191 lines
53 KiB
HTML
191 lines
53 KiB
HTML
|
<!DOCTYPE html>
|
|||
|
<html lang="" xml:lang="" xmlns="http://www.w3.org/1999/xhtml"><head>
|
|||
|
<meta charset="utf-8"/>
|
|||
|
<meta content="pandoc" name="generator"/>
|
|||
|
<meta content="width=device-width, initial-scale=1.0, user-scalable=yes" name="viewport"/>
|
|||
|
<title>22 July, 2021</title>
|
|||
|
<style type="text/css">
|
|||
|
code{white-space: pre-wrap;}
|
|||
|
span.smallcaps{font-variant: small-caps;}
|
|||
|
span.underline{text-decoration: underline;}
|
|||
|
div.column{display: inline-block; vertical-align: top; width: 50%;}
|
|||
|
</style>
|
|||
|
<title>Covid-19 Sentry</title><meta content="width=device-width, initial-scale=1.0" name="viewport"/><link href="styles/simple.css" rel="stylesheet"/><link href="../styles/simple.css" rel="stylesheet"/><link href="https://unpkg.com/aos@2.3.1/dist/aos.css" rel="stylesheet"/><script src="https://unpkg.com/aos@2.3.1/dist/aos.js"></script></head>
|
|||
|
<body>
|
|||
|
<h1 data-aos="fade-down" id="covid-19-sentry">Covid-19 Sentry</h1>
|
|||
|
<h1 data-aos="fade-right" data-aos-anchor-placement="top-bottom" id="contents">Contents</h1>
|
|||
|
<ul>
|
|||
|
<li><a href="#from-preprints">From Preprints</a></li>
|
|||
|
<li><a href="#from-clinical-trials">From Clinical Trials</a></li>
|
|||
|
<li><a href="#from-pubmed">From PubMed</a></li>
|
|||
|
<li><a href="#from-patent-search">From Patent Search</a></li>
|
|||
|
</ul>
|
|||
|
<h1 data-aos="fade-right" id="from-preprints">From Preprints</h1>
|
|||
|
<ul>
|
|||
|
<li><strong>Yếu tố văn hóa và tâm lý của Việt Nam trong ứng phó với COVID-19</strong> -
|
|||
|
<div>
|
|||
|
This paper points out some notable cultural and psychological factors that contribute to the success of Vietnam’s COVID-19 response.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://osf.io/6w2sf/" target="_blank">Yếu tố văn hóa và tâm lý của Việt Nam trong ứng phó với COVID-19</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Local Production of COVID-19 Vaccines: A Strategy for Action</strong> -
|
|||
|
<div>
|
|||
|
COVID-19 has lent a fresh lease of life to local production initiatives particularly in Africa. New initiatives, such as the recently announced mRNA hub for COVID-19 vaccines by the World Health Organization in collaboration with the Government of South Africa, and several other projects and programs, are now focusing on creating disseminated manufacturing capacity for current and future pandemic response. This is an important and welcome development for several reasons: it can boost national health security and safeguard lives in regions that have had longstanding problems of access to lifesaving medicines, while also promoting economic development, technological learning, export capacity and regional trade. But current local production efforts raise several serious questions of sustainability. This paper tackles several of these questions: When can we realistically expect production capacity to be built? What might be the potential impact of current efforts to expand supply capacity of COVID-19 vaccines, more generally at the global level, on African investments into local manufacturing? How will these markets evolve at the global and regional levels? Will markets still be available for local manufacturers to tap into by end of 2022 or 2023, and if so, how can we address the technological and market uncertainties related to these investments? What lessons can we glean from local production experiences in the region previously for building vaccine capacity on the continent?
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://osf.io/preprints/socarxiv/spjef/" target="_blank">Local Production of COVID-19 Vaccines: A Strategy for Action</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Combination of Antiviral Drugs to Inhibit SARS-CoV-2 Polymerase and Exonuclease as Potential COVID-19 Therapeutics</strong> -
|
|||
|
<div>
|
|||
|
SARS-CoV-2 has an exonuclease-based proofreader, which removes nucleotide inhibitors such as Remdesivir that are incorporated into the viral RNA during replication, reducing the efficacy of these drugs for treating COVID-19. Combinations of inhibitors of both the viral RNA-dependent RNA polymerase and the exonuclease could overcome this deficiency. Here we report the identification of hepatitis C virus NS5A inhibitors Pibrentasvir and Ombitasvir as SARS- CoV-2 exonuclease inhibitors. In the presence of Pibrentasvir, RNAs terminated with the active forms of the prodrugs Sofosbuvir, Remdesivir, Favipiravir, Molnupiravir and AT-527 were largely protected from excision by the exonuclease, while in the absence of Pibrentasvir, there was rapid excision. Due to its unique structure, Tenofovir-terminated RNA was highly resistant to exonuclease excision even in the absence of Pibrentasvir. Viral cell culture studies also demonstrate significant synergy using this combination strategy. This study supports the use of combination drugs that inhibit both the SARS-CoV-2 polymerase and exonuclease for effective COVID-19 treatment.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2021.07.21.453274v1" target="_blank">Combination of Antiviral Drugs to Inhibit SARS-CoV-2 Polymerase and Exonuclease as Potential COVID-19 Therapeutics</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>An untargeted metabolomic approach to identify antiviral defense mechanisms in memory leukocytes secreting in vitro IgG anti-SARS-Cov-2</strong> -
|
|||
|
<div>
|
|||
|
Available knowledge shows that individuals infected by SARS-CoV-2 undergo an altered metabolic state in multiple organs. Metabolic activities are directly involved in modulating the immune responses against infectious diseases, yet our understanding remains limited on how host metabolism relates with inflammatory responses. To better elucidate the underlying biochemistry of leukocytes response, we focused our analysis on the possible relationships between SARS-CoV-2 post-infection stages and distinct metabolic pathways. Indeed, in cultures of peripheral blood mononuclear cells (PBMC, n=48) obtained 60-90 days after infection and showing in vitro IgG antibody memory for spike-S1 antigen (n=19), we observed a significant altered metabolism of tryptophan and urea cycle pathways. This work for the first time identifies metabolic routes in cell metabolism possibly related to later stages of immune defense against SARS-Cov-2 infection, namely when circulating antibodies may be absent, but an antibody memory is present. The results suggest a reprogramming of leukocyte metabolism after viral pathogenesis through activation of specific amino acid pathways possibly related to protective immunity against SARS-CoV-2.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2021.07.20.453042v1" target="_blank">An untargeted metabolomic approach to identify antiviral defense mechanisms in memory leukocytes secreting in vitro IgG anti-SARS- Cov-2</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>CoVizu: Rapid analysis and visualization of the global diversity of SARS-CoV-2 genomes</strong> -
|
|||
|
<div>
|
|||
|
Phylogenetics has played a pivotal role in the genomic epidemiology of SARS-CoV-2, such as tracking the emergence and global spread of variants, and scientific communication. However, the rapid accumulation of genomic data from around the world - with over two million genomes currently available in the GISAID database - is testing the limits of standard phylogenetic methods. Here, we describe a new approach to rapidly analyze and visualize large numbers of SARS- CoV-2 genomes. Using Python, genomes are filtered for problematic sites, incomplete coverage, and excessive divergence from a strict molecular clock. All differences from the reference genome, including indels, are extracted using minimap2, and compactly stored as a set of features for each genome. For each Pango lineage (https://cov-lineages.org), we collapse genomes with identical features into ‘variants’, generate 100 bootstrap samples of the feature set union to generate weights, and compute the symmetric differences between the weighted feature sets for every pair of variants. The resulting distance matrices are used to generate neigihbor-joining trees in RapidNJ and converted into a majority- rule consensus tree for the lineage. Branches with support values below 50% or mean lengths below 0.5 differences are collapsed, and tip labels on affected branches are mapped to internal nodes as directly-sampled ancestral variants. Currently, we process about 1.6 million genomes in approximately nine hours on 34 cores. The resulting trees are visualized using the JavaScript framework D3.js as ‘beadplots’, in which variants are represented by horizontal line segments, annotated with beads representing samples by collection date. Variants are linked by vertical edges to represent branches in the consensus tree. These visualizations are published at https://filogeneti.ca/CoVizu. All source code was released under an MIT license at https://github.com/PoonLab/covizu.
|
|||
|
</div>
|
|||
|
<div class="article-link article- html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2021.07.20.453079v1" target="_blank">CoVizu: Rapid analysis and visualization of the global diversity of SARS-CoV-2 genomes</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Lung Epithelial Regulation of BCL2 Related Protein A1 (BCL2A1) by Coronaviruses (SARS-CoV) and Type I Interferon Signaling</strong> -
|
|||
|
<div>
|
|||
|
Highly pathogenic respiratory viruses such as 1918 influenza (HIN1) and coronavirus (SARS-CoV-2) induce significant lung injury with diffuse alveolar damage, capillary leak, and extensive cell death resulting in acute respiratory distress syndrome (ARDS). Direct effects of the virus, as well as host immune response such as proinflammatory cytokine production, contribute to programmed cell death or apoptosis. Alveolar lung epithelial type II (AT2) cells play a major role in the clearance of respiratory viruses, secretion of surfactant proteins and antimicrobial substances into the bronchoalveolar fluid as well as repair of lung injury. Gene expression in AT2 cells is regulated in a tissue and cell- specific manner and in a temporal fashion. The availability of tissue and cell-specific RNA datasets in Human Protein Atlas led to the identification of localized expression patterns of BCL-2 family members such as BCL2 related protein A1 (BCL2A1) in AT2 cells and immune cells of the lung. BCL2A1 expression was regulated by multiple stimuli including Toll- like receptor (TLR) ligands, interferons (IFNs), inflammatory cytokines, and inhibited by the steroid dexamethasone. In this study, regulation of BCL2A1 gene expression in human lung epithelial cells by several respiratory viruses and type I interferon signaling was investigated. SARS-CoV-2 infection significantly induced BCL2A1 expression in human lung epithelial cells within 24 hours that required the expression of Angiotensin-converting enzyme 2 (ACE2). BCL2A1 mRNA induction by SARS-CoV-2 was correlated with the induced expression of IFN-{beta} and IFN-regulated transcription factor mRNA. BCL2A1 was induced by IFN-{beta} treatment or by infection with influenza virus lacking the non-structural protein1(NS1) in NHBE cells. Furthermore, bioinformatics revealed that a subset of BCL-2 family members involved in the control of apoptosis and transcription such as BCL2A1, BCL2L14, BCL3, and BCL6 were regulated in the lung epithelial cells by coronaviruses and in the lung tissue samples of COVID-19 patients. Transcriptomic data also suggested that these genes were differentially regulated by the steroid drug dexamethasone.
|
|||
|
</div>
|
|||
|
<div class="article-link article- html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2021.07.21.453244v1" target="_blank">Lung Epithelial Regulation of BCL2 Related Protein A1 (BCL2A1) by Coronaviruses (SARS-CoV) and Type I Interferon Signaling</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Cornering an Ever-Evolving Coronavirus: TATX-03, a fully human synergistic multi-antibody cocktail targeting the SARS-CoV-2 Spike Protein with in vivo efficacy</strong> -
|
|||
|
<div>
|
|||
|
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has created an ongoing global human health crisis and will likely become endemic, requiring novel sustainable therapeutic strategies. We report on the discovery of a fully human multi-antibody cocktail (TATX-03) targeting diversified non-overlapping epitopes on the SARS- CoV-2 spike protein that suppressed replication-competent viral titers to undetectable levels in the lungs of SARS-CoV-2 challenged hamsters upon both prophylactic and therapeutic administration. While monotherapy with two of the individual cocktail components also showed clear in vivo protection, neither recapitulated the efficacy of TATX-03. This synergistic effect was further supported by examining in vivo efficacy of these individual antibodies and corresponding combination therapy at a lower dose. Furthermore, in vitro screenings using VSV-particles pseudo-typed with spike proteins representing the SARS-CoV-2 variants of concern Alpha, Beta, and Delta showed that TATX-03 maintained its neutralization potency. These results merit further development of TATX-03 as a potential therapy for SARS-CoV-2 infection with resistance to mutagenic escape.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2021.07.20.452858v1" target="_blank">Cornering an Ever-Evolving Coronavirus: TATX-03, a fully human synergistic multi-antibody cocktail targeting the SARS-CoV-2 Spike Protein with in vivo efficacy</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>An Orally Available Cathepsin L Inhibitor Protects Lungs Against SARS-CoV-2-Induced Diffuse Alveolar Damage in African Green Monkeys</strong> -
|
|||
|
<div>
|
|||
|
The COVID-19 pandemic resulted from global infection by the SARS-CoV-2 coronavirus and rapidly emerged as an urgent health issue requiring effective treatments. To initiate infection, the Spike protein of SARS-CoV-2 requires proteolytic processing mediated by host proteases. Among the host proteases proposed to carry out this activation is the cysteine protease cathepsin L. Inhibiting cathepsin L has been proposed as a therapeutic strategy for treating COVID-19. SLV213 (K777) is an orally administered small molecule protease inhibitor that exhibits in vitro activity against a range of viruses, including SARS-CoV-2. To confirm efficacy in vivo, K777 was evaluated in an African green monkey (AGM) model of COVID-19. A pilot experiment was designed to test K777 in a prophylactic setting, animals were pre-treated with 100mg/kg K777 (N=4) or vehicle (N=2) before inoculation with SARS-CoV-2. Initial data demonstrated that K777 treatment reduced pulmonary pathology compared to vehicle-treated animals. A second study was designed to test activity in a therapeutic setting, with K777 treatment (33 mg/kg or 100 mg/kg) initiated 8 hours after exposure to the virus. In both experiments, animals received K777 daily via oral gavage for 7 days. Vehicle-treated animals exhibited higher lung weights, pleuritis, and diffuse alveolar damage. In contrast, lung pathology was reduced in K777-treated monkeys, and histopathological analyses confirmed the lack of diffuse alveolar damage. Antiviral effects were further demonstrated by quantitative reductions in viral load of samples collected from upper and lower airways. These preclinical data support the potential for early SLV213 treatment in COVID-19 patients to prevent severe lung pathology and disease progression.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2021.07.20.453127v1" target="_blank">An Orally Available Cathepsin L Inhibitor Protects Lungs Against SARS-CoV-2-Induced Diffuse Alveolar Damage in African Green Monkeys</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Integrin activation is an essential component of SARS-CoV-2 infection</strong> -
|
|||
|
<div>
|
|||
|
Cellular entry of coronaviruses depends on binding of the viral spike (S) protein to a specific cellular receptor, the angiotensin-converting enzyme 2 (ACE2). Furthermore, the viral spike protein expresses an RGD motif, suggesting that cell surface integrins may be attachment co-receptors. However, using infectious SARS-CoV-2 requires a biosafety level 3 laboratory (BSL-3), which limits the techniques that can be used to study the mechanism of cell entry. Here, we UV- inactivated SARS-CoV-2 and fluorescently labeled the envelope membrane with octadecyl rhodamine B (R18) to explore the role of integrin activation in mediating both cell entry and productive infection. We used flow cytometry and confocal fluorescence microscopy to show that fluorescently labeled SARS-CoV-2R18 particles engage basal-state integrins. Furthermore, we demonstrate that Mn2+, which activates integrins and induces integrin extension, enhances cell binding and entry of SARS-CoV-2R18 in proportion to the fraction of integrins activated. We also show that one class of integrin antagonist, which binds to the I MIDAS site and stabilizes the inactive, closed conformation, selectively inhibits the engagement of SARS-CoV-2R18 with basal state integrins, but is ineffective against Mn2+-activated integrins. At the same time, RGD-integrin antagonists inhibited SARS-CoV-2R18 binding regardless of integrin activity state. Integrins transmit signals bidirectionally: ‘inside-out’ signaling primes the ligand binding function of integrins via a talin dependent mechanism and ‘outside-in’ signaling occurs downstream of integrin binding to macromolecular ligands. Outside-in signaling is mediated by G13 and induces cell spreading, retraction, migration, and proliferation. Using cell-permeable peptide inhibitors of talin, and G13 binding to the cytoplasmic tail of an integrin’s {beta} subunit, we further demonstrate that talin-mediated signaling is essential for productive infection by SARS-CoV-2.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2021.07.20.453118v1" target="_blank">Integrin activation is an essential component of SARS-CoV-2 infection</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Discovery of nanobodies against SARS-CoV-2 and an uncommon neutralizing mechanism</strong> -
|
|||
|
<div>
|
|||
|
SARS-CoV-2 and its variants continue to threaten public health. The virus recognizes the host cell by attaching its Spike receptor-binding domain (RBD) to the host receptor ACE2. Therefore, RBD is a primary target for neutralizing antibodies and vaccines. Here we report the isolation, and biological and structural characterization of two single- chain antibodies (nanobodies, DL4 and DL28) from RBD-immunized alpaca. Both nanobodies bind Spike with affinities that exceeded the detection limit (picomolar) of the biolayer interferometry assay and neutralize the original SARS-CoV-2 strain with IC50 of 86 ng mL-1 (DL4) and 385 ng mL-1 (DL28). DL4 and a more potent, rationally designed mutant, neutralizes the Alpha variant as potently as the original strain but only displays marginal activity against the Beta variant. By contrast, the neutralizing activity of DL28, when in the Fc-fused divalent form, was less affected by the mutations in the Beta variant (IC50 of 414 ng mL-1 for Alpha, 1060 ng mL-1 for Beta). Crystal structure studies reveal that DL4 blocks ACE2-binding by direct competition, while DL28 neutralizes SARS-CoV-2 by an uncommon mechanism through which DL28 distorts the receptor-binding motif in RBD and hence prevents ACE2-binding. Our work provides two neutralizing nanobodies for potential therapeutic development and reveals an uncommon mechanism to design and screen novel neutralizing antibodies against SARS-CoV-2.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2021.07.20.453054v1" target="_blank">Discovery of nanobodies against SARS-CoV-2 and an uncommon neutralizing mechanism</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Distinct shifts in site-specific glycosylation pattern of SARS-CoV-2 spike proteins associated with arising mutations in the D614G and Alpha variants</strong> -
|
|||
|
<div>
|
|||
|
Extensive glycosylation of the spike protein of SARS-CoV-2 virus not only shields the major part of it from host immune responses, but glycans at specific sites also act on its conformation dynamics and contribute to efficient host receptor binding, and hence infectivity. As variants of concern arise during the course of the COVID-19 pandemic, it is unclear if mutations accumulated within the spike protein would affect its site-specific glycosylation pattern. The Alpha variant derived from the D614G lineage is distinguished from others by having deletion mutations located right within an immunogenic supersite of the spike N-terminal domain that make it refractory to most neutralizing antibodies directed against this domain. Despite maintaining an overall similar structural conformation, our mass spectrometry- based site-specific glycosylation analyses of similarly produced spike proteins with and without the D614G and Alpha variant mutations reveal a significant shift in the processing state of N-glycans on one specific N-terminal domain site. Its conversion to a higher proportion of complex type structures is indicative of altered spatial accessibility attributable to mutations specific to the Alpha variant that may impact its transmissibility. This and other more subtle changes in glycosylation features detected at other sites provide crucial missing information otherwise not apparent in the available cryogenic electron microscopy-derived structures of the spike protein variants.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2021.07.21.453140v1" target="_blank">Distinct shifts in site-specific glycosylation pattern of SARS-CoV-2 spike proteins associated with arising mutations in the D614G and Alpha variants</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Effectiveness of the CoronaVac vaccine in the elderly population during a P.1 variant-associated epidemic of COVID-19 in Brazil: A test-negative case-control study</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
<b>Objective</b> To estimate the effectiveness of the inactivated whole-virus vaccine, CoronaVac, against symptomatic COVID-19 in the elderly population of Sao Paulo State, Brazil during widespread circulation of the Gamma variant. <b>Design</b> Test negative case-control study. <b>Setting</b> Health-care facilities in Sao Paulo State, Brazil. <b>Participants</b> 43,774 adults aged 70 years or older who were residents of Sao Paulo State and underwent SARS-CoV-2 RT-PCR testing from January 17 to April 29, 2021. 26,433 cases with symptomatic COVID-19 and 17,622 symptomatic, test negative controls were selected into 7,950 matched pairs, according to age, sex, self-reported race, municipality of residence, prior COVID-19 status and date of RT-PCR testing. <b>Intervention</b> Vaccination with a two- dose regimen of CoronaVac. <b>Main outcome measures</b> RT-PCR confirmed symptomatic COVID-19 and COVID-19 associated hospitalizations and deaths. <b>Results</b> Adjusted vaccine effectiveness against symptomatic COVID-19 was 18.2% (95% CI, 0.0 to 33.2) in the period 0-13 days after the second dose and 41.6% (95% CI, 26.9 to 53.3) in the period >=14 days after the second dose. Adjusted vaccine effectiveness against hospitalisations was 59.0% (95% CI, 44.2 to 69.8) and against deaths was 71.4% (95% CI, 53.7 to 82.3) in the period >=14 days after the second dose. Vaccine effectiveness >=14 days after the second dose declined with increasing age for the three outcomes, and among individuals aged 70-74 years it was 61.8% (95% CI, 34.8 to 77.7) against symptomatic disease, 80.1% (95% CI, 55.7 to 91.0) against hospitalisations and 86.0% (95% CI, 50.4 to 96.1) against deaths. <b>Conclusions</b> Vaccination with CoronaVac was associated with a reduction in symptomatic COVID-19, hospitalisations and deaths in adults aged 70 years or older in a setting with extensive Gamma variant transmission. However, significant protection was not observed until completion of the two-dose regimen, and vaccine effectiveness declined with increasing age amongst this elderly population.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.05.19.21257472v3" target="_blank">Effectiveness of the CoronaVac vaccine in the elderly population during a P.1 variant-associated epidemic of COVID-19 in Brazil: A test-negative case- control study</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Isolation thresholds for curbing SARS-CoV-2 resurgence</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
Self-instigated isolation is heavily relied on to curb SARS-CoV-2 transmission. Accounting for uncertainty in the latent and prepatent periods, as well as the proportion of infections that remain asymptomatic, the limits of this intervention at different phases of infection resurgence are estimated. We show that by October 2020, SARS-CoV-2 transmission rates in England had already begun exceeding levels that could be interrupted using this intervention alone, lending support to the second national lockdown on November 5th 2020.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article- html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2020.11.20.20235291v2" target="_blank">Isolation thresholds for curbing SARS-CoV-2 resurgence</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>SARS-CoV-2 Restructures the Host Chromatin Architecture</strong> -
|
|||
|
<div>
|
|||
|
SARS-CoV-2 has made >190-million infections worldwide, thus it is pivotal to understand the viral impacts on host cells. Many viruses can significantly alter host chromatin, but such roles of SARS-CoV-2 are largely unknown. Here, we characterized the three-dimensional (3D) genome architecture and epigenome landscapes in human cells after SARS- CoV-2 infection, revealing remarkable restructuring of host chromatin architecture. High-resolution Hi-C 3.0 uncovered widespread A compartmental weakening and A-B mixing, together with a global reduction of intra-TAD chromatin contacts. The cohesin complex, a central organizer of the 3D genome, was significantly depleted from intra-TAD regions, supporting that SARS-CoV-2 disrupts cohesin loop extrusion. Calibrated ChIP-Seq verified chromatin restructuring by SARS-CoV-2 that is particularly manifested by a pervasive reduction of euchromatin modifications. Built on the rewired 3D genome/epigenome maps, a modified activity-by-contact model highlights the transcriptional weakening of antiviral interferon response genes or virus sensors (e.g., DDX58) incurred by SARS-CoV-2. In contrast, pro-inflammatory genes (e.g. IL-6) high in severe infections were uniquely regulated by augmented H3K4me3 at their promoters. These findings illustrate how SARS-CoV-2 rewires host chromatin architecture to confer immunological gene deregulation, laying a foundation to characterize the long-term epigenomic impacts of this virus.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html- link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2021.07.20.453146v1" target="_blank">SARS-CoV-2 Restructures the Host Chromatin Architecture</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Viral receptor profiles of masked palm civet revealed by single-cell transcriptomics</strong> -
|
|||
|
<div>
|
|||
|
Civets are small mammals belonging to the family Viverridae. The masked palm civets (Paguma larvata) served as an intermediate host in the bat-to-human transmission of severe acute respiratory syndrome coronavirus (SARS-CoV) in 2003. Because of their unique role in the SARS outbreak, civets were suspected as a potential intermediate host of SARS-CoV-2, the etiological pathogen of the COVID-19 pandemic. Besides their susceptibility to coronaviruses, civets can also be infected by other viruses, such as canine distemper viruses, parvoviruses, influenza viruses, etc. Regarding the ecological and economical role of civets, it is vital to evaluate the potential threats from different pathogens to these animals. Receptor binding is a necessary step for virus entry into host cells. Understanding the distribution of receptors of various viruses provides hints to their potential tissue tropisms. Herein, we characterized the cell atlas of five important organs (the frontal lobe, lung, liver, spleen and kidney) of masked palm civets (Paguma larvata) and described the expression profiles of receptor associated genes of 132 viruses from 25 families, including 16 viruses from 10 families reported before that can attack civets and 116 viruses with little infection record.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2021.07.20.452903v1" target="_blank">Viral receptor profiles of masked palm civet revealed by single-cell transcriptomics</a>
|
|||
|
</div></li>
|
|||
|
</ul>
|
|||
|
<h1 data-aos="fade-right" id="from-clinical-trials">From Clinical Trials</h1>
|
|||
|
<ul>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A Study of PF-07321332/Ritonavir in Nonhospitalized High Risk Adult Participants With COVID-19</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Drug: PF-07321332; Drug: Ritonavir; Drug: Placebo<br/><b>Sponsor</b>: Pfizer<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Building Resiliency and Vital Equity (BRAVE) Project: Understanding Native Americans’ Perceptions/Beliefs About COVID-19 Testing and Vaccination Study</strong> - <b>Condition</b>: Covid19 Virus Infection<br/><b>Intervention</b>: Behavioral: Protect Your Elders Campaign<br/><b>Sponsors</b>: North Carolina Central University; Lumbee Tribe of North Carolina; University of North Carolina at Pembroke<br/><b>Recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Vaccination for Recovered Inpatients With COVID-19 (VATICO)</strong> - <b>Condition</b>: Covid19<br/><b>Interventions</b>: Biological: Moderna mRNA-1273 COVID-19 vaccine; Biological: Pfizer BNT162b2 COVID-19 vaccine<br/><b>Sponsors</b>: International Network for Strategic Initiatives in Global HIV Trials (INSIGHT); University of Minnesota; National Institute of Allergy and Infectious Diseases (NIAID); University of Copenhagen; Kirby Institute; Washington D.C. Veterans Affairs Medical Center; AIDS Clinical Trials Group; National Heart, Lung, and Blood Institute (NHLBI); US Department of Veterans Affairs; Prevention and Early Treatment of Acute Lung Injury (PETAL); Cardiothoracic Surgical Trials Network (CTSN); Medical Research Council<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Internet-based Multidisciplinary Rehabilitation for Longterm COVID-19 Syndrome</strong> - <b>Condition</b>: Long COVID-19<br/><b>Intervention</b>: Behavioral: Multidisciplinary Rehabilitation<br/><b>Sponsors</b>: Danderyd Hospital; St Göran Hospital, Stockholm<br/><b>Recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Enabling Family Physicians to Reduce Vaccine Hesitancy and Increase Covid-19 Vaccine Uptake</strong> - <b>Conditions</b>: Covid19; COVID-19 Vaccine<br/><b>Interventions</b>: <br/>
|
|||
|
Behavioral: Tailored COVID-19 vaccine messages; Other: Other health messages<br/><b>Sponsors</b>: <br/>
|
|||
|
Hopital Montfort; Public Health Agency of Canada (PHAC); Eastern Ontario Health Unit<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>COVID-19 and Lung Ultrasound Utility</strong> - <b>Condition</b>: Covid19<br/><b>Intervention</b>: Device: Device: Butterfly iQ<br/><b>Sponsor</b>: <br/>
|
|||
|
Rocket Doctor Inc.<br/><b>Recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A Different Use of The Aerosol Box in COVID-19 Patients; Internal Jugular Vein Cannulation</strong> - <b>Condition</b>: COVID-19 Pneumonia<br/><b>Intervention</b>: Procedure: Internal jugular vein cannulation<br/><b>Sponsor</b>: Bakirkoy Dr. Sadi Konuk Research and Training Hospital<br/><b>Completed</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Reconditioning Exercise for COVID-19 Patients Experiencing Residual sYmptoms</strong> - <b>Condition</b>: Covid19<br/><b>Intervention</b>: Other: Exercise Therapy<br/><b>Sponsor</b>: <br/>
|
|||
|
Wake Forest University Health Sciences<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Lipid Emulsion Infusion and COVID-19 Patients</strong> - <b>Condition</b>: Covid19<br/><b>Interventions</b>: Drug: SMOFlipid; Other: 0.9% saline<br/><b>Sponsor</b>: Assiut University<br/><b>Recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Baricitinib in Hospitalized Covid-19 Patients With Diabetes Mellitus</strong> - <b>Condition</b>: COVID-19 Pneumonia<br/><b>Interventions</b>: Drug: Baricitinib; Drug: Dexamethasone; Drug: Remdesivir<br/><b>Sponsor</b>: Bangladesh Institute of Research and Rehabilitation in Diabetes, Endocrine and Metabolic Disorders<br/><b>Recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Evaluation of the RD-X19 Treatment Device in Individuals With Mild to Moderate COVID-19</strong> - <b>Condition</b>: COVID19<br/><b>Interventions</b>: Device: RD-X19; Device: Sham<br/><b>Sponsor</b>: <br/>
|
|||
|
EmitBio Inc.<br/><b>Recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Phase 1 Intranasal Parainfluenza Virus Type 5-SARS CoV-2 S Vaccine in Healthy Adults</strong> - <b>Condition</b>: Covid19<br/><b>Interventions</b>: Biological: CVXGA1 low dose; Biological: CVXGA1 high dose<br/><b>Sponsor</b>: CyanVac LLC<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Coenzyme Q10 as Treatment for Long Term COVID-19</strong> - <b>Conditions</b>: Covid19; Long Term Covid19<br/><b>Interventions</b>: Drug: Coenzyme Q10; Drug: Placebo<br/><b>Sponsors</b>: Aarhus University Hospital; University of Aarhus; Pharma Nord<br/><b>Recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Hidroxicloroquina With Azitromicina Versus Hidroxicloroquina and Placebo Int Patients With Mild COVID-19</strong> - <b>Condition</b>: Covid19<br/><b>Intervention</b>: Drug: Hydroxychloroquine with Azithromycin<br/><b>Sponsors</b>: Coordinación de Investigación en Salud, Mexico; Ultra Laboratorios SA. de CV.<br/><b>Recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Study to Evaluate the Immunogenicity and Safety of Heterologous SARS-CoV-2 Vaccine Schemes</strong> - <b>Condition</b>: COVID-19 Vaccines<br/><b>Intervention</b>: Drug: Gam-COVID-Vac / Gam-COVID-Vac<br/><b>Sponsor</b>: Ministerio de Salud de Ciudad Autónoma de Buenos Aires<br/><b>Recruiting</b></p></li>
|
|||
|
</ul>
|
|||
|
<h1 data-aos="fade-right" id="from-pubmed">From PubMed</h1>
|
|||
|
<ul>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Lectin Pathway Mediates Complement Activation by SARS-CoV-2 Proteins</strong> - Early and persistent activation of complement is considered to play a key role in the pathogenesis of COVID-19. Complement activation products orchestrate a proinflammatory environment that might be critical for the induction and maintenance of a severe inflammatory response to SARS-CoV-2 by recruiting cells of the cellular immune system to the sites of infection and shifting their state of activation towards an inflammatory phenotype. It precedes pathophysiological milestone events like the…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Complement dysregulation is associated with severe COVID-19 illness</strong> - Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) may manifest as thrombosis, stroke, renal failure, myocardial infarction, and thrombocytopenia, reminiscent of other complement-mediated diseases. Multiple clinical and preclinical studies have implicated complement in the pathogenesis of COVID-19 illness. We previously found that the SARS-CoV-2 spike protein activates the alternative pathway of complement (APC) in vitro through interfering with the function of complement factor H, a…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Evaluation of cell-based and surrogate SARS-CoV-2 neutralization assays</strong> - Determinants of protective immunity against SARS-CoV-2 infection require the development of well-standardized, reproducible antibody assays. This need has led to the emergence of a variety of neutralization assays. Head-to-head evaluation of different SARS-CoV-2 neutralization platforms could facilitate comparisons across studies and laboratories. Five neutralization assays were compared using forty plasma samples from convalescent individuals with mild-to-moderate COVID-19: four cell-based…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Self-Masked Aldehyde Inhibitors: A Novel Strategy for Inhibiting Cysteine Proteases</strong> - Cysteine proteases comprise an important class of drug targets, especially for infectious diseases such as Chagas disease (cruzain) and COVID-19 (3CL protease, cathepsin L). Peptide aldehydes have proven to be potent inhibitors for all of these proteases. However, the intrinsic, high electrophilicity of the aldehyde group is associated with safety concerns and metabolic instability, limiting the use of aldehyde inhibitors as drugs. We have developed a novel class of self-masked aldehyde…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Identification of novel inhibitors of SARS-CoV-2 main protease (M(pro) ) from Withania sp. by molecular docking and molecular dynamics simulation</strong> - Since December 2019, coronavirus disease (COVID-19) has claimed the lives of millions of people across the globe. To date, no medicine is available for the responsible virus SARS-CoV-2. 3CLpro, that is, 3-chymotrypsin-like protease, the main protease (M^(pro) ), has an important role in cleaving pp1a and pp1ab polyproteins. This M^(pro) serves as an important target in drug designing against COVID-19. Herein, the study includes the investigation, screening, and identification of potent leads…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Safety and immunogenicity evaluation of inactivated whole-virus-SARS-COV-2 as emerging vaccine development in Egypt</strong> - CONCLUSIONS: Vaccinated mice recorded complete protection from challenge infection via inhibition of SARS-COV-2 replication in the lung tissues of mice following virus challenge, regardless of the level of serum neutralizing antibodies. This finding will support future trials for the evaluation of an applicable SARS-CoV-2 vaccine candidate.</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Syncing sustainable urban mobility with public transit policy trends based on global data analysis</strong> - Unforeseeable developments will accompany progressive COVID-19 recovery globally. Similarly, science will inform changes amidst its own progress. Social isolation and distancing imposed by the pandemic are likely to result in changed habits, behavior, and thinking paradigms. Inevitably, this should affect the tremendous confusion inhibiting automated urban mobility’s evolution. While mobility often seems magnanimously resistant to change, using international data, this analysis shows road…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Masitinib is a broad coronavirus 3CL inhibitor that blocks replication of SARS-CoV-2</strong> - There is an urgent need for antiviral agents that treat SARS-CoV-2 infection. We screened a library of 1,900 clinically safe drugs against OC43, a human beta-coronavirus that causes the common cold and evaluated the top hits against SARS- CoV-2. Twenty drugs significantly inhibited replication of both viruses in vitro. Eight of these drugs inhibited the activity of the SARS-CoV-2 main protease, 3CLpro, with the most potent being masitinib, an orally bioavailable tyrosine kinase inhibitor. X-ray…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Preventive behaviours and family inequalities during the COVID-19 pandemic: a cross-sectional study in China</strong> - CONCLUSIONS: Inequalities in COVID-19 prevention behaviours exist between families and inadequate adoption of prevention by vulnerable groups are noteworthy. This study expands the research perspective by emphasizing the role of household factors in preventive behaviours and by focusing on family inequalities. The government should use traditional media as a platform to enhance residents’ public health knowledge. Targeted additional wage subsidies, investments in affordable housing, financial…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Before the 2020 Pandemic: an observational study exploring public knowledge, attitudes, plans, and preferences towards death and end of life care in Wales</strong> - CONCLUSIONS: People are ready to talk about death and dying and COVID-19 has increased awareness. A combination of top- down and bottom-up initiatives across levels and settings can increase awareness, knowledge, and service-utilisation- drivers to support health professionals and people towards shared decisions which align with people’s end of life wishes and preferences.</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Low neutralizing antibody responses in WM, CLL and NHL patients after the first dose of the BNT162b2 and AZD1222 vaccine</strong> - Vaccination against SARS-CoV-2 is considered as the most important preventive strategy against COVID-19, but its efficacy in patients with hematological malignancies is largely unknown. We investigated the development of neutralizing antibodies (NAbs) against SARS-CoV-2 in patients with Waldenstrom Macroglobulinemia (WM), Chronic Lymphocytic Leukemia (CLL) and Non-Hodgkin Lymphoma (NHL). After the first dose of the vaccine, on D22, WM/CLL/NHL patients had lower NAb titers compared to controls:…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Mouthwashes with CPC Reduce the Infectivity of SARS-CoV-2 Variants In Vitro</strong> - Oral mouthwashes decrease the infectivity of several respiratory viruses including SARS-CoV-2. However, the precise agents with antiviral activity in these oral rinses and their exact mechanism of action remain unknown. Here we show that cetylpyridinium chloride (CPC), a quaternary ammonium compound in many oral mouthwashes, reduces SARS-CoV-2 infectivity by inhibiting the viral fusion step with target cells after disrupting the integrity of the viral envelope. We also found that CPC-containing…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Water-soluble tocopherol derivatives inhibit SARS-CoV-2 RNA-dependent RNA polymerase</strong> - The recent emergence of a novel coronavirus, SARS-CoV-2, has led to the global pandemic of the severe disease COVID-19 in humans. While efforts to quickly identify effective antiviral therapies have focused largely on repurposing existing drugs ^(1-4) , the current standard of care, remdesivir, remains the only authorized antiviral intervention of COVID-19 and provides only modest clinical benefits ⁵ . Here we show that water-soluble derivatives of α-tocopherol have potent antiviral activity and…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Xeno-nucleic Acid (XNA) 2’-Fluoro-Arabino Nucleic Acid (FANA) Aptamers to the Receptor Binding Domain of SARS-CoV-2 S Protein Block ACE2 Binding</strong> - The causative agent of COVID-19, SARS-CoV-2, gains access to cells through interactions of the receptor binding domain (RBD) on the viral S protein with angiotensin converting enzyme 2 (ACE2) on the surface of human host cells. Systematic Evolution of Ligands by Exponential Enrichment (SELEX) was used to generate aptamers (nucleic acids selected for high binding affinity to a target) to the RBD made from 2’-fluoroarabinonucleic acid (FANA). The best selected ~ 79 nucleotide aptamers bound the…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>The Role of Micronutrient and Immunomodulation effect in the vaccine era of COVID-19</strong> - Different dietary nutrients have distinct effects, including enhancing immune response activity and supporting mucous membrane integrity. These effects are critical in fighting against pathogenic agents, which cover COVID-19, the coronavirus disease that shuts down globally. Recent researches have shown that micronutrient deficiency is commonly associated with compromised immune responses, respiratory tract infections, or even susceptibility to COVID-19. The relationship between Vit A and…</p></li>
|
|||
|
</ul>
|
|||
|
<h1 data-aos="fade-right" id="from-patent-search">From Patent Search</h1>
|
|||
|
<ul>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A SYSTEM AND METHOD FOR COVID- 19 DIAGNOSIS USING DETECTION RESULTS FROM CHEST X- RAY IMAGES</strong> - - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=AU330927328">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Advanced Machine Learning System combating COVID-19 virus Detection, Spread, Prevention and Medical Assistance.</strong> - - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=AU329799475">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Differential detection kit for common SARS-CoV-2 variants in COVID-19 patients</strong> - - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=AU328840861">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>一种新型冠状病毒的mRNA疫苗</strong> - 本发明公开了一种新型冠状病毒的mRNA疫苗。本发明提供的疫苗,其活性成分为mRNA,如序列表的序列6所示。本发明还保护TF‑RBD蛋白,如序列表的序列2所示。本发明的发明人通过一系列序列设计和序列优化得到了特异DNA分子,进一步构建了特异重组质粒,将特异重组质粒进行体外转录,可以得到多聚化TF‑RBD mRNA。进一步的,发明人制备了负载TF‑RBD mRNA的脂质纳米粒。本发明对于新型冠状病毒的防控具有重大的应用推广价值。 - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=CN330068008">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>新型冠状病毒B.1.1.7英国突变株RBD的基因及其应用</strong> - 本发明属于生物技术领域,具体涉及新型冠状病毒B.1.1.7英国突变株RBD的基因及其应用。本发明的新型冠状病毒B.1.1.7英国突变株RBD的基因,其核苷酸序列如SEQ ID NO.1或SEQ ID NO.6所示。本发明通过优化野生型新型冠状病毒B.1.1.7英国突变株RBD的基因序列,并结合筛选确定了相对最佳序列,优化后序列产生的克隆表达效率比野生型新型冠状病毒B.1.1.7英国突变株RBD序列表达效率大幅提高,从而,本发明的新型冠状病毒B.1.1.7英国突变株RBD的基因更有利于用于制备新型冠状病毒疫苗。 - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=CN330068024">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>SARS-CoV-2 anti-viral therapeutic</strong> - - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=AU327160071">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>一种基于联邦学习的多用户协同训练人流统计方法及系统</strong> - 本发明提供一种基于联邦学习的多用户协同训练人流统计方法,旨在利用联邦学习框架搭建一个新颖的人群计数模型,达到让多用户多设备同时训练的目的。各个客户端利用图像数据集对图像分类网络进行本地训练以获取本地模型;在各经过至少一次本地训练后,中心服务器从客户端获取本地模型的权值及附加层参数并进行聚合处理;中心服务器利用聚合处理后的权值及附加层参数更新全局模型,并将聚合处理后的权值参数及附加层参数返回给各个客户端;各个客户端利用中心服务器返回的权值以及ground truth值进行贝叶斯估计,计算loss值,并利用返回的权值参数及附加层参数更新本地模型;重复执行直至所有客户端的loss值均收敛,则完成人流统计全局模型和本地模型的训练。 - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=CN329978461">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A POLYHERBAL ALCOHOL FREE FORMULATION FOR ORAL CAVITY</strong> - The present invention generally relates to a herbal composition. Specifically, the present invention relates to a polyherbal alcohol free composition comprising of Glycyrrhiza glabra root extract, Ocimum sanctum leaf extract, Elettaria cardamomum fruit extract, Mentha spicata (Spearmint) oil and Tween 80 and method of preparation thereof. The polyherbal alcohol free composition of the present invention possesses excellent antimicrobial properties and useful for oral cavity. - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=IN325690740">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>新型冠状病毒B.1.351南非突变株RBD的基因及其应用</strong> - 本发明属于生物技术领域,具体涉及新型冠状病毒B.1.351南非突变株RBD的基因及其应用。本发明的新型冠状病毒B.1.351南非突变株RBD的基因,其核苷酸序列如SEQIDNO.1或SEQIDNO.6所示。本发明通过优化野生型新型冠状病毒南非B.1.351南非突变株RBD的基因序列,并结合筛选确定了相对最佳序列,优化后序列产生的克隆表达效率比野生型新型冠状病毒B.1.351南非突变株RBD序列表达效率大幅提高,从而,本发明的新型冠状病毒B.1.351南非突变株RBD的基因可以用于制备新型冠状病毒疫苗。 - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=CN328990628">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>检测新型冠状病毒中和抗体的试剂盒及其应用</strong> - 本发明涉及生物技术领域,具体而言,提供了一种检测新型冠状病毒中和抗体的试剂盒及其应用。本发明提供的检测新型冠状病毒中和抗体试剂盒,具体包括(a)或(b)两种方案:(a)示踪物标记的RBD三聚体抗原,包被在固体支持物上的ACE2,以及,含有0.2‑10mg/mL十二烷基二甲基甜菜碱的工作液;(b)示踪物标记的ACE2,包被在固体支持物上的RBD三聚体抗原,以及,含有0.2‑10mg/mL十二烷基二甲基甜菜碱的工作液;其中,RBD三聚体抗原利用二硫键将刺突蛋白的RBD与S2亚基完全交联得到。十二烷基二甲基甜菜碱会显著提高RBD三聚体抗原与新冠中和性抗体结合速度,提升阳性样本平均发光强度,缩短检测时间。 - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=CN328990376">link</a></p></li>
|
|||
|
</ul>
|
|||
|
|
|||
|
|
|||
|
<script>AOS.init();</script></body></html>
|