Daily-Dose/archive-covid-19/17 October, 2021.html

206 lines
57 KiB
HTML
Raw Normal View History

2021-10-17 13:47:39 +01:00
<!DOCTYPE html>
<html lang="" xml:lang="" xmlns="http://www.w3.org/1999/xhtml"><head>
<meta charset="utf-8"/>
<meta content="pandoc" name="generator"/>
<meta content="width=device-width, initial-scale=1.0, user-scalable=yes" name="viewport"/>
<title>17 October, 2021</title>
<style type="text/css">
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
span.underline{text-decoration: underline;}
div.column{display: inline-block; vertical-align: top; width: 50%;}
</style>
<title>Covid-19 Sentry</title><meta content="width=device-width, initial-scale=1.0" name="viewport"/><link href="styles/simple.css" rel="stylesheet"/><link href="../styles/simple.css" rel="stylesheet"/><link href="https://unpkg.com/aos@2.3.1/dist/aos.css" rel="stylesheet"/><script src="https://unpkg.com/aos@2.3.1/dist/aos.js"></script></head>
<body>
<h1 data-aos="fade-down" id="covid-19-sentry">Covid-19 Sentry</h1>
<h1 data-aos="fade-right" data-aos-anchor-placement="top-bottom" id="contents">Contents</h1>
<ul>
<li><a href="#from-preprints">From Preprints</a></li>
<li><a href="#from-clinical-trials">From Clinical Trials</a></li>
<li><a href="#from-pubmed">From PubMed</a></li>
<li><a href="#from-patent-search">From Patent Search</a></li>
</ul>
<h1 data-aos="fade-right" id="from-preprints">From Preprints</h1>
<ul>
<li><strong>Connecting Self-Reported Social Distancing to Real-World Behavior During the COVID-19 Pandemic</strong> -
<div>
In an effort to combat COVID-19 and future pandemics, researchers have attempted to identify the factors underlying social distancing. Yet, much of this research relies on self-report measures. In two studies, we examine whether self- reported social distancing predicts objective distancing behavior. In Study 1, individuals self-reported social distancing predicted decreased mobility (assessed via smartphone step-counts) during the COVID-19 pandemic. While participants high in self-reported distancing (+1 SD) exhibited a 33% reduction in daily step-count, those low in distancing (-1 SD) exhibited only a 3% reduction. Study 2 extended these findings to the group-level. Self-reported social distancing at the U.S. state level accounted for 20% of the variance in states objective reduction in overall movement and visiting nonessential services (calculated via the GPS coordinates of ~15 million people). Collectively, our results indicate that self-reported social distancing tracks actual social distancing behavior.
</div>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://psyarxiv.com/kvnwp/" target="_blank">Connecting Self-Reported Social Distancing to Real-World Behavior During the COVID-19 Pandemic</a>
</div></li>
<li><strong>Psychiatric Manifestations and Associated Risk Factors among Hospitalized Patients with COVID-19 in Edo State, Nigeria.</strong> -
<div>
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
Objective The Coronavirus Disease 2019 (COVID-19) has had devastating effects globally. These effects are likely to result in mental health problems at different levels. Although studies have reported the mental health burden of the pandemic on the general population and frontline health workers, the impact of the disease on the mental health of patients in COVID-19 treatment and isolation centres have been understudied in Africa. We estimated the prevalence of depression and anxiety and associated risk factors in hospitalized persons with COVID-19. Methods A cross-sectional survey was conducted among 489 patients with COVID-19 at the three government-designated treatment and isolation centres in Edo State, Nigeria. The 9-item Patient Health Questionnaire (PHQ-9) and the Generalized Anxiety Disorder-7 (GAD-7) tool were used to assess depression and anxiety respectively. Binary logistic regression was applied to determine risk factors of depression and anxiety. Results Of the 489 participants, 49.1% and 38.0% had depressive and anxiety symptoms respectively. The prevalence of depression, anxiety, and combination of both were 16.2%, 12.9% and 9.0% respectively. Moderate-severe symptoms of COVID-19, ≥14 days in isolation, worrying about the outcome of infection and stigma increased the risk of having depression and anxiety. Additionally, being separated/divorced increased the risk of having depression and having comorbidity increased the risk of having anxiety. Conclusion A substantial proportion of our participants experienced depression, anxiety and a combination of both especially in those who had the risk factors we identified. The findings underscore the need to address these risk factors early in the course of the disease and integrate mental health interventions into COVID-19 management guidelines.
</p>
</div>
<div class="article-link article- html-link">
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.10.12.21264913v1" target="_blank">Psychiatric Manifestations and Associated Risk Factors among Hospitalized Patients with COVID-19 in Edo State, Nigeria.</a>
</div></li>
<li><strong>A review of the effectiveness and experiences of welfare advice services co-located in health settings: a critical narrative systematic review.</strong> -
<div>
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
The links between financial insecurity and poor health and wellbeing are well established. Individuals experiencing financial insecurity are also more likely to face challenges in accessing the support services they need. There is evidence of unequal uptake of welfare support and benefits, particularly in some ethnic minority groups. The COVID-19 pandemic has further exacerbated financial insecurity for the most vulnerable and action is needed to improve the support provided for those affected during the recovery from the pandemic. One approach to improving uptake of benefits has been to deliver welfare services within health settings. This has the potential to increase income and possibly improve health. We conducted systematic review with a critical narrative synthesis to assess the health, social and financial impacts of welfare advice services co-located in health settings and explore the facilitators and barriers to successful implementation of these services, in order to guide future policy and practice. The review identified 14 studies published in the UK from 2010. The services provided generated on average 27GBP of social, economic and environmental return on investment per 1GBP invested. Individuals on average benefitted from an additional 2,757GBP household income per annum and cost savings for the NHS were demonstrated. The review demonstrated that improvements to health were made by addressing key social determinants of health, thereby reducing health inequalities. Co-located welfare services actively incorporated elements of proportionate universalism and targeted those, who due to predominately health needs, were most in need of this support. The nature of the welfare advice service, how it operates within a health setting, and how visible and accessible this service is to participants and professionals referring into the service, were seen as important facilitators. Co-production during service development and ongoing enhanced multi-disciplinary collaboration were also considered vital to the success of co-located services.
</p>
</div>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.10.13.21264938v1" target="_blank">A review of the effectiveness and experiences of welfare advice services co-located in health settings: a critical narrative systematic review.</a>
</div></li>
<li><strong>Human-Network Regions as Effective Geographic Units for Disease Mitigation</strong> -
<div>
Susceptibility to infectious diseases such as COVID-19 depends on how they spread, and many studies have captured the decrease in COVID-19 spread due to reduction in travel. However, less is known about practical geographic boundaries for that limit the spread of COVID-19 to adjacent places. To detect such boundaries, we apply community-detection algorithms to large networks of mobility and social-media connections to construct geographic regions that reflect natural human movement and relationships at the county level for the continental United States. We measure COVID-19 cases, case rates, and case-rate variations across adjacent counties and examine how often COVID-19 crosses the boundaries of these functional regions. We find that regions that we construct using GPS-trace networks and especially commuter networks have the smallest rates of COVID-19 case rates along the boundaries, so these regions may reflect natural partitions in COVID-19 transmission. Conversely, regions that we construct from geolocated Facebook friendships and Twitter connections yield the least effective partitions. Our analysis reveals that regions that are derived from movement flows are more appropriate geographic units than states for making policy decisions about opening areas for activity, assessing vulnerability of populations, and allocating resources. Our insights are also relevant for policy decisions and public messaging in future emergency situations.
</div>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://osf.io/preprints/socarxiv/4mp6x/" target="_blank">Human-Network Regions as Effective Geographic Units for Disease Mitigation</a>
</div></li>
<li><strong>Evaluation of COVID-19 vaccine breakthrough infections among immunocompromised patients fully vaccinated with BNT162b2</strong> -
<div>
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
Objective: To evaluate COVID-19 vaccine breakthrough infections among immunocompromised (IC) individuals. Methods: Individuals vaccinated with BNT162b2 were selected from the US HealthVerity database (12/10/2020-7/8/2021). COVID-19 vaccine breakthrough infections were examined in fully vaccinated (≥14 days after 2nd dose) IC individuals (IC cohort), 12 mutually exclusive IC condition groups, and a non-IC cohort. IC conditions were identified using an algorithm based on diagnosis codes and immunosuppressive (IS) medication usage. Results: Of 1,277,747 individuals ≥16 years of age who received 2 BNT162b2 doses, 225,796 (17.7%) were identified as IC (median age: 58 years; 56.3% female). The most prevalent IC conditions were solid malignancy (32.0%), kidney disease (19.5%), and rheumatologic/inflammatory conditions (16.7%). Among the fully vaccinated IC and non-IC cohorts, a total of 978 breakthrough infections were observed during the study period; 124 (12.7%) resulted in hospitalization and 2 (0.2%) were inpatient deaths. IC individuals accounted for 38.2% (N=374) of all breakthrough infections, 59.7% (N=74) of all hospitalizations, and 100% (N=2) of inpatient deaths. The proportion with breakthrough infections was 3 times higher in the IC cohort compared to the non-IC cohort (N=374 [0.18%] vs. N=604 [0.06%]; unadjusted incidence rates were 0.89 and 0.34 per 100 person-years, respectively. Organ transplant recipients had the highest incidence rate; those with &gt;1 IC condition, antimetabolite usage, primary immunodeficiencies, and hematologic malignancies also had higher incidence rates compared to the overall IC cohort. Incidence rates in older (≥65 years old) IC individuals were generally higher versus younger IC individuals (&lt;65). Limitations: This retrospective analysis relied on coding accuracy and had limited capture of COVID-19 vaccine receipt. Conclusions: COVID-19 vaccine breakthrough infections are rare but are more common and severe in IC individuals. The findings from this large study support FDA authorization and CDC recommendations to offer a 3rd vaccine dose to increase protection among IC individuals.
</p>
</div>
<div class="article- link article-html-link">
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.10.12.21264707v1" target="_blank">Evaluation of COVID-19 vaccine breakthrough infections among immunocompromised patients fully vaccinated with BNT162b2</a>
</div></li>
<li><strong>Japanese Dictionary for Sentiment Analysis of Counselling Text</strong> -
<div>
Chat-based counselling has become increasingly popular in the era of telecommunication. The need for accessible therapy has been exacerbated by the COVID-19 pandemic. Given its text-based nature, chat-based counselling provides an opportunity for machine-based analysis. It even has the potential to provide machine-based counselling services. However, the informational resources for machine-based analysis and interaction are rather scarce especially in a Japanese-language context. We created a Japanese dictionary for sentiment analysis, using a technique via machine-based text analysis, tailored for counselling related text. It includes 2389 words that were frequently used in chat-based counselling corpora. The following attributes were included for each word: (1) valence rating by the general public, (2) valence rating by clinical psychologists, (3) emotionality, and (4) body-relatedness.
</div>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://psyarxiv.com/2g6jt/" target="_blank">Japanese Dictionary for Sentiment Analysis of Counselling Text</a>
</div></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A phylogeny-based metric for estimating changes in transmissibility from recurrent mutations in SARS-CoV-2</strong> -
<div>
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in late 2019 and spread globally to cause the COVID-19 pandemic. Despite the constant accumulation of genetic variation in the SARS-CoV-2 population, there was little evidence for the emergence of significantly more transmissible lineages in the first half of 2020. Starting around November 2020, several more contagious and possibly more virulent Variants of Concern (VoCs) were reported in various regions of the world. These VoCs share some mutations and deletions that haven arisen recurrently in distinct genetic backgrounds. Here, we build on our previous work modelling the association of mutations to SARS-CoV-2 transmissibility and characterise the contribution of individual recurrent mutations and deletions to estimated viral transmissibility. We then assess how patterns of estimated transmissibility in all SARS-CoV-2 clades have varied over the course of the COVID-19 pandemic by summing transmissibility estimates for all individual mutations carried by any sequenced genome analysed. Such an approach recovers the Delta variant (21A) as the most transmissible clade currently in circulation, followed by the Alpha variant (20I). By assessing transmissibility over the time of sampling, we observe a tendency for estimated transmissibility within clades to slightly decrease over time in most clades. Although subtle, this pattern is consistent with the expectation of a decay in transmissibility in mainly non-recombining lineages caused by the accumulation of weakly deleterious mutations. SARS-CoV-2 remains a highly transmissible pathogen, though such a trend could conceivably play a role in the turnover of different global viral clades observed over the pandemic so far.
</div></li>
</ul>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2021.05.06.442903v2" target="_blank">A phylogeny-based metric for estimating changes in transmissibility from recurrent mutations in SARS-CoV-2</a>
</div>
<ul>
<li><strong>Alterations in CD39/CD73 Axis of T cells associated with COVID-19 severity</strong> -
<div>
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
Purinergic signaling modulates immune function and is involved in the immunopathogenesis of several viral infections. This study aimed to investigate alterations in purinergic pathways in COVID-19 patients. Lower plasma ATP and adenosine levels were identified in mild and severe COVID-19 patients associated with proinflammatory cytokine profiles compared to healthy controls. Mild COVID-19 patients presented lower frequencies of CD4+CD25+CD39+ (activated/memory Treg) and CD4+CD25+CD39+CD73+ T cells, and increased frequencies of high differentiated (CD27-CD28-) CD8+T cells compared to health controls. Severe COVID-19 patients also showed higher frequencies of CD4+CD39+, CD4+CD25-CD39+ (memory T effector cell), high differentiated CD8+ T cells (CD27-CD28-) and diminished frequencies of CD4+CD73+, CD4+CD25+CD39+ mTreg, CD4+CD25+CD39+CD73+, CD8+CD73+ and low-differentiated CD8+ T cells (CD27+CD28+) in the blood in relation to mild COVID-19 patients and controls. Moreover, severe COVID-19 patients presented higher expression of PD-1 on low-differentiated CD8+ T cells. Both severe and mild COVID-19 patients presented higher frequencies of CD4+Annexin-V+ and CD8+Annexin-V+ T cells, showing increased T cell apoptosis. Plasma samples collected from severe COVID-19 patients were able to decrease the expression of CD73 on CD4+ and CD8+ T cells of a healthy donor. Interestingly, the in vitro incubation of PBMC from severe COVID-19 patients with adenosine reduced the NF-kB activation in T cells and monocytes. Together, these data add new knowledge regarding the immunopathology of COVID-19 through purinergic regulation, especially concerning adenosine deficiency.
</p>
</div>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.09.18.21263782v2" target="_blank">Alterations in CD39/CD73 Axis of T cells associated with COVID-19 severity</a>
</div></li>
<li><strong>COVID-19 Underreporting and its Impact on Vaccination Strategies</strong> -
<div>
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
We present a novel methodology for the stable rate estimation of hospitalization and death related to the Corona Virus Disease 2019 (COVID-19) using publicly available reports from various distinct communities. These rates are then used to estimate underreported infections on the corresponding areas by making use of reported daily hospitalizations and deaths. The impact of underreporting infections on vaccination strategies is estimated under different disease- transmission scenarios using a Susceptible-Exposed-Infective-Removed-like (SEIR) epidemiological model.
</p>
</div>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.03.11.21253404v2" target="_blank">COVID-19 Underreporting and its Impact on Vaccination Strategies</a>
</div></li>
<li><strong>COVID-19 Risk Factors and Mortality among Native Americans</strong> -
<div>
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
BACKGROUND: Academic research on the disproportionate impact of COVID-19 among Native Americans has largely been restricted to particular indigenous groups or reservations. OBJECTIVE: We estimate COVID-19 mortality for Native Americans relative to other racial/ethnic groups and explore how state-level mortality is associated with known risk factors. METHODS: We use the Standard Mortality Ratio (SMR), adjusted for age and county, to estimate COVID-19 mortality by racial/ethnic groups for the U.S. and 10 selected states. The prevalence of risk factors is derived from the American Community Survey and the Behavioral Risk Factor Surveillance System. RESULTS: The SMR for Native Americans greatly exceeds those for Black and Latino populations and varies enormously across states. There is a strong correlation between the share of Native Americans living on a reservation and the SMR. The SMR for Native Americans is also highly correlated with the income-poverty ratio and the prevalence of multigenerational families, crowded housing, frontline worker status, and health insurance (excluding the Indian Health Service). Risk factors associated with socioeconomic status and co-morbidities are generally more prevalent for Native Americans living on homelands, a proxy for reservation status, than for those living elsewhere. CONCLUSIONS: Most risk factors for COVID-19 are disproportionately high among Native Americans, particularly for those living on homelands. Reservation life appears to increase the risk of COVID-19 mortality. CONTRIBUTION: We assemble and analyze a broader set of COVID-19-related risk factors for Native Americans than previous studies, a critical step toward understanding the exceptionally high COVID-19 death rates in this population.
</p>
</div>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.03.13.21253515v2" target="_blank">COVID-19 Risk Factors and Mortality among Native Americans</a>
</div></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Efficient incorporation and template-dependent polymerase inhibition are major determinants for the broad-spectrum antiviral activity of remdesivir</strong> -
<div>
Remdesivir (RDV) is a direct antiviral agent that is approved in several countries for the treatment of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). RDV exhibits broad- spectrum antiviral activity against positive-sense RNA viruses, e.g., SARS-CoV-2 and hepatitis C virus (HCV) and non- segmented negative-sense RNA viruses, e.g., Nipah virus (NiV), while several segmented negative-sense RNA viruses such as influenza (Flu) virus or Crimean-Congo hemorrhagic fever virus (CCHFV) are not sensitive to the drug. The reasons for this apparent pattern are unknown. Here, we expressed and purified representative RNA-dependent RNA polymerases (RdRp) and studied three biochemical parameters that have been associated with the inhibitory effects of RDV-triphosphate (TP):</div></li>
</ul>
<ol type="i">
<li>selective incorporation of the nucleotide substrate RDV-TP, (ii) the effect of the incorporated RDV-monophosphate (MP) on primer extension, and (iii) the effect of RDV-MP in the template during incorporation of the complementary UTP. The results of this study revealed a strong correlation between antiviral effects and efficient incorporation of RDV-TP. Delayed chain-termination is heterogeneous and usually inefficient at higher NTP concentrations. In contrast, template- dependent inhibition of UTP incorporation opposite the embedded RDV-MP is seen with all polymerases. Molecular modeling suggests a steric conflict between the 1-cyano group of RDV-MP and conserved residues of RdRp motif F. We conclude that future efforts in the development of nucleotide analogues with a broader spectrum of antiviral activities should focus on improving rates of incorporation while capitalizing on the inhibitory effects of a bulky 1-modification.
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2021.10.14.464416v1" target="_blank">Efficient incorporation and template- dependent polymerase inhibition are major determinants for the broad-spectrum antiviral activity of remdesivir</a>
</div></li>
</ol>
<ul>
<li><strong>Nucleocapsid mutations in SARS-CoV-2 augment replication and pathogenesis.</strong> -
<div>
While SARS-CoV-2 continues to adapt for human infection and transmission, genetic variation outside of the spike gene remains largely unexplored. This study investigates a highly variable region at residues 203-205 in SARS-CoV-2 nucleocapsid protein. Recreating the alpha variant mutation in an early pandemic (WA-1) background, we found that the R203K-G204R mutation is sufficient to enhance replication, fitness, and pathogenesis of SARS-CoV-2. Importantly, the R203K-G204R mutation increases nucleocapsid phosphorylation, providing a molecular basis for these phenotypes. Notably, an analogous alanine substitution mutant also increases SARS-CoV-2 fitness and phosphorylation, suggesting that infection is enhanced through ablation of the ancestral RG motif. Overall, these results demonstrate that variant mutations outside spike are also key components in SARS-CoV-2 continued adaptation to human infection.
</div>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2021.10.14.464390v1" target="_blank">Nucleocapsid mutations in SARS-CoV-2 augment replication and pathogenesis.</a>
</div></li>
<li><strong>Opsonization by non-neutralizing antibodies can confer protection to SARS-CoV-2 despite Spike-dependent modulation of phagocytosis</strong> -
<div>
Spike-specific antibodies are central to effective COVID19 immunity. Research efforts have focused on antibodies that neutralize the ACE2-Spike interaction but not on non-neutralizing antibodies. Antibody-dependent phagocytosis is an immune mechanism enhanced by opsonization, where typically, more bound antibodies trigger a stronger phagocyte response. Here, we show that Spike-specific antibodies, dependent on concentration, can either enhance or reduce Spike- bead phagocytosis by monocytes independently of the antibody neutralization potential. Surprisingly, we find that both convalescent patient plasma and patient-derived monoclonal antibodies lead to maximum opsonization already at low levels of bound antibodies and is reduced as antibody binding to Spike protein increases. Moreover, we show that this Spike- dependent modulation of opsonization seems to affect the outcome in an experimental SARS-CoV-2 infection model. These results suggest that the levels of anti-Spike antibodies could influence monocyte-mediated immune functions and propose that non-neutralizing antibodies could confer protection to SARS-CoV-2 infection by mediating phagocytosis.
</div>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2021.10.14.464464v1" target="_blank">Opsonization by non-neutralizing antibodies can confer protection to SARS-CoV-2 despite Spike-dependent modulation of phagocytosis</a>
</div></li>
<li><strong>Deep learning based on stacked sparse autoencoder applied to viral genome classification of SARS-CoV-2 virus</strong> -
<div>
Since December 2019, the world has been intensely affected by the COVID-19 pandemic, caused by the SARS-CoV-2 virus, first identified in Wuhan, China. In the case of a novel virus identification, the early elucidation of taxonomic classification and origin of the virus genomic sequence is essential for strategic planning, containment, and treatments. Deep learning techniques have been successfully used in many viral classification problems associated with viral infections diagnosis, metagenomics, phylogenetic, and analysis. This work proposes to generate an efficient viral genome classifier for the SARS-CoV-2 virus using the deep neural network (DNN) based on the stacked sparse autoencoder (SSAE) technique. We performed four different experiments to provide different levels of taxonomic classification of the SARS-CoV-2 virus. The confusion matrix presented the validation and test sets and the ROC curve for the validation set. In all experiments, the SSAE technique provided great performance results. In this work, we explored the utilization of image representations of the complete genome sequences as the SSAE input to provide a viral classification of the SARS- CoV-2. For that, a dataset based on k-mers image representation, with k=6, was applied. The results indicated the applicability of using this deep learning technique in genome classification problems.
</div>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2021.10.14.464414v1" target="_blank">Deep learning based on stacked sparse autoencoder applied to viral genome classification of SARS-CoV-2 virus</a>
</div></li>
<li><strong>Recombination in Sarbecovirus lineage and mutations/insertions in spike protein linked to the emergence and adaptation of SARS-CoV-2</strong> -
<div>
The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Wuhan city, China in December 2019 and thereafter its spillover across the world has created a global pandemic and public health crisis. Researchers across the world are involved in finding the origin and evolution of SARS-CoV-2, its transmission route, molecular mechanism of interaction between SARS-CoV-2 and host cells, and the cause of pathogenicity etc. In this paper, we shed light on the origin, evolution and adaptation of SARS-CoV-2 into human systems. Our phylogenetic/evolutionary analysis supported that bat-CoV-RaTG13 is the closest relative of human SARS-CoV-2, outbreak of SARS-CoV-2 took place via inter-intra species mode of transmission, and host-specific adaptation occurred in SARS-CoV-2. Furthermore, genome recombination analysis found that Sarbecoviruses, the subgenus containing SARS-CoV and SARS-CoV-2, undergo frequent recombination. Multiple sequence alignment (MSA) of spike proteins revealed the insertion of four amino acid residues PRRA (Proline- Arginine-Arginine-Alanine) into the SARS-CoV-2 human strains. Structural modeling of spike protein of bat-CoV-RaTG13 also shows a high number of mutations at one of the receptor binding domains (RBD). Overall, this study finds that the probable origin of SARS-CoV-2 is the results of intra-species recombination events between bat coronaviruses belonging to Sarbecovirus subgenus and the insertion of amino acid residues PRRA and mutations in the RBD in spike protein are probably responsible for the adaptation of SARS-CoV-2 into human systems. Thus, our findings add strength to the existing knowledge on the origin and adaptation of SARS-CoV-2, and can be useful for understanding the molecular mechanisms of interaction between SARS-CoV-2 and host cells which is crucial for vaccine design and predicting future pandemics.
</div>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2020.05.12.091199v2" target="_blank">Recombination in Sarbecovirus lineage and mutations/insertions in spike protein linked to the emergence and adaptation of SARS-CoV-2</a>
</div></li>
</ul>
<h1 data-aos="fade-right" id="from-clinical-trials">From Clinical Trials</h1>
<ul>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Randomized Study to Evaluate Intranasal Dose of STI-2099 (COVI-DROPS™) in Outpatient Adults With Mild COVID-19 Infection</strong> - <b>Condition</b>:   COVID-19<br/><b>Interventions</b>:   Biological: COVI-DROPS;   Drug: Placebo<br/><b>Sponsor</b>:   Sorrento Therapeutics, Inc.<br/><b>Not yet recruiting</b></p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Evaluating Safety, Tolerability, and Potential Efficacy of Intranasal AD17002 in Adults With Mild COVID-19</strong> - <b>Condition</b>:   Covid19<br/><b>Interventions</b>:   Biological: AD17002;   Biological: Placebo (Formulation buffer)<br/><b>Sponsor</b>:   Advagene Biopharma Co. Ltd.<br/><b>Not yet recruiting</b></p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Efficacy of Home Inspiratory Muscle Training in Post-covid-19 Patients: a Randomized Clinical Trial</strong> - <b>Condition</b>:   Covid19<br/><b>Intervention</b>:   Device: Inspiratory muscle training<br/><b>Sponsor</b>:  <br/>
Universidade Federal do Rio Grande do Norte<br/><b>Recruiting</b></p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Lymphatic Osteopathic Manipulative Medicine to Enhance Coronavirus (COVID-19) Vaccination Efficacy</strong> - <b>Condition</b>:   COVID-19<br/><b>Interventions</b>:   Other: Lymphatic OMM;   Other: Light Touch<br/><b>Sponsor</b>:   Rowan University<br/><b>Not yet recruiting</b></p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Efficacy and Safety of Ergoferon for COVID-19 Prevention During Vaccination Against SARS-CoV-2</strong> - <b>Condition</b>:   Immunization Against COVID-19<br/><b>Interventions</b>:   Drug: Ergoferon;   Drug: Placebo<br/><b>Sponsor</b>:   Materia Medica Holding<br/><b>Recruiting</b></p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Safety and Immunogenicity of SARS-CoV-2 Protein Subunit Recombinant Vaccine</strong> - <b>Condition</b>:   Covid19<br/><b>Interventions</b>:   Biological: SARS-CoV-2 Protein Subunit Recombinant Vaccine;   Biological: SARS-CoV-2 Inactivated Vaccine<br/><b>Sponsors</b>:   PT Bio Farma;   Fakultas Kedokteran Universitas Indonesia;   National Institute of Health Research and Development, Ministry of Health Republic of Indonesia<br/><b>Not yet recruiting</b></p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A Ph 2 Trial With an Oral Tableted COVID-19 Vaccine</strong> - <b>Condition</b>:   COVID-19<br/><b>Interventions</b>:   Drug: VXA-CoV2-1.1-S;   Other: Placebo Tablets<br/><b>Sponsor</b>:   Vaxart<br/><b>Recruiting</b></p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Pulmonary Function in Patients Recovering From COVID19 Infection : a Pilot Study</strong> - <b>Condition</b>:   COVID-19<br/><b>Intervention</b>:   Diagnostic Test: diaphragm ultrasonography<br/><b>Sponsor</b>:   University Hospital, Limoges<br/><b>Not yet recruiting</b></p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Evaluation of the Efficacy of Probiotics to Reduce the Occurrence of Long COVID</strong> - <b>Condition</b>:   COVID-19<br/><b>Interventions</b>:   Dietary Supplement: Probiotics;   Dietary Supplement: Placebo<br/><b>Sponsors</b>:   Centre de recherche du Centre hospitalier universitaire de Sherbrooke;   Lallemand Health Solutions<br/><b>Not yet recruiting</b></p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Impact of Nudges on Downloads of COVID-19 Exposure Notification Smartphone Apps: A Randomized Trial</strong> - <b>Condition</b>:   COVID-19<br/><b>Interventions</b>:   Behavioral: Self-Benefit/Social Norm;   Behavioral: Self- Benefit/No Social Norm;   Behavioral: Other Benefit/Social Norm;   Behavioral: Other Benefit/No Social Norm<br/><b>Sponsors</b>:   University of Pennsylvania;   Pennsylvania Department of Health<br/><b>Completed</b></p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A Safety and Tolerability Study of BDB-001 in Mild, Moderate COVID-19 Patients</strong> - <b>Condition</b>:   COVID-19<br/><b>Intervention</b>:   Drug: BDB-001 injection<br/><b>Sponsors</b>:  <br/>
Staidson (Beijing) Biopharmaceuticals Co., Ltd;   Beijing Defengrui Biotechnology Co. Ltd<br/><b>Completed</b></p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Acetylsalicylic Acid in COVID-19 (ASA-SARS)</strong> - <b>Conditions</b>:   SARS-CoV2 Infection;   Covid19<br/><b>Interventions</b>:   Drug: Low-dose acetylsalicylic acid;   Drug: Placebo<br/><b>Sponsors</b>:   Barcelona Institute for Global Health;   Hospital Universitario de Torrejón,Madrid;   Hospital Universitario Infanta Leonor;   Fundació Institut de Recerca de lHospital de la Santa Creu i Sant Pau;   Hospital del Mar;   Hopsital Central de Maputo, Mozambique<br/><b>Not yet recruiting</b></p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Safety and Immunogenicity Study of Booster Vaccination With Medium-dosage or High-dosage SARS-CoV-2 Inactivated Vaccine for Prevention of COVID-19</strong> - <b>Condition</b>:   COVID-19<br/><b>Interventions</b>:   Biological: High-dosage SARS-CoV-2 vaccine;   Biological: Medium-dosage SARS-CoV-2 vaccine<br/><b>Sponsor</b>:   Sinovac Biotech Co., Ltd<br/><b>Not yet recruiting</b></p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Telerehabilitation in COVID-19 Survivors</strong> - <b>Conditions</b>:   COVID-19;   Telerehabilitation<br/><b>Interventions</b>:   Other: telerehabilitation;   Other: home exercise program;   Other: informed program<br/><b>Sponsor</b>:   Bandırma Onyedi Eylül University<br/><b>Recruiting</b></p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Clinical Trial on Sequential Immunization of Recombinant COVID-19 Vaccine (CHO Cells,NVSI-06-08) and Inactivated COVID-19 Vaccine (Vero Cells) in Population Aged 18 Years and Above</strong> - <b>Conditions</b>:   COVID-19 Pneumonia;   Coronavirus Infections<br/><b>Interventions</b>:   Biological: Recombinant COVID-19 Vaccine (CHO cellNVSI-06-08);   Biological: COVID-19 vaccine (Vero cells);   Biological: 3 doses Recombinant COVID-19 Vaccine (CHO cellNVSI-06-08)<br/><b>Sponsors</b>:   National Vaccine and Serum Institute, China;   China National Biotec Group Company Limited;   Lanzhou Institute of Biological Products Co., Ltd<br/><b>Not yet recruiting</b></p></li>
</ul>
<h1 data-aos="fade-right" id="from-pubmed">From PubMed</h1>
<ul>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Small molecule interactions with the SARS-CoV-2 main protease: In silico all-atom microsecond MD simulations, PELE Monte Carlo simulations, and determination of in vitro activity inhibition</strong> - The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the ongoing COVID-19 pandemic. With some notable exceptions, safe and effective vaccines, which are now being widely distributed globally, have largely begun to stabilise the situation. However, emerging variants of concern and vaccine hesitancy are apparent obstacles to eradication. Therefore, the need for the development of potent antivirals is still of importance. In this context, the SARS-CoV-2 main protease…</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Arglabin could target inflammasome-induced ARDS and cytokine storm associated with COVID-19</strong> - Arglabin (l(R),10(S)-epoxy-5(S),5(S),7(S)-guaia-3(4),ll(13)-dien-6,12-olide), is a natural sesquiterpene γ-lactone which was first isolated from Artemisia glabella. The compound has been shown to possess anti-inflammatory activity through inhibition of the NLR Family pyrin domain-containing 3 (NLRP3) inflammasome and production of proinflammatory cytokines including interleukin (IL)-1β and IL-18. A more hydrophilic derivative of the compound also exhibited antitumor activity in the breast,…</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Melatonin mitigates Chloroquine-induced defects in porcine immature Sertoli cells</strong> - Chloroquine (CQ) could function as a lysosomotropic agent to inhibit the endolysosomal trafficking in the autophagy pathway, and is widely used on malarial, tumor and recently COVID-19. However, the effect of CQ treatment on porcine immature Sertoli cells (iSCs) remains unclear. Here we showed that CQ could reduce iSC viability in a dose-dependent manner. CQ treatment (20 μM) on iSCs for 36h could elevate oxidative stress, damage mitochondrial function and promote apoptosis, which could be…</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>In vitro induction of interleukin-8 by SARS-CoV-2 Spike protein is inhibited in bronchial epithelial IB3-1 cells by a miR-93-5p agomiR</strong> - One of the major clinical features of COVID-19 is a hyperinflammatory state, which is characterized by high expression of cytokines (such as IL-6 and TNF-α), chemokines (such as IL-8) and growth factors and is associated with severe forms of COVID-19. For this reason, the control of the “cytokine storm” represents a key issue in the management of COVID-19 patients. In this study we report evidence that the release of key proteins of the COVID-19 “cytokine storm” can be inhibited by mimicking the…</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Anti-inflammatory effect of Kaba Sura Kudineer (AYUSH approved COVID-19 drug)-A Siddha poly-herbal formulation against lipopolysaccharide induced inflammatory response in RAW-264.7 macrophages cells</strong> - CONCLUSIONS: . Together, this study has proven that KSK could be a potential therapeutic drug for alleviating excessive inflammation in many inflammation-associated diseases like COVID-19.</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>The Role of Traditional Chinese Medicine in COVID-19: Theory, Initial Clinical Evidence, Potential Mechanisms, and Implications</strong> - CONCLUSION: While there is initial support for the use of Traditional Chinese Medicine for COVID-19, conclusions cannot be drawn to support its use as a replacement for conventional COVID-19 treatment, given the lack of high-quality evidence from strictly-designed randomized controlled trials. However, there is initial evidence suggesting that TCM may serve as an effective adjunct to conventional treatments in alleviating COVID-19 symptoms. More research is needed to confirm the efficacy and…</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Structure and Dynamics of RNA Guanine Quadruplexes in SARS-CoV-2 Genome. Original Strategies against Emerging Viruses</strong> - Guanine quadruplex (G4) structures in the viral genome have a key role in modulating viruses biological activity. While several DNA G4 structures have been experimentally resolved, RNA G4s are definitely less explored. We report the first calculated G4 structure of the RG-1 RNA sequence of SARS-CoV-2 genome, obtained by using a multiscale approach combining quantum and classical molecular modeling and corroborated by the excellent agreement between the corresponding calculated and experimental…</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Acetylation of H3K27 activated lncRNA NEAT1 and promoted hepatic lipid accumulation in non-alcoholic fatty liver disease via regulating miR-212-5p/GRIA3</strong> - Non-alcoholic fatty liver disease (NAFLD) was a world-wide health burden. H3K27 acetylation, long non-coding RNA (lncRNA), and miRNA were all implicated in NAFLD regulation, yet the detailed regulatory mechanism was not well understood. LncRNA NEAT1, miR-212-5p, and GRIA3 expression were detected both in high fatty acid-treated hepatocytes cells and NAFLD patients. Lipid droplets were stained and analyzed by oil red O staining. Expression of fatty acid synthase (FASN), acetyl-CoA carboxylase…</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Sweet Drugs for Bad Bugs: A Glycomimetic Strategy against the DC-SIGN-Mediated Dissemination of SARS-CoV-2</strong> - The C-type lectin receptor DC-SIGN is a pattern recognition receptor expressed on macrophages and dendritic cells. It has been identified as a promiscuous entry receptor for many pathogens, including epidemic and pandemic viruses such as SARS-CoV-2, Ebola virus, and HIV-1. In the context of the recent SARS-CoV-2 pandemic, DC-SIGN-mediated virus dissemination and stimulation of innate immune responses has been implicated as a potential factor in the development of severe COVID-19. Inhibition of…</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Inhibition of Severe Acute Respiratory Syndrome Coronavirus 2 Replication by Hypertonic Saline Solution in Lung and Kidney Epithelial Cells</strong> - An unprecedented global health crisis has been caused by a new virus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We performed experiments to test if a hypertonic saline solution was capable of inhibiting virus replication. Our data show that 1.2% NaCl inhibited virus replication by 90%, achieving 100% of inhibition at 1.5% in the nonhuman primate kidney cell line Vero, and 1.1% of NaCl was sufficient to inhibit the virus replication by 88% in human epithelial lung cell…</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Characterization of Phytochemicals in Ulva intestinalis L. and Their Action Against SARS-CoV-2 Spike Glycoprotein Receptor-Binding Domain</strong> - Coronavirus disease-2019 (COVID-19) has caused a severe impact on almost all aspects of human life and economic development. Numerous studies are being conducted to find novel therapeutic strategies to overcome COVID-19 pandemic in a much effective way. Ulva intestinalis L. (Ui), a marine microalga, known for its antiviral property, was considered for this study to determine the antiviral efficacy against severe acute respiratory syndrome-associated Coronavirus-2 (SARS-CoV-2). The algal sample…</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Evidence of SARS-CoV-2-Specific Memory B Cells Six Months After Vaccination With the BNT162b2 mRNA Vaccine</strong> - SARS-CoV-2 mRNA vaccines have demonstrated high efficacy and immunogenicity, but limited information is currently available on memory B cell generation and long-term persistence. Here, we investigated spike-specific memory B cells and humoral responses in 145 subjects, up to 6 months after the BNT162b2 vaccine (Comirnaty) administration. Spike-specific antibodies peaked 7 days after the second dose and significant antibody titers and ACE2/RBD binding inhibiting activity were still observed after…</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>ORF3a Protein of Severe Acute Respiratory Syndrome Coronavirus 2 Inhibits Interferon-Activated Janus Kinase/Signal Transducer and Activator of Transcription Signaling via Elevating Suppressor of Cytokine Signaling 1</strong> - Coronavirus disease 2019 (COVID-19) has caused a crisis to global public health since its outbreak at the end of 2019. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the pathogen of COVID-19, appears to efficiently evade the host immune responses, including interferon (IFN) signaling. Several SARS-CoV-2 viral proteins are believed to involve in the inhibition of IFN signaling. In this study, we discovered that ORF3a, an accessory protein of SARS-CoV-2, inhibited IFN-activated…</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Integrin activation is an essential component of SARS-CoV-2 infection</strong> - SARS-CoV-2 infection depends on binding its spike (S) protein to angiotensin-converting enzyme 2 (ACE2). The S protein expresses an RGD motif, suggesting that integrins may be co-receptors. Here, we UV-inactivated SARS-CoV-2 and fluorescently labeled the envelope membrane with octadecyl rhodamine B (R18) to explore the role of integrin activation in mediating cell entry and productive infection. We used flow cytometry and confocal microscopy to show that SARS- CoV-2^(R18) particles engage…</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Investigating Lipid-Modulating Agents for Prevention or Treatment of COVID-19: JACC State-of-the-Art Review</strong> - Coronavirus disease-2019 (COVID-19) is associated with systemic inflammation, endothelial activation, and multiorgan manifestations. Lipid-modulating agents may be useful in treating patients with COVID-19. These agents may inhibit viral entry by lipid raft disruption or ameliorate the inflammatory response and endothelial activation. In addition, dyslipidemia with lower high-density lipoprotein cholesterol and higher triglyceride levels portend worse outcomes in patients with COVID-19. Upon a…</p></li>
</ul>
<h1 data-aos="fade-right" id="from-patent-search">From Patent Search</h1>
<ul>
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>스몰 RNA 검출 방법</strong> - 본 발명은 스몰(small) RNA의 분석 및 검출 방법에 관한 것이다. 특히, 본 발명은 짧은 염기서열의 RNA까지 분석이 가능하면서도 높은 민감도 및 정확도로 정량적 검출까지 가능하여 감염증, 암 등 여러 질환의 진단 용도로도 널리 활용될 수 있다. - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=KR336674313">link</a></p></li>
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>健康智能检测方法、装置、电子设备及可读存储介质</strong> - 本申请公开了一种健康智能检测方法、装置、电子设备及可读存储介质,其方法包括获取音频信号,并对所述音频信号进行预处理,得到检测信号;将所述检测信号转化为矩阵数字矩阵;将得到的矩阵数字矩阵作为检测样本,输入健康智能检测模型中,以获取检测结果;其中,所述健康智能检测模型是采用迁移学习和卷积神经网络对训练样本进行训练得到的。本申请由于卷积神经网络各组件或部分组件基于迁移学习进行了重新训练,显著提升了对人们健康检测的准确度;且本申请中的健康智能检测模型为分类模型,计算量小,可将其部署于人们的移动终端中,使用方便,极大程度上提升了用户的使用感受。 - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=CN337672106">link</a></p></li>
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>MACHINE LEARNING TECHNIQUE TO ANALYSE THE CONDITION OF COVID-19 PATIENTS BASED ON THEIR SATURATION LEVELS</strong> - - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=AU335054861">link</a></p></li>
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>单克隆抗体32C7及其制备方法和用途</strong> - 本发明公开了单克隆抗体32C7及其制备方法和用途。本发明通过制备针对于新冠病毒RBD结构域的中和抗体32C7在体外通过表面等离子共振检测抗体32C7可以有效地与新冠病毒的S蛋白的RBD结构域结合通过转基因小鼠感染模型验证了抗体32C7的中和能力测定了中和抗体32C7对于新冠感染后的肺部病毒滴度和相关炎症因子的抑制效果结果显示该中和抗体能够明显的抑制病毒在体内的复制并降低炎症因子的产生和肺部炎症浸润。单克隆中和抗体32C7抑制新冠病毒的进入宿主细胞达到新冠病毒中和抗体的治疗作用可有效用于治疗或者预防新冠病毒感染引起的呼吸系统损伤。 - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=CN336730149">link</a></p></li>
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>单克隆抗体35B5及其制备方法和用途</strong> - 本发明公开了单克隆抗体35B5及其制备方法和用途。本发明通过制备针对于新冠病毒RBD结构域的中和抗体35B5在体外通过表面等离子共振检测抗体35B5可以有效地与新冠病毒的S蛋白的RBD结构域结合通过转基因小鼠感染模型验证了抗体35B5的中和能力测定了中和抗体35B5对于新冠感染后的肺部病毒滴度和相关炎症因子的抑制效果结果显示该中和抗体能够明显的抑制病毒在体内的复制并降低炎症因子的产生和肺部炎症浸润。单克隆中和抗体35B5抑制新冠病毒的进入宿主细胞达到新冠病毒中和抗体的治疗作用可有效用于治疗或者预防新冠病毒感染引起的呼吸系统损伤。 - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=CN336730150">link</a></p></li>
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A HERB BASED COMPOSITION ANTI VIRAL MEDICINE FOR TREATMENT OF SARS COV 2 AND A METHOD FOR TREATING A PERSON INFECTED BY THE SARS COV 2 VIRUS</strong> - A Herbal composition, viz., PONNU MARUNTHU essentially comprising of ALLUIUM CEPA extract. [concentrated to 30%] 75%, SAPINDUS MUKOROSSI - extract [Optimised] 10%, CITRUS X LIMON - extract in its natural form 05 TRACYSPERMUM AMMI (L) extract 07%,ROSA HYBRIDA - extract 03%, PONNU MARUNTHU solution 50 ml, or as a capsulated PONNU MARUNTHU can be given to SARS cov2 positive Patients, three times a day that is ½ an hour before food; continued for 3 days to 5 days and further taking it for 2 days if need be there; It will completely cure a person. When the SARS cov2 test shows negative this medicine can be discontinued. This indigenous medicine and method for treating a person inflicted with SARS COV 2 viral infection is quite effective in achieving of much needed remedy for the patients and saving precious lives from the pangs of death and ensuring better health of people. - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=IN334865051">link</a></p></li>
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>治疗或预防新冠病毒的靶点</strong> - 本发明提供一种蛋白片段是如下至少一种A1)氨基酸酸序列如SEQ ID NO.1所示A2氨基酸序列如SEQ ID NO.1第12位34位所示A3将A1)的蛋白片段的第18、19、28和29位中的任意一个或几个氨基酸残基经过一个或几个氨基酸残基的取代、缺失、添加得到的与A1)所示的蛋白片段具有90以上的同一性的蛋白片段A4氨基酸酸序列如SEQ ID NO.2所示A5氨基酸序列如SEQ ID NO.2第3241位所示A6将A4)的蛋白片段的第35和36位中的任意1个或2个氨基酸残基经过一个或几个氨基酸残基的取代、缺失、添加得到的与A4)所示的蛋白片段具有90以上的同一性的蛋白片段。 - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=CN336197499">link</a></p></li>
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>以痘苗病毒为载体的新冠疫苗</strong> - 本申请涉及一种基于经过基因工程改造的痘苗病毒为载体的新型冠状病毒南非突变株疫苗。所述疫苗以A46R缺陷的痘苗病毒为载体携带新冠病毒南非突变株S基因核酸序列所述痘苗病毒载体还可以携带IL21该疫苗在免疫小鼠后可以产生针对新冠病毒南非突变株的抗体。 - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=CN337671415">link</a></p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>氧化钛负载银单原子的材料在病毒消杀中的应用</strong> - 本发明属于生物医药领域,尤其涉及一种负载银单原子的材料在病毒消杀中的应用,所述氧化钛负载银单原子材料具有以下的结构:银单原子以单分散的形式,稳定地锚定于氧化钛的表面和/或骨架中键合方式为TiOAg银单原子的嵌合使Ag单原子和氧化钛的电子结构带隙范围为2.93.2</p></li>
</ul>
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">eV氧化钛负载银单原子材料具有较银纳米颗粒更加优异的催化活性具有过氧化物酶活性利用羟基自由基可高效破坏核酸和蛋白质的原理来实现广谱消杀病毒银单原子的嵌合使Ag单原子和氧化钛的电子结构带隙变小对可见光的敏感性更强可将光照射下的光催化诱导光动力杀伤病毒。 - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=CN337671299">link</a></p>
<ul>
<li><strong>Anti-Sars-Cov-2 Neutralizing Antibodies</strong> - - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=AU333857732">link</a></li>
</ul>
<script>AOS.init();</script></body></html>