious! The Effects of Gamifying Refutation Texts on Emotions and Learning</strong> -
|
|||
|
<div>
|
|||
|
The current study investigated the effects of gamifying refutations on emotions and learning. Refutations have a substantial body of evidence supporting their use to correct misconceptions, yet reduced efficacy has been observed for some topics that induce negative emotional reactions. We tested whether gamification could mitigate these limits given that it capitalizes on positive affective engagement. From May to December 2020, approximately 200,000 individuals were recruited from social media in Canada to engage with a non-game interactive survey as a control or a fully gamified platform focused on correcting COVID-19 misconceptions. Gamification resulted in higher levels of happiness and anxiety and lower levels of anger and skepticism in response to having misconceptions corrected by refutations. Further, participants who engaged with gamified refutations retained correct information after a brief period. Finally, positive emotions and anxiety positively predicted and negative emotions largely negatively predicted retention and support for related public health policies. Implications for scaling up and reinforcing the benefits of refutations for public engagement with science are discussed.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://osf.io/9up7c/" target="_blank">It’s Contagious! The Effects of Gamifying Refutation Texts on Emotions and Learning</a>
|
|||
|
</div></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Use of Non-steroidal Anti-inflammatory Drugs in Treatment of COVID-19: Safe, Safe, and …. Lifesaving?</strong> -
|
|||
|
<div>
|
|||
|
A recent systematic review and meta-analysis published at Drug Safety has confirmed the safety of NSAIDs in treatment of COVID-19. The author is discussing another potential of efficacy that might reveal lifesaving as NSAIDs might prevent or reverse the evolution of the aggressive hyperinflammatory responses associated with COVID-19.
|
|||
|
</div></li>
|
|||
|
</ul>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://osf.io/a23nj/" target="_blank">Use of Non-steroidal Anti-inflammatory Drugs in Treatment of COVID-19: Safe, Safe, and …. Lifesaving?</a>
|
|||
|
</div>
|
|||
|
<ul>
|
|||
|
<li><strong>Potential Autoimmunity of SARS CoV-2 Nucleic Acid-based Vaccination: What Should We Know?</strong> -
|
|||
|
<div>
|
|||
|
This preprint has been published: https://juniperpublishers.com/ijoprs/IJOPRS.MS.ID.555658.php mRNA based and adenovirus vectored vaccines, types of nucleic acid-based vaccination, were first ever or first commercially ever approved for the public, respectively. However, these new types possess a potential risk to induce auto-immune diseases more possibly in the short yet potentially the long term as well. On the other hand, all SARS CoV-2 types of vaccines, depending on the spike protein immunogenicity, including the conventional ones might increase the likelihood of COVID-19 severity upon re-infection through antibody dependent enhancement. Thus, a moral, legal, and constitutional public right to know and decide basing on a personalized risk benefit ratio must be secured. In this manuscript, we analyze the theoretical autoimmunity potential of SARS CoV-2 adenovirus vectored vaccines, after we have previously discussed the same potential for mRNA-based ones. Further, we explore the vulnerable groups of vaccines recipients who are generally more liable to develop autoimmune diseases and how might these groups modify the risk if decided to receive the vaccines.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://osf.io/3k4bd/" target="_blank">Potential Autoimmunity of SARS CoV-2 Nucleic Acid-based Vaccination: What Should We Know?</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Autoimmune Myocarditis might Reason for the Sudden Death Reports following SARS CoV-2 mRNA vaccination: Could NSAIDs Ameliorate the Risk?</strong> -
|
|||
|
<div>
|
|||
|
This preprint has been published: https://juniperpublishers.com/ijoprs/IJOPRS.MS.ID.555658.php The public has a constitutional right to know all potential hazards of COVID-19 newly approved vaccines to freely decide whether to receive any. We discuss the potential autoimmune risk that is associated with mRNA-based vaccines, the potential role of non-steroidal anti-inflammatory drugs to ameliorate it and discuss some of the newly reported post vaccination cases who encountered serious adverse effects including sudden death. Importantly, we recommend CDC to change its neutral recommendation and to advice against administration of nucleic acid-based vaccines to persons complaining from autoimmune diseases. Furthermore, we urge the FDA to consider a reevaluation of the emergency approval granted to Pfizer-BioNTech SARS CoV-2 mRNA vaccine associated with most of the reported serious adverse effects and fatalities as we suggest that there is a likelihood for at least short-term potential hazard that might be a company specific, to be fully compared it to its Moderna’s counterpart vaccine as regards to its used mRNA sequence and adjuvants.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://osf.io/4gzd3/" target="_blank">Autoimmune Myocarditis might Reason for the Sudden Death Reports following SARS CoV-2 mRNA vaccination: Could NSAIDs Ameliorate the Risk?</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>High-throughput super-resolution analysis of influenza virus pleomorphism reveals insights into viral spatial organization</strong> -
|
|||
|
<div>
|
|||
|
Many viruses form highly pleomorphic particles; in influenza, these particles range from spheres of ~ 100 nm in diameter to filaments of several microns in length. Virion structure is of interest, not only in the context of virus assembly, but also because pleomorphic variations may correlate with infectivity and pathogenicity. Detailed images of virus morphology often rely on electron microscopy, which is generally low throughput and limited in molecular identification. We have used fluorescence super-resolution microscopy combined with a rapid automated analysis pipeline to image many thousands of individual influenza virions, gaining information on their size, morphology and the distribution of membrane-embedded and internal proteins. This large-scale analysis revealed that influenza particles can be reliably characterised by length, that no spatial frequency patterning of the surface glycoproteins occurs, and that RNPs are preferentially located towards filament ends within Archetti bodies. Our analysis pipeline is versatile and can be adapted for use on multiple other pathogens, as demonstrated by its application for the size analysis of SARS- CoV-2. The ability to gain nanoscale structural information from many thousands of viruses in just a single experiment is valuable for the study of virus assembly mechanisms, host cell interactions and viral immunology, and should be able to contribute to the development of viral vaccines, anti-viral strategies and diagnostics.
|
|||
|
</div>
|
|||
|
<div class="article- link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2021.09.23.461536v1" target="_blank">High-throughput super-resolution analysis of influenza virus pleomorphism reveals insights into viral spatial organization</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Predicting the Effectiveness of the Pfizer-BioNTech BNT162b2 Vaccine from SARS-CoV-2 Variants Neutralisation Data</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
Modelling frameworks for vaccine protection are sorely needed to fight the Covid-19 pandemic with vaccines. We propose such a framework for the BNT162b2 and potentially other vaccines. It utilises correlates of protection based on live SARS-CoV-2 variants neutralising antibody titres from vaccinated individuals. We applied it to predict vaccine effectiveness in overall populations and age subgroups, following partial or full vaccination. It was validated by predicting effectiveness against D614G, B.1.1.7 (Alpha) and B.1.167.2 (Delta) variants. The predictions for Delta were 44.8% (22%, 69%) after one and 84.6% (64%, 97%) after two vaccine doses, which were close to the corresponding means, 45.6% and 85.5%, of observations in real-life effectiveness studies. Predictions for the other variants were also accurate. We also consider methods of safeguarding predictions against biases. Finally, we discuss implications for vaccination policies, such as decisions about doses and timing of vaccine boosters.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.09.06.21263160v2" target="_blank">Predicting the Effectiveness of the Pfizer-BioNTech BNT162b2 Vaccine from SARS-CoV-2 Variants Neutralisation Data</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Plasma S-Adenosylmethionine is Associated with Lung Injury in COVID-19</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
Objective: S-Adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) are indicators of global transmethylation and may play an important role as markers of severity of COVID-19. Methods: The levels of plasma SAM and SAH were determined in patients admitted with COVID-19 (n = 56, mean age = 61). Lung injury was identified by computed tomography (CT) in accordance with the CT0-4 classification. Results: SAM was found to be a potential marker of lung damage risk in COVID-19 patients (SAM > 80 nM; CT3,4 vs. CT 0-2: relative ratio (RR) was 3.0; p = 0.0029). SAM/SAH > 6.0 was also found to be a marker of lung injury (CT2-4 vs. CT0,1: RR = 3.47, p = 0.0004). Interleukin-6 (IL-6) levels were associated with SAM (r= 0.44, p = 0.01) and SAH (r= 0.534, p = 0.001) levels. Conclusions: High SAM levels and high methylation index are associated with the risk of lung injury in COVID-19 patients. The association of SAM and SAH with IL-6 indicates an important role of transmethylation in the development of cytokine imbalance in COVID-19 cases.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.09.23.21262822v1" target="_blank">Plasma S-Adenosylmethionine is Associated with Lung Injury in COVID-19</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Tracking the temporal variation of COVID-19 surges through wastewater-based epidemiology during the peak of the pandemic: a six-month long study in Charlotte, North Carolina</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
The global spread of SARS-CoV-2 has continued to be a serious concern after WHO declared the virus the causative agent of the coronavirus disease 2019 (COVID-19) a global pandemic. Monitoring of wastewater is a useful tool for assessing community prevalence given that fecal shedding of SARS-CoV-2 occurs in high concentrations by infected individuals, regardless of whether they are asymptomatic or symptomatic. Using tools that are part of the wastewater- based epidemiology (WBE) approach, combined with molecular analyses, wastewater monitoring becomes a key piece of information used to assess trends and quantify the scale and dynamics of COVID-19 infection in a specific community, municipality, or area of service. This study investigates a six-month long SARS-CoV-2 RNA quantification in influent wastewater from four municipal wastewater treatment plants (WWTP) serving the Charlotte region of North Carolina (NC) using both RT-qPCR and RT-ddPCR platforms. Influent wastewater was analyzed for the nucleocapsid (N) genes N1 and N2. Both RT-qPCR and RT-ddPCR performed well for detection and quantification of SARS-CoV-2 using the N1 target, while for the N2 target RT-ddPCR was more sensitive. SARS-CoV-2 concentration ranged from 103 to105 copies/L for all four plants. Both RT-qPCR and RT-ddPCR showed a significant moderate to a strong positive correlation between SARS-CoV-2 concentrations and the 7-day rolling average of clinically reported COVID-19 cases using a lag that ranged from 7 to 12 days. A major finding of this study is that despite small differences, both RT-qPCR and RT-ddPCR performed well for tracking the SARS-CoV-2 virus across WWTP of a range of sizes and metropolitan service functions.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.09.23.21258047v1" target="_blank">Tracking the temporal variation of COVID-19 surges through wastewater-based epidemiology during the peak of the pandemic: a six-month long study in Charlotte, North Carolina</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Anti-PF4 VITT antibodies are oligoclonal and variably inhibited by heparin</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
Background COVID-19 vaccines have been associated with a rare thrombotic and thrombocytopenic reaction, Vaccine- induced immune thrombotic thrombocytopenia (VITT) characterized by platelet-activating anti-PF4 antibodies. This study sought to assess clonality of VITT antibodies and evaluate their characteristics in antigen-based and functional platelet studies. Methods Anti-PF4 antibodies were isolated from five patients with VITT secondary to ChAdOx1 nCoV-19 (n=1) or Ad26.COV2.S (n=4) vaccination. For comparative studies with heparin-induced thrombocytopenia (HIT), anti-PF4 antibodies were isolated from one patient with spontaneous HIT, another with classical HIT, and two patients with non-pathogenic (non-platelet activating) anti-PF4 antibodies. Isolated antibodies were subject to ELISA and functional testing, and mass spectrometric evaluation for clonality determination. Results All five VITT patients had oligoclonal anti-PF4 antibodies (3 monoclonal, one bi- and one tri-clonal antibodies), while HIT anti-PF4 antibodies were polyclonal. Notably, like VITT antibodies, anti-PF4 antibodies from a spontaneous HIT patient were monoclonal. The techniques employed did not detect non-pathogenic anti-PF4 antibodies. The ChAdOx1 nCoV-19-associated VITT patient made an excellent recovery with heparin treatment. In vitro studies demonstrated strong inhibition of VITT antibody-induced platelet activation with therapeutic concentrations of heparin in this and one Ad26.COV2.S-associated VITT patient. Oligoclonal VITT antibodies with persistent platelet-activating potential were detected at 6 and 10 weeks after acute presentation in two patients tested. Two of the 5 VITT patients had recurrence of thrombocytopenia and one patient had focal seizures several weeks after acute presentation. Conclusion Persistent oligoclonal anti-PF4 antibodies mediate VITT. Current guidance to avoid heparin in all VITT patients may need to be reassessed.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article- link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.09.23.21263047v1" target="_blank">Anti-PF4 VITT antibodies are oligoclonal and variably inhibited by heparin</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Validation of the Panbio COVID-19 Antigen Rapid Test (Abbott) to screen for SARS-CoV-2 infection in Sint Maarten: a diagnostic accuracy study</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
Objectives: Control of the pandemic has required countries to look for other forms of tests besides the gold standard real-time polymerase chain reaction (RT-PCR). Rapid antigen tests (RAT), though less sensitive than RT-PCR, offer the possibility of rapid, inexpensive and early detection of the most infectious COVID-19 cases. Only very few studies have assessed the performance of the Abbott Panbio COVID-19 RAT among asymptomatic people or in Latin America. This study set out to validate this test among people attending the public test street in Sint Maarten, Dutch Caribbean. Methods: People of all ages were recruited from the public COVID-19 test street regardless of COVID-19 symptoms. They received a nasopharyngeal swab for the Abbott Panbio COVID-19 RAT and the RT-PCR Qtower. Diagnostic accuracy of the RAT was compared to the RT-PCR among the overall study population and for subgroups with/without symptoms, with/without close contact and different Ct values. Results: Using a RT-PCR Ct cut-off value of <33, 119 out of 1,411 people (8.4%) tested positive for SARS-CoV-2. Most were asymptomatic (59%). The overall sensitivity and specificity of the RAT was 84% (95% CI 76.2-90.1) and 99.9% (95% CI 99.6-100) respectively. The sensitivity reduced to 67.6% (95% CI: 49.5%, 82.6%) among people without symptoms, regardless of whether they were in close contact with a known COVID-19 case. Sensitivity reduced considerably with a Ct cut-off value of <35. Conclusions: The Abbott Panbio RAT is a valid and cheaper alternative to RT-PCR when used on symptomatic individuals among the general population. However, among asymptomatic people it should not be used as a stand-alone test and negative results should be confirmed with RT- PCR.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.09.23.21260526v1" target="_blank">Validation of the Panbio COVID-19 Antigen Rapid Test (Abbott) to screen for SARS-CoV-2 infection in Sint Maarten: a diagnostic accuracy study</a>
|
|||
|
</div></li>
|
|||
|
</ul>
|
|||
|
<h1 data-aos="fade-right" id="from-clinical-trials">From Clinical Trials</h1>
|
|||
|
<ul>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Finding Treatments for COVID-19: A Trial of Antiviral Pharmacodynamics in Early Symptomatic COVID-19 (PLATCOV)</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Drug: Favipiravir; Drug: Monoclonal antibodies; Drug: Ivermectin; Other: No treatment; Drug: Remdesivir<br/><b>Sponsor</b>: University of Oxford<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Safety and Immunogenicity Study of AdCLD-CoV19-1: A COVID-19 Preventive Vaccine in Healthy Volunteers</strong> - <b>Condition</b>: Covid19<br/><b>Intervention</b>: Biological: AdCLD-CoV19-1<br/><b>Sponsor</b>: <br/>
|
|||
|
Cellid Co., Ltd.<br/><b>Recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A Post-Exposure Prophylaxis Study of PF-07321332/Ritonavir in Adult Household Contacts of an Individual With Symptomatic COVID-19</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Drug: PF-07321332; Drug: Placebo for PF-07321332; Drug: Placebo for Ritonavir; Drug: Ritonavir<br/><b>Sponsor</b>: Pfizer<br/><b>Recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Factors Influencing the COVID-19 Vaccine Immune Response According to Age and Presence or Not of a Past History of COVID-19</strong> - <b>Condition</b>: Covid19<br/><b>Interventions</b>: Biological: COVID-19 vaccine Pfizer (2 doses); Biological: COVID-19 vaccine Pfizer (1 dose); Biological: COVID-19 mRNA Vaccine Moderna (2 doses); Biological: COVID-19 mRNA Vaccine Moderna (1 dose)<br/><b>Sponsors</b>: Centre Hospitalier Universitaire de Saint Etienne; Sanofi Pasteur, a Sanofi Company; Bioaster<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>TThe Safety and Efficacy of SCTV01C in Population Aged ≥18 Years Previously Vaccinated With Inactivated COVID-19 Vaccine.Healthy Population Aged ≥18 Years Previously Vaccinated With Inactivated COVID-19 Vaccine.</strong> - <b>Conditions</b>: COVID-19; SARS-CoV-2 Infection<br/><b>Interventions</b>: Biological: SCTV01C; Other: Placebo<br/><b>Sponsor</b>: Sinocelltech Ltd.<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>The Safety and Efficacy of SCTV01C in Population Aged ≥18 Years Previously Vaccinated With Inactivated COVID-19 Vaccine.Healthy Population Aged ≥18 Years Previously Vaccinated With Adenovirus Vectored or mRNA COVID-19 Vaccine.</strong> - <b>Conditions</b>: COVID-19; SARS-CoV-2 Infection<br/><b>Interventions</b>: Biological: SCTV01C; Other: Placebo<br/><b>Sponsor</b>: Sinocelltech Ltd.<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Heterologous Prime-boost Immunization With an Aerosolised Adenovirus Type-5 Vector-based COVID-19 Vaccine (Ad5-nCoV) After Priming With an Inactivated SARS-CoV-2 Vaccine</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Biological: inactive SARS-CoV-2 vaccine (Vero cell); Biological: Low dose aerosolized Ad5-nCoV; Biological: High dose aerosolized Ad5-nCoV<br/><b>Sponsor</b>: Jiangsu Province Centers for Disease Control and Prevention<br/><b>Recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Relate to the Virus That Causes COVID-19, Known as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)</strong> - <b>Condition</b>: Covid19<br/><b>Intervention</b>: Other: Rapid antigen testing kit<br/><b>Sponsors</b>: <br/>
|
|||
|
Mahidol University; Yuvabadhana foundation; Zero COVID Thailand<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Test to Stay in School: COVID-19 Testing Following Exposure in School Communities</strong> - <b>Condition</b>: Covid19<br/><b>Intervention</b>: Other: COVID-19 Testing<br/><b>Sponsor</b>: <br/>
|
|||
|
Duke University<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Efficacy and Safety of Baricitinib in Patients With Moderate and Severe COVID-19</strong> - <b>Condition</b>: Covid19<br/><b>Interventions</b>: Drug: Baricitinib; Drug: Placebo<br/><b>Sponsor</b>: <br/>
|
|||
|
Incepta Pharmaceuticals Ltd<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Efficacy of KOVIR Hard Capsule in the Combination Regimen With Background Treatment in COVID-19 Patients</strong> - <b>Condition</b>: COVID-19<br/><b>Intervention</b>: Dietary Supplement: KOVIR hard capsule combined with background treatment<br/><b>Sponsors</b>: Sunstar Joint Stock Company; Big Leap Clinical Research Joint Stock Company<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Safety and Efficacy of KOVIR in the Combination Regimen With Background Treatment in COVID-19 Patients (KOVIR)</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Dietary Supplement: KOVIR oral capsule; Dietary Supplement: Placebo oral capsule<br/><b>Sponsors</b>: Sunstar Joint Stock Company; Big Leap Clinical Research Joint Stock Company<br/><b>Completed</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Study to Investigate the Treatment Benefits of Probiotic Streptococcus Salivarius K12 for Mild-to-moderate COVID-19</strong> - <b>Condition</b>: Covid19<br/><b>Interventions</b>: Drug: Standard of care; Dietary Supplement: BLIS K12<br/><b>Sponsor</b>: King Edward Medical University<br/><b>Recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Combined Antihistaminics Therapy in COVID 19 Patients</strong> - <b>Condition</b>: Covid19<br/><b>Interventions</b>: Drug: Loratadine; Drug: Famotidine<br/><b>Sponsors</b>: Ain Shams University; Nasr City Insurance Hospital<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Third Dose Vaccination With AstraZeneca or Pfizer COVID-19 Vaccine Among Adults Received Sinovac COVID-19 Vaccine</strong> - <b>Conditions</b>: COVID-19 Infection; COVID-19 VACCINE<br/><b>Interventions</b>: Biological: AstraZeneca ChAdOx1 AZD1222 vaccine (AZ) full dose; Biological: Pfizer/BioNTech BNT162b2 vaccine (PF) full dose; Biological: AstraZeneca ChAdOx1 AZD1222 vaccine (AZ) half dose; Biological: Pfizer/BioNTech BNT162b2 vaccine (PF) half dose<br/><b>Sponsors</b>: Mahidol University; Clinixir Co., Ltd.; Program Management Unit-C (PMU-C), governed by Ministry of Higher Education, Science, Research and Innovation (MHESI)<br/><b>Not yet recruiting</b></p></li>
|
|||
|
</ul>
|
|||
|
<h1 data-aos="fade-right" id="from-pubmed">From PubMed</h1>
|
|||
|
<ul>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Low molecular weight fucoidan attenuating pulmonary fibrosis by relieving inflammatory reaction and progression of epithelial-mesenchymal transition</strong> - Diffuse alveolar injury and pulmonary fibrosis (PF) are the main causes of death of Covid-19 cases. In this study a low molecular weight fucoidan (LMWF) with unique structural was obtained from Laminaria japonica, and its anti- PF and anti- epithelial-mesenchymal transition (EMT) bioactivity were investigated both in vivo and in vitro. After LWMF treatment the fibrosis and inflammatory factors stimulated by Bleomycin (BLM) were in lung tissue. Immunohistochemical and Western-blot results found…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Immunomodulatory Role of Nutrients: How Can Pulmonary Dysfunctions Improve?</strong> - Nutrition is an important tool that can be used to modulate the immune response during infectious diseases. In addition, through diet, important substrates are acquired for the biosynthesis of regulatory molecules in the immune response, influencing the progression and treatment of chronic lung diseases, such as asthma and chronic obstructive pulmonary disease (COPD). In this way, nutrition can promote lung health status. A range of nutrients, such as vitamins (A, C, D, and E), minerals (zinc,…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>The Use of Biologics During the COVID-19 Pandemic</strong> - During the coronavirus disease 2019 (COVID-19) pandemic, there has been considerable discussion regarding the use of biologics in patients with inflammatory skin conditions, such as psoriasis, hidradenitis suppurativa, and atopic dermatitis. This article discusses clinical trial data, real-world evidence, and guidelines and recommendations for biologics that inhibit tumor necrosis factor, interleukin (IL)-12/23, IL-17, IL-23, and IL-4/13 during the COVID-19 pandemic. Across these inflammatory…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Cytometric analysis of patients with COVID-19: what is changed in the second wave?</strong> - CONCLUSIONS: COVID-19 had a less severe impact in patients of the 2nd wave in advanced stages, while the impact appeared more severe in patients of mild and moderate stages, as compared with 1st wave patients. This finding suggests that in COVID-19 patients with milder expression at diagnosis, steroid and azithromycin therapies appear to worsen the immune response against the virus. Furthermore, the cytometric profile may help to drive targeted therapies by monoclonal antibodies to modulate…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Discovery of novel oxazole-based macrocycles as anti-coronaviral agents targeting SARS-CoV-2 main protease</strong> - We have discovered a family of synthetic oxazole-based macrocycles to be active against SARS-CoV-2. The synthesis, pharmacological properties, and docking studies of the compounds are reported in this study. The structure of the new macrocycles was confirmed by NMR spectroscopy and mass spectrometry. Compounds 13, 14, and 15a-c were evaluated for their anti-SARS-CoV-2 activity on SARS-COV-2 (NRC-03-nhCoV) virus in Vero-E6 cells. Isopropyl triester 13 and triacid 14 demonstrated superior…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Stem cell-based and mesenchymal stem cell derivatives for coronavirus treatment</strong> - Coronavirus disease 2019 (COVID-19) as one of the diseases pneumonia was first reported in Wuhan, China in December</li>
|
|||
|
</ul>
|
|||
|
<ol start="2019" type="1">
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">COVID-19 is considered the third most common coronavirus among individuals after acute respiratory syndrome (SARS- CoV) and the Middle East respiratory syndrome (MERS-CoV) in the 20^(th) century. Many studies have shown that cell therapy and regenerative medicine approaches have an impressive effect on different dangerous diseases in a way that using a cell-based experiment…</li>
|
|||
|
</ol>
|
|||
|
<ul>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Effective SARS-CoV-2 antiviral activity of hyperbranched polylysine nanopolymers</strong> - The coronavirus pandemic (COVID-19) had spread rapidly since December 2019, when it was first identified in Wuhan, China. As of April 2021, more than 130 million cases have been confirmed, with more than 3 million deaths, making it one of the deadliest pandemics in history. Different approaches must be put in place to confront a new pandemic: community- based behaviours (i.e., isolation and social distancing), antiviral treatments, and vaccines. Although behaviour-based actions have produced…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Natural Compounds With Antimicrobial and Antiviral Effect and Nanocarriers Used for Their Transportation</strong> - Due to the increasing prevalence of life-threatening bacterial, fungal and viral infections and the ability of these human pathogens to develop resistance to current treatment strategies, there is a great need to find and develop new compunds to combat them. These molecules must have low toxicity, specific activity and high bioavailability. The most suitable compounds for this task are usually derived from natural sources (animal, plant or even microbial). In this review article, the latest and…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>TLR-4 Agonist Induces IFN-γ Production Selectively in Proinflammatory Human M1 Macrophages through the PI3K-mTOR- and JNK-MAPK-Activated p70S6K Pathway</strong> - IFN-γ, a proinflammatory cytokine produced primarily by T cells and NK cells, activates macrophages and engages mechanisms to control pathogens. Although there is evidence of IFN-γ production by murine macrophages, IFN-γ production by normal human macrophages and their subsets remains unknown. Herein, we show that human M1 macrophages generated by IFN-γ and IL-12- and IL-18-stimulated monocyte-derived macrophages (M0) produce significant levels of IFN-γ. Further stimulation of IL-12/IL-18-primed…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Semi-continuous propagation of influenza A virus and its defective interfering particles: analyzing the dynamic competition to select candidates for antiviral therapy</strong> - Defective interfering particles (DIPs) of influenza A virus (IAV) are naturally occurring mutants that comprise an internal deletion in one of their eight viral RNA (vRNA) segments, rendering them propagation-incompetent. Upon co- infection with infectious standard virus (STV), DIPs interfere with STV replication through competitive inhibition. Thus, DIPs are proposed as potent antivirals for treatment of the influenza disease. To select corresponding candidates, we studied de novo generation of…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Inhibition of autophagy suppresses SARS-CoV-2 replication and ameliorates pneumonia in hACE2 transgenic mice and xenografted human lung tissues</strong> - Autophagy is thought to be involved in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. However, how SARS-CoV-2 interferes with the autophagic pathway and whether autophagy contributes to virus infection in vivo is unclear. Here, we identified SARS-CoV-2-triggered autophagy in animal models including the long tailed or crab eating macaque (Macaca fascicularis), hACE2 transgenic mice and xenografted human lung tissues. In Vero E6 and Huh-7 cells, SARS-CoV-2 induces…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Research progress of epigallocatechin-3-gallate (EGCG) on anti-pathogenic microbes and immune regulation activities</strong> - At the end of 2019, the COVID-19 virus spread worldwide, infecting millions of people. Infectious diseases induced by pathogenic microorganisms such as the influenza virus, hepatitis virus, and Mycobacterium tuberculosis are also a major threat to public health. The high mortality caused by infectious pathogenic microorganisms is due to their strong virulence, which leads to the excessive counterattack by the host immune system and severe inflammatory damage of the immune system. This paper…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Use of Thromboelastography in the Evaluation and Management of Patients With Traumatic Brain Injury: A Systematic Review and Meta-Analysis</strong> - CONCLUSIONS: Thromboelastography and thromboelastography with platelet mapping characterize coagulopathy patterns in traumatic brain injury patients. Abnormal thromboelastography profiles are associated with poor outcomes. Conversely, treatment protocols designed to normalize abnormal parameters may be associated with improved traumatic brain injury patient outcomes. Current quality of evidence in this population is low; so future efforts should evaluate viscoelastic hemostatic assay-guided…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Potential natural products that target the SARS-CoV-2 spike protein identified by structure-based virtual screening, isothermal titration calorimetry and lentivirus particles pseudotyped (Vpp) infection assay</strong> - BACKGROUND AND AIM: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters cells through the binding of the viral spike protein with human angiotensin-converting enzyme 2 (ACE2), resulting in the development of coronavirus disease 2019 (COVID-19). To date, few antiviral drugs are available that can effectively block viral infection. This study aimed to identify potential natural products from Taiwan Database of Extracts and Compounds (TDEC) that may prevent the binding of viral…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Correlation of sample-to-cut-off ratio of anti-SARS-CoV-2 IgG antibody chemiluminescent assay with neutralization activity: a prospective multi-centric study in India</strong> - CONCLUSION: Chemiluminescent SARS-CoV-2 IgG assay can be used as a semi-quantitative test, with a cut-off of >8·19S/Co ratio for selecting donors for convalescent plasma therapy and assessing efficacy of vaccination.</p></li>
|
|||
|
</ul>
|
|||
|
<h1 data-aos="fade-right" id="from-patent-search">From Patent Search</h1>
|
|||
|
<ul>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>MACHINE LEARNING TECHNIQUE TO ANALYSE THE CONDITION OF COVID-19 PATIENTS BASED ON THEIR SATURATION LEVELS</strong> - - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=AU335054861">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A HERB BASED COMPOSITION ANTI VIRAL MEDICINE FOR TREATMENT OF SARS COV 2 AND A METHOD FOR TREATING A PERSON INFECTED BY THE SARS COV 2 VIRUS</strong> - A Herbal composition, viz., PONNU MARUNTHU essentially comprising of ALLUIUM CEPA extract. [concentrated to 30%] 75%, SAPINDUS MUKOROSSI - extract [Optimised] 10%, CITRUS X LIMON - extract in its natural form 05 TRACYSPERMUM AMMI (L) – extract 07%,ROSA HYBRIDA - extract 03%, PONNU MARUNTHU solution 50 ml, or as a capsulated PONNU MARUNTHU can be given to SARS cov2 positive Patients, three times a day that is ½ an hour before food; continued for 3 days to 5 days and further taking it for 2 days if need be there; It will completely cure a person. When the SARS cov2 test shows negative this medicine can be discontinued. This indigenous medicine and method for treating a person inflicted with SARS COV 2 viral infection is quite effective in achieving of much needed remedy for the patients and saving precious lives from the pangs of death and ensuring better health of people. - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=IN334865051">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>治疗或预防新冠病毒的靶点</strong> - 本发明提供一种蛋白片段,是如下至少一种:A1)氨基酸酸序列如SEQ ID NO.1所示;A2)氨基酸序列如SEQ ID NO.1第12位‑34位所示;A3)将A1)的蛋白片段的第18、19、28和29位中的任意一个或几个氨基酸残基经过一个或几个氨基酸残基的取代、缺失、添加得到的与A1)所示的蛋白片段具有90%以上的同一性的蛋白片段;A4)氨基酸酸序列如SEQ ID NO.2所示;A5)氨基酸序列如SEQ ID NO.2第32‑41位所示;A6)将A4)的蛋白片段的第35和36位中的任意1个或2个氨基酸残基经过一个或几个氨基酸残基的取代、缺失、添加得到的与A4)所示的蛋白片段具有90%以上的同一性的蛋白片段。 - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=CN336197499">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Anti-Sars-Cov-2 Neutralizing Antibodies</strong> - - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=AU333857732">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Expression Vector for Anti-Sars-Cov-2 Neutralizing Antibodies</strong> - - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=AU333857737">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>DEVELOPMENT OF CNN SCHEME FOR COVID-19 DISEASE DETECTION USING CHEST RADIOGRAPH</strong> - - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=AU333857177">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>一种S1F-AXL复合物、试剂盒和检测该复合物的方法及应用</strong> - 本发明公开了一种S1F‑AXL复合物、试剂盒和检测该复合物的方法及应用。所述试剂盒包含S1F多肽和AXL多肽,以S1F多肽、AXL多肽中的一种作为包被底物;所述S1F多肽和所述AXL多肽中至少一种为具有缀合标签的糖基化多肽,还包括具有微孔的微量滴定板、标记底物标记的抗标签特异性抗体、HRP偶联的二抗、洗涤缓冲液、标记底物反应液、反应终止液。所述检测S1F‑AXL复合物的试剂盒,通过测量标记的信号特征,检测S1F‑AXL复合物的结合亲和力,还可以用于检测来自怀疑感染了SARS‑CoV‑2(Covid‑19)的受试者的生物样品中的病毒。 - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=CN336197006">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>一种检测新型冠状病毒的引物探针组合及其应用</strong> - 本发明提供了一种检测新型冠状病毒的引物探针组合及其应用,所述检测新型冠状病毒的引物探针组合包括特异性扩增并检测2019‑nCoV的ORF1ab基因、核壳蛋白N基因和刺突蛋白S基因N501Y突变位点的特异性引物对和探针。本发明还提供了一种检测新型冠状病毒的试剂盒及其以非疾病诊断和/或治疗为目的的使用方法。本发明所述检测新型冠状病毒的引物探针组合具有良好的特异性与灵敏度,配合优化后的检测体系,可以对待测样本进行快速准确的检测,并可以对整个实验流程进行监控,降低假阳性以及假阴性检测结果的出现概率,具有重要的意义。 - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=CN335430482">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>SARS-COV-2 BINDING PROTEINS</strong> - - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=AU333402004">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>COVID-19胸部CT图像识别方法、装置及电子设备</strong> - 本申请涉及一种COVID‑19胸部CT图像识别方法、装置及电子设备。所述方法获取COVID‑19的胸部CT图像,并针对胸部CT图像的特点,构建新冠肺炎CT识别网络,对该网络进行训练得到COVID‑19胸部CT图像识别模型,并利用该模型对待测CT图像进行分类。采用空洞卷积、深度卷积以及点卷积算子,减少冗余参数;采用并行结构连接方式,实现多尺度特征融合、降低模型复杂度;采用下采样方式,使用最大模糊池化以减少锯齿效应,保持信号的平移不变性;采用通道混洗操作,减少参数量与计算量,提高分类准确率,引入坐标注意力机制,使空间坐标信息与通道信息被关注,抑制不重要的信息,以解决资源匹配问题。 - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=CN335069870">link</a></p></li>
|
|||
|
</ul>
|
|||
|
|
|||
|
|
|||
|
<script>AOS.init();</script></body></html>
|