211 lines
57 KiB
HTML
211 lines
57 KiB
HTML
|
<!DOCTYPE html>
|
|||
|
<html lang="" xml:lang="" xmlns="http://www.w3.org/1999/xhtml"><head>
|
|||
|
<meta charset="utf-8"/>
|
|||
|
<meta content="pandoc" name="generator"/>
|
|||
|
<meta content="width=device-width, initial-scale=1.0, user-scalable=yes" name="viewport"/>
|
|||
|
<title>24 May, 2021</title>
|
|||
|
<style type="text/css">
|
|||
|
code{white-space: pre-wrap;}
|
|||
|
span.smallcaps{font-variant: small-caps;}
|
|||
|
span.underline{text-decoration: underline;}
|
|||
|
div.column{display: inline-block; vertical-align: top; width: 50%;}
|
|||
|
</style>
|
|||
|
<title>Covid-19 Sentry</title><meta content="width=device-width, initial-scale=1.0" name="viewport"/><link href="styles/simple.css" rel="stylesheet"/><link href="../styles/simple.css" rel="stylesheet"/><link href="https://unpkg.com/aos@2.3.1/dist/aos.css" rel="stylesheet"/><script src="https://unpkg.com/aos@2.3.1/dist/aos.js"></script></head>
|
|||
|
<body>
|
|||
|
<h1 data-aos="fade-down" id="covid-19-sentry">Covid-19 Sentry</h1>
|
|||
|
<h1 data-aos="fade-right" data-aos-anchor-placement="top-bottom" id="contents">Contents</h1>
|
|||
|
<ul>
|
|||
|
<li><a href="#from-preprints">From Preprints</a></li>
|
|||
|
<li><a href="#from-clinical-trials">From Clinical Trials</a></li>
|
|||
|
<li><a href="#from-pubmed">From PubMed</a></li>
|
|||
|
<li><a href="#from-patent-search">From Patent Search</a></li>
|
|||
|
</ul>
|
|||
|
<h1 data-aos="fade-right" id="from-preprints">From Preprints</h1>
|
|||
|
<ul>
|
|||
|
<li><strong>The maladaptive vascular response in COVID-19 acute respiratory distress syndrome and recovery</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
Vascular injury is a menacing element of acute respiratory distress syndrome (ARDS) pathogenesis. To better understand the role of vascular injury in COVID-19 ARDS, we used lung autopsy immunohistochemistry and blood proteomics from COVID-19 subjects at distinct timepoints in disease pathogenesis, including a hospitalized cohort at risk of ARDS development (“at risk”, N=59), an intensive care unit cohort with ARDS (“ARDS”, N=31), and a cohort recovering from ARDS (“recovery”, N=12). COVID-19 ARDS lung autopsy tissue revealed an association between vascular injury and platelet-rich microthrombi. This link guided the derivation of a protein signature in the at risk cohort characterized by lower expression of vascular proteins in subjects who died, an early signal of vascular limitation termed the maladaptive vascular response. These findings were replicated in COVID-19 ARDS subjects, as well as when bacterial and influenza ARDS patients (N=29) were considered, hinting at a common final pathway of vascular injury that is more disease (ARDS) then cause (COVID-19) specific, and may be related to vascular cell death. Among recovery subjects, our vascular signature identified patients with good functional recovery one year later. This vascular injury signature could be used to identify ARDS patients most likely to benefit from vascular targeted therapies.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.05.20.21257542v1" target="_blank">The maladaptive vascular response in COVID-19 acute respiratory distress syndrome and recovery</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Emergence of SARS-CoV-2 variants of concern in the pediatric population of the United States</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
The evolution of SARS-CoV2 virus has led to the emergence of variants of concern (VOC). Children, particularly <12 years old not yet eligible for vaccines, continue to be important reservoirs of SARS-CoV-2 yet VOC prevalence data in this population is lacking. We report data from a genomic surveillance program that includes 9 U.S. children9s hospitals. Analysis of SARS-CoV-2 genome from 2119 patients <19 years old between 03/20 to 04/21 identified 252 VOCs and 560 VOC signature mutations, most from 10/20 onwards. From 02/21 to 04/21, B.1.1.7 prevalence increased from 3.85% to 72.22% corresponding with the decline of B.1.429/B.1.427 from 51.82% to 16.67% at one institution. 71.74% of the VOC signature mutations detected were in children <12 years old, including 33 cases of B.1.1.7 and 119 of B.1.429/B.1.427. There continues to be a need for ongoing genomic surveillance, particularly among young children who will be the last groups to be vaccinated.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.05.22.21257660v1" target="_blank">Emergence of SARS-CoV-2 variants of concern in the pediatric population of the United States</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>COVID-19 Associated Pulmonary Aspergillosis: Systematic Review and Patient-Level Meta-Analysis</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
Rationale Pulmonary aspergillosis may complicate COVID-19 and contribute to excess mortality in intensive care unit (ICU) patients. The incidence is unclear because of discordant definitions across studies. Objective We sought to review the incidence, diagnosis, treatment, and outcomes of COVID-19-associated pulmonary aspergillosis (CAPA), and compare research definitions. Methods We systematically reviewed the literature for ICU cohort studies and case series including ≥3 patients with CAPA. We calculated pooled incidence. Patients with sufficient clinical details were reclassified according to 4 standardized definitions (Verweij, White, Koehler, and Bassetti). Measurements Correlations between definitions were assessed with Spearmans rank test. Associations between antifungals and outcome were assessed with Fishers Exact test. Main Results 38 studies (35 cohort studies and 3 case series) were included. Among 3,297 COVID-19 patients in ICU cohort studies, 313 were diagnosed with CAPA (pooled incidence 9.5%). 197 patients had patient-level data allowing reclassification. Definitions had limited correlation with one another (ρ=0.330 to 0.621, p<0.001). 38.6% of patients reported to have CAPA did not fulfill any research definitions. Patients were diagnosed after a median of 9 days (interquartile range 5-14) in ICUs. Tracheobronchitis occured in 5.3% of patients examined with bronchoscopy. The mortality rate (50.0%) was high, irrespective of antifungal use (p=0.28); this remained true even when the analysis was restricted to patients meeting standardized definitions for CAPA. Conclusions The reported incidence of CAPA is exaggerated by use of non-standard definitions. Further research should focus on identifying patients likely to benefit from antifungals.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.05.21.21257626v1" target="_blank">COVID-19 Associated Pulmonary Aspergillosis: Systematic Review and Patient-Level Meta-Analysis</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Combining serological assays and official statistics to describe the trajectory of the COVID-19 pandemic: results from the EPICOVID19-RS study in Rio Grande do Sul (Southern Brazil)</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
Background: The EPICOVID19-RS study conducted 10 population-based surveys in Rio Grande do Sul (Southern Brazil), starting early in the epidemic. The sensitivity of the rapid point-of-care test used in the first eight surveys has been shown to decrease over time after some phases of the study were concluded. The 9th survey used both the rapid test and an enzyme-linked immunosorbent assay (ELISA) test, which has a higher and stable sensitivity. Methods: We provide a theoretical justification for a correction procedure of the rapid test estimates, assess its performance in a simulated dataset and apply it to empirical data from the EPICOVID19-RS study. COVID-19 deaths from official statistics were used as an indicator of the temporal distribution of the epidemic, under the assumption that fatality is constant over time. Both the indicator and results from the 9th survey were used to calibrate the temporal decay function of the rapid test9s sensitivity from a previous validation study, which was used to estimate the true sensitivity in each survey and adjust the rapid test estimates accordingly. Results: Simulations corroborated the procedure is valid. Corrected seroprevalence estimates were substantially larger than uncorrected estimates, which were substantially smaller than respective estimates from confirmed cases and therefore clearly underestimate the true infection prevalence. Conclusion: Correcting biased estimates requires a combination of data and modelling assumptions. This work illustrates the practical utility of analytical procedures, but also the critical need for good quality, populationally-representative data for tracking the progress of the epidemic and substantiate both projection models and policy making.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.05.21.21257634v1" target="_blank">Combining serological assays and official statistics to describe the trajectory of the COVID-19 pandemic: results from the EPICOVID19-RS study in Rio Grande do Sul (Southern Brazil)</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Are we allowed to visit now? Concerns and issues surrounding vaccination and infection risks in UK care homes during COVID-19</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
Background: Vaccination uptake in the UK and increased care home testing are likely affecting care home visitation. With scant scientific evidence to date, the aim of this longitudinal qualitative study was to explore the impact of both (vaccination and testing) on the conduct and experiences of care home visits. Methods: Family carers of care home residents with dementia and care home staff from across the UK took part in baseline (October/November 2020) and follow-up interviews (March 2021). Public advisers were involved in all elements of the research. Data were analysed using thematic analysis. Results: Across 62 baseline and follow-up interviews with family carers (n=26; 11) and care home staff (n=16; 9), five core themes were developed: Delayed and inconsistent offers of face-to-face visits; Procedures and facilitation of visits; Frustration and anger among family carers; Variable uptake of the COVID-19 vaccine; Misinformation, education, and free choice. The variable uptake in staff, compared to family carers, was a key factor seemingly influencing visitation, with a lack of clear guidance leading care homes to implement infection control measures and visitation rights differently. Conclusions: We make five recommendations in this paper to enable improved care home visitation in the ongoing, and in future, pandemics. Visits need to be enabled and any changes to visiting rights must be used as a last resort, reviewed regularly in consultation with residents and carers and restored as soon as possible as a top priority, whilst more education needs to be provided surrounding vaccination for care home staff.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.05.20.21257545v1" target="_blank">Are we allowed to visit now? Concerns and issues surrounding vaccination and infection risks in UK care homes during COVID-19</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Aerosol transport measurements and assessment of risk from infectious aerosols: a case study of two German cash-and-carry hardware/DIY stores</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
We report experimental results on aerosol dispersion in two large German cash-and-carry hardware/DIY stores to better understand the factors contributing to disease transmission by infectious human aerosols in large indoor environments. We examined the transport of aerosols similar in size to human respiratory aerosols (0.3μm-10μm) in representative locations, such as high-traffic areas and restrooms. In restrooms, the observed decay of aerosol concentrations was consistent with well-mixed air exchange. In all other locations, fast decay times were measured, which were found to be independent of aerosol size (typically a few minutes). From this, we conclude that in the main retail areas, including at checkouts, rapid turbulent mixing and advection is the dominant feature in aerosol dynamics. With this, the upper bound of risk for airborne disease transmission to a susceptible is determined by direct exposure to the exhalation cloud of an infectious. For the example of the SARS-CoV-2 virus, we find when speaking without a face mask and aerosol sizes up to an exhalation (wet) diameter of 50μm, a distance of 1.5me to be unsafe. However, at the smallest distance between an infectious and a susceptible, while wearing typical surgical masks and for all sizes of exhaled aerosol, the upper bound of infection risk is only ∼ 5% and decreases further by a factor of 100 (∼ 0.05%) for typical FFP2 masks for a duration of 20 min. This upper bound is very conservative and we expect the actual risk for typical encounters to be much lower. The risks found here are comparable to what might be expected in calm outdoor weather.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.05.21.21257577v1" target="_blank">Aerosol transport measurements and assessment of risk from infectious aerosols: a case study of two German cash-and-carry hardware/DIY stores</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>RT-qPCR detection of SARS-CoV-2 mutations S 69-70 del, S N501Y and N D3L associated with variants of concern in Canadian wastewater samples</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
SARS-CoV-2 variants of concern (VoC) have been increasingly detected in clinical surveillance in Canada and internationally. These VoC are associated with higher transmissibility rates and in some cases, increased mortality. In this work we present a national wastewater survey of the distribution of three SARS-CoV-2 mutations found in the B.1.1.7, B.1.351, and P.1 VoC, namely the S-gene 69-70 deletion, N501Y mutation, and N-gene D3L. RT-qPCR allelic discrimination assays were sufficiently sensitive and specific for detection and relative quantitation of SARS-CoV-2 variants in wastewater to allow for rapid population-level screening and surveillance. We tested 261 samples collected from 5 Canadian cities (Vancouver, Edmonton, Toronto, Montreal, and Halifax) and 6 communities in the Northwest Territories from February 16th to March 28th, 2021. VoC were not detected in the Territorial communities, suggesting the absence of VoC SARS-CoV-2 cases in those communities. Percentage of variant remained low throughout the study period in the majority of the sites tested, however the Toronto sites showed a marked increase from ~25% to ~75% over the study period. The results of this study highlight the utility of population level molecular surveillance of SARS-CoV-2 VoC using wastewater. Wastewater monitoring for VoC can be a powerful tool in informing public health responses, including monitoring trends independent of clinical surveillance and providing early warning to communities.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.05.20.21257536v1" target="_blank">RT-qPCR detection of SARS-CoV-2 mutations S 69-70 del, S N501Y and N D3L associated with variants of concern in Canadian wastewater samples</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Lockdown babies- Birth and new parenting experiences during the 2020 Covid-19 lockdown in South Africa</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
Background Perceived birth experiences of parents can have a lasting impact on children. We explored the birth and new parenting experiences of South African parents during the Covid-19 lockdown. Methods We conducted an online cross-sectional survey with consenting parents of babies born in South Africa during 2020. Factors associated with negative birth emotions and probable depression were estimated using logistic regression. Results Most of the 520 respondents were females (n= 496, 95%) who gave birth at private hospitals (n=426, 86%). Mothers reported having overall positive birth emotions (n= 399, 80%). Multivariable analysis showed that having the baby during lockdown (adjusted odds ratio (aOR) 5.02; CI 1.28-19.66); being diagnosed with Covid-19 (aOR 3.17; CI 1.07-9.42); having negative new parenting emotions (aOR 6.07; CI 3.27-11.29); a preterm baby (aOR 3.02; CI 1.36-6.70) and lockdown related barring of preferred in hospital support (aOR 2.45; CI 1.35-4.43) were associated with mothers reporting predominately negative emotions about the birth. Having their chosen delivery method reduced the odds of negative birth emotions (aOR 0.4; CI 0.22-0.72). Multivariable analysis showed that having predominantly negative new parenting emotions (aOR 10.75; CI 5.41-21.37), breastfeeding struggles (aOR 2.16; CI 1.36-3.46); lockdown preventing health care access (aOR 2.06; CI 1.20-3.54) and creating financial strain (aOR 2.58; CI 1.08-6.18) were associated with probable minor depression Conclusions Lockdown exacerbated many birth and parenting challenges including mental health and health care access. However, overall experiences were positive and there was a strong sense of resilience amongst parents.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.05.20.21257537v1" target="_blank">Lockdown babies- Birth and new parenting experiences during the 2020 Covid-19 lockdown in South Africa</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Calamities, Common Interests, Shared Identity: What Shapes Altruism and Reciprocity?</strong> -
|
|||
|
<div>
|
|||
|
We conduct a large-scale survey experiment in nine European countries to study how priming a major crisis (COVID-19), common economic interests, and a shared identity influences altruism, reciprocity and trust of EU citizens. We find that priming the COVID-19 pandemic increases altruism and reciprocity towards compatriots, citizens of other EU countries, and non-EU citizens. Priming common European values also boosts altruism and reciprocity but only towards compatriots and fellow Europeans. Priming common economic interests has no tangible impact on behaviour. Trust in others is not affected by any treatment. Our results are consistent with the parochial altruism hypothesis, which asserts that because altruism arises out of inter-group conflict, humans show a tendency to favor members of their own groups.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://osf.io/preprints/socarxiv/q9y7b/" target="_blank">Calamities, Common Interests, Shared Identity: What Shapes Altruism and Reciprocity?</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Risk perception and personal responsibility during COVID-19: An experimental study of the role of imperative vs reasoning-based communication for self-isolation attitudes</strong> -
|
|||
|
<div>
|
|||
|
Individual decision-making about social distancing, self-quarantine and self-isolation is crucial in managing the COVID-19 pandemic. In the rapidly evolving pandemic, little is known about how different government communication strategies may systematically affect people’s attitudes to staying home or going out, nor the extent to which people perceive and process the risk of different scenarios. In this study, we report results from a sample of 581 participants (residing in the United Kingdom), and we examine the degree to which participants’ attitudes regarding the permissibility of leaving one’s home are (1) sensitive to different levels of risk of viral transmission in specific scenarios, (2) sensitive to communication framings that are either imperative or that invite reasoning about scenarios, or (3) creating “loopholes” for themselves when scenarios are framed with reference to the participants themselves rather than in general terms. We find that participants’ attitudes to social distancing are sensitive to the level of risk of transmission, and that when scenarios are framed in imperative terms, rather than when their reasoning is encouraged, participants have more impermissive attitudes to going out in Minimal Risk scenarios, with a trend of decreased permissiveness more generally; for self-loopholes, more research is needed to determine if participants make exceptions for themselves. Thus, subject to the limitations of this study, during phases where it is important to promote self-isolation for all scenarios, including those perceived to be low risk, imperative communication may be best.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://psyarxiv.com/s7jeq/" target="_blank">Risk perception and personal responsibility during COVID-19: An experimental study of the role of imperative vs reasoning-based communication for self-isolation attitudes</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Online Donation for Covid-19 as Connective Action in Indonesia and Vietnam</strong> -
|
|||
|
<div>
|
|||
|
This study discusses how the internet facilitated the online donation movement to help deal with the Covid-19 in Indonesia and Vietnam. The internet has critical roles in online donations by spreading information, connecting individuals, and making an online donation movement. We use the connective action concept to explain how the social movement is developed by connecting people through the loose organizational or no-organizational platform. We find that the internet and social media have an essential role in informing, connecting, and simultaneously being a means of online donation activities of individuals from various backgrounds. In this action, individuals are connected emotionally and encourage their empathy and solidarity across identities. In other words, the online connection encourages people to gather and donate as social action. However, in contrast to the connective action concept based on real (offline) action, the online donation for Covid-19 shows that individuals are connected and act online. Therefore, conceptually, the online donation case could enrich the connective action concept in the context of online connection and online action.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://osf.io/zgy7b/" target="_blank">Online Donation for Covid-19 as Connective Action in Indonesia and Vietnam</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Flexible Environments for Hybrid Collaboration: Redesigning Virtual Work Through the Four Orders of Design</strong> -
|
|||
|
<div>
|
|||
|
The COVID-19 pandemic made it visceral for many that virtual forms of collaboration—simultaneously liberating and frustrating—are here to stay. Workers’ frustrations demonstrate that challenges remain for work designs in increasingly “hybrid” collaboration, wherein some people work face-to-face with others who work remotely. Fortunately, Buchanan’s four orders of design present a framework for improving virtual forms of collaboration in conjunction with management and information systems scholarship. Here, we review the latest knowledge from these disciplines on virtual collaboration through the lens of the four orders of design. In doing so, we demonstrate that conceiving of work in terms of flexible collaborative environments could increase unity between work and workers by leveraging the capabilities of varying degrees of virtuality toward experiences that benefit all those who interact with work systems.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://osf.io/preprints/socarxiv/wehsk/" target="_blank">Flexible Environments for Hybrid Collaboration: Redesigning Virtual Work Through the Four Orders of Design</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Clinical, immunological and genomic characterization of asymptomatic and symptomatic cases with SARS-CoV-2 infection, India</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
Background: The current global pandemic of Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2 led to the investigation with clinical, biochemical, immunological and genomic information of the patients to understand the pathophysiology of this viral infection. Methods: Samples were collected from six asymptomatic and six symptomatic SARS-CoV-2 confirmed hospitalized patients in Bhubaneswar, Odisha, India. Clinical details, biochemical parameters, treatment regime were collected from hospital, viral load was determined by RT-PCR, levels of cytokines and circulating antibodies in plasma were assessed by Bioplex and isotyping respectively. In addition, the whole genome sequencing of viral strains and mutational analysis were carried out. Findings Analysis of the biochemical parameters highlighted the increased levels of C-Reactive protein (CRP), lactate dehydrogenase (LDH), serum SGPT, serum SGOT and ferritin in symptomatic patients indicating that patients with higher levels of few biochemical parameters might experience severe pathophysiological complications after SARS-CoV-2 infection. This was also observed that symptomatic patients were mostly with one or more comorbidities, especially diabetes (66.6%). Surprisingly the virological estimation revealed that there was no significant difference in viral load of oropharyngeal (OP) samples between the two groups. This suggests that the viral load in OP sample does not correlate with disease severity and both asymptomatic and symptomatic patients are equally capable of transmitting the virus. Whereas, viral load was higher in plasma and serum samples of symptomatic patients suggesting that the development of clinical complications is mostly associated to high viral load in plasma and serum. This also demonstrated that the patients with high viral load in plasma and serum samples were found to develop sufficient amounts of antibodies (IgG, IgM and IgA). Interestingly, the levels of 7 cytokines (IL-6, IL-1@, IP-10, IL-8, IL-10, IFN-@2, IL-15) were found to be highly elevated in symptomatic patients, while three cytokines (soluble CD40L, GRO and MDC) were remarkably higher in asymptomatic patients. Therefore, this data suggest that cytokines and chemokines may serve as predictive indicator of SARS-CoV-2 infection and contribute to understand the pathogenesis of COVID-19. The whole genome sequence analysis revealed that the current isolates were clustered with 19B, 20A and 20B clades, however acquired 11 additional changes in Orf1ab, spike, Orf3a, Orf8 and nucleocapsid proteins. The data also confirmed that the D614G mutation in spike protein is mostly linked with severe SARS-CoV-2 infection as two patients with this mutation passes away. Interpretation This is the first comprehensive study of SARS CoV-2 patients from India. This will contribute to a better understanding of the pathophysiology of SARS-CoV-2 infection and advance in the implementation of effective disease control strategies.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.05.21.21257211v1" target="_blank">Clinical, immunological and genomic characterization of asymptomatic and symptomatic cases with SARS-CoV-2 infection, India</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>T-cell and antibody immunity after COVID-19 mRNA vaccines in healthy and immunocompromised subjects-An exploratory study.</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
Background: In recent studies, up to half of immunocompromised (IC) subject populations fail to develop antibodies after COVID-19 vaccination. Purpose and Methods: Here, we explore whether T-cells which respond to the spike (S) antigenic sequence and its less conserved S1, and the conserved S2 component are present in serial samples before and after each dose of mRNA1273 or BNT162b2 vaccines in 20 healthy immunocompetent subjects. Single samples from 7 vaccinated IC subjects were also tested. Simultaneously, we measured IgG antibodies to the receptor binding domain (RBD) of S1, and anti-S IgG, and frequencies of monocytic CD14+HLA-DR- (M-MDSC) and polymorphonuclear CD14-CD15+CD11b+ (PMN-MDSC) myeloid-derived suppressor cells. Results: In healthy subjects, S1-, S2-, and S-reactive CD4 and CD8 T-cell frequencies showed a numeric but not statistically significant decrease after the first vaccine dose and were accompanied by increased MDSC frequencies (p<0.05). After the second dose, S2- and S-reactive CD4 and CD8 cells and MDSC approached pre-vaccination levels. In healthy subjects, a) S1-reactive CD8 frequencies were significantly higher after the second dose compared with pre-vaccination levels (p=0.015), b) anti-RBD and anti-S IgG were present in all after the second dose. Among seven IC subjects, anti-RBD and anti-S IgG were absent in 4 and 3 subjects, respectively. S1-reactive CD8 cells were identified in 2 of 4 anti-RBD negative subjects. S-reactive CD4 or CD8 cells were identified in all three anti-S negative subjects. Conclusions: In healthy immunocompetent subjects, mRNA vaccines induce antibodies to the spike antigenic sequences and augment CD8 cells reactive to the S1 spike sequence, which is more specific for the SARS-CoV-2 virus. In this exploratory cohort of vaccinated immunocompromised subjects, S1-reactive CD8 cells can be detected in some who are negative for RBD antibody, and S-reactive T-cells are present in all who are negative for spike antibody.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.05.21.21257442v1" target="_blank">T-cell and antibody immunity after COVID-19 mRNA vaccines in healthy and immunocompromised subjects-An exploratory study.</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Persistent clotting protein pathology in Long COVID/ Post-Acute Sequelae of COVID-19 (PASC) is accompanied by increased levels of antiplasmin</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
Severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2)-induced infection, the cause of coronavirus disease 2019 (COVID-19), is characterized by acute clinical pathologies, including various coagulopathies that may be accompanied by hypercoagulation and platelet hyperactivation. Recently, a new COVID-19 phenotype has been noted in patients after they have ostensibly recovered from acute COVID-19 symptoms. This new syndrome is commonly termed Long COVID/Post-Acute Sequelae of COVID-19 (PASC). Here we refer to it as Long COVID/PASC. Lingering symptoms persist for as much as 6 months (or longer) after acute infection, where COVID-19 survivors complain of recurring fatigue or muscle weakness, being out of breath, sleep difficulties, and anxiety or depression. Given that blood clots can block microcapillaries and thereby inhibit oxygen exchange, we here investigate if the lingering symptoms that individuals with Long COVID/PASC manifest might be due to the presence of persistent circulating plasma clots that are resistant to fibrinolysis. We use techniques including proteomics and fluorescence microscopy to study plasma samples from healthy individuals, individuals with Type 2 Diabetes Mellitus (T2DM), with acute COVID-19, and those with Long COVID/PASC symptoms. We show that plasma samples from Long COVID/PASC still contain large anomalous (amyloid) deposits. We also show that these anomalous deposits in both acute COVID-19 and Long COVID/PASC plasma samples are resistant to fibrinolysis (compared to plasma from controls and T2DM), even after trypsinisation. After a second trypsinization, the persistent pellet deposits were solubilized. We detected various inflammatory molecules that are substantially increased in both the supernatant and trapped in the solubilized pellet deposits of acute COVID-19 and Long COVID/PASC, versus the equivalent volume of fully digested fluid of the control samples. Of particular interest was a substantial increase in α(2)-antiplasmin (α2AP), various fibrinogen chains, as well as Serum Amyloid A (SAA) that were trapped in the solubilized fibrinolytic-resistant pellet deposits. Clotting pathologies in both acute COVID-19 infection and in Long COVID/PASC might therefore benefit from following a regime of continued anticlotting therapy to support the fibrinolytic system function.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.05.21.21257578v1" target="_blank">Persistent clotting protein pathology in Long COVID/ Post-Acute Sequelae of COVID-19 (PASC) is accompanied by increased levels of antiplasmin</a>
|
|||
|
</div></li>
|
|||
|
</ul>
|
|||
|
<h1 data-aos="fade-right" id="from-clinical-trials">From Clinical Trials</h1>
|
|||
|
<ul>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Recombinant Hyperimmune Polyclonal Antibody (GIGA-2050) in COVID-19 Patients</strong> - <b>Condition</b>: COVID-19<br/><b>Intervention</b>: Drug: GIGA-2050<br/><b>Sponsor</b>: GigaGen, Inc.<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Using Text Messages to Improve COVID-19 Vaccination Uptake, an RCT.</strong> - <b>Condition</b>: Covid19<br/><b>Intervention</b>: Behavioral: Text message content<br/><b>Sponsors</b>: Imperial College Healthcare NHS Trust; Central London CCG; Imperial College Health Partners; Institute for Global Health Innovations; The Behavioural Insights Team<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Study to Evaluate the Effects of RO7496998 (AT-527) in Non-Hospitalized Adult and Adolescent Participants With Mild or Moderate COVID-19</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Drug: RO7496998; Drug: Placebo<br/><b>Sponsors</b>: Atea Pharmaceuticals, Inc.; Hoffmann-La Roche<br/><b>Recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>The Role of High Dose Co-trimoxazole in Severe Covid-19 Patients</strong> - <b>Condition</b>: COVID-19 Pneumonia<br/><b>Interventions</b>: Drug: Co-trimoxazole; Drug: Placebo<br/><b>Sponsor</b>: Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A Study to Evaluate the Safety and Effect of STC3141 Continuous Infusion in Subjects With Severe Corona Virus Disease 2019(COVID-19)Pneumonia</strong> - <b>Condition</b>: Severe COVID-19 Pneumonia<br/><b>Intervention</b>: Drug: STC3141<br/><b>Sponsors</b>: Grand Medical Pty Ltd.; Trium Clinical Consulting<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>The Effect of Vitamin D Supplementation on COVID-19 Recovery</strong> - <b>Condition</b>: Covid19<br/><b>Interventions</b>: Drug: Vit-D 0.2 MG/ML Oral Solution [Calcidol]; Drug: Physiological Irrigating Solution<br/><b>Sponsors</b>: University of Monastir; Loussaief Chawki; Nissaf Ben Alaya; Cyrine Ben Nasrallah; Manel Ben Belgacem; Hela Abroug; Imen Zemni; Manel Ben fredj; Wafa Dhouib<br/><b>Completed</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A Phase 2 Study of APX-115 in Hospitalized Patients With Confirmed Mild to Moderate COVID-19.</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Drug: APX-115; Drug: Placebo<br/><b>Sponsors</b>: Aptabio Therapeutics, Inc.; Covance<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Prophylaxis for COVID-19: Ivermectin in Close Contacts of COVID-19 Cases (IVERNEX-TUC)</strong> - <b>Condition</b>: Covid19<br/><b>Interventions</b>: Drug: Ivermectin; Other: Placebo<br/><b>Sponsor</b>: Ministry of Public Health, Argentina<br/><b>Recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Breathing Effort in Covid-19 Pneumonia: Effects of Positive Pressure, Inspired Oxygen Fraction and Decubitus</strong> - <b>Condition</b>: COVID-19 Pneumonia<br/><b>Intervention</b>: Device: Esophageal catheter<br/><b>Sponsor</b>: San Luigi Gonzaga Hospital<br/><b>Recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Mix and Match of the Second COVID-19 Vaccine Dose for Safety and Immunogenicity</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Biological: mRNA-1273 SARS-CoV-2 vaccine; Biological: BNT162b2; Biological: ChAdOx1-S [recombinant]; Other: 0, 28 day schedule; Other: 0, 112 day schedule<br/><b>Sponsors</b>: Canadian Immunization Research Network; Canadian Center for Vaccinology; BC Children’s Hospital Research Institute; Children’s Hospital Research Institute of Manitoba; CHU de Quebec-Universite Laval; Ottawa Hospital Research Institute; Northern Alberta Clinical Trials + Research Centre; Ontario Agency for Health Protection and Promotion; University of Toronto; Massachusetts General Hospital<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Anti COVID 19 Intravenous Immunoglobulin (C-IVIG) Therapy for Severe COVID-19 Patients</strong> - <b>Condition</b>: Covid19<br/><b>Intervention</b>: Biological: Anti COVID 19 Intravenous Immunoglobulin (C-IVIG)<br/><b>Sponsors</b>: Dow University of Health Sciences; Higher Education Commission (Pakistan)<br/><b>Recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>ACTIV-6: COVID-19 Study of Repurposed Medications</strong> - <b>Condition</b>: Covid19<br/><b>Intervention</b>: Drug: Ivermectin Tablets<br/><b>Sponsors</b>: Susanna Naggie, MD; National Center for Advancing Translational Science (NCATS); Vanderbilt University Medical Center<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A Global Phase III Clinical Trial of Recombinant COVID-19 Vaccine (Sf9 Cells)</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Biological: Recombinant COVID-19 vaccine (Sf9 cells); Other: Placebo control<br/><b>Sponsors</b>: Jiangsu Province Centers for Disease Control and Prevention; WestVac Biopharma Co., Ltd.; West China Hospital<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Amantadine for COVID-19: A Randomized, Placebo Controlled, Double-blinded, Clinical Trial</strong> - <b>Condition</b>: Covid19<br/><b>Interventions</b>: Drug: Amantadine; Drug: Lactose monohydrate<br/><b>Sponsors</b>: Copenhagen University Hospital, Hvidovre; University of Copenhagen<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>3R Rehabilitation Management of COVID-19 Survivors</strong> - <b>Condition</b>: Covid19<br/><b>Interventions</b>: Other: Cardiopulmonary exercise (centre-based); Other: Cardiopulmonary exercise (online-based)<br/><b>Sponsors</b>: The Hong Kong Polytechnic University; Pamela Youde Nethersole Eastern Hospital, Hong Kong; Queen Elizabeth Hospital, Hong Kong; Princess Margaret Hospital, Hong Kong; Tuen Mun Hospital Hong Kong<br/><b>Recruiting</b></p></li>
|
|||
|
</ul>
|
|||
|
<h1 data-aos="fade-right" id="from-pubmed">From PubMed</h1>
|
|||
|
<ul>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>SARS-CoV-2 suppresses mRNA expression of selenoproteins associated with ferroptosis, endoplasmic reticulum stress and DNA synthesis</strong> - Higher selenium status has been shown to improve the clinical outcome of infections caused by a range of evolutionally diverse viruses, including SARS-CoV-2. However, the impact of SARS-CoV-2 on host-cell selenoproteins remains elusive. The present study investigated the influence of SARS-CoV-2 on expression of selenoprotein mRNAs in Vero cells. SARS-CoV-2 triggered an inflammatory response as evidenced by increased IL-6 expression. Of the 25 selenoproteins, SARS-CoV-2 significantly suppressed…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Possible inhibition of GM-CSF production by SARS-CoV-2 spike-based vaccines</strong> - A SARS-like coronavirus 2 (SARS-CoV-2) has caused a pandemic Coronavirus Disease 2019 (COVID-19) that killed more than 3.3 million people worldwide. Like the SARS-CoV, SARS-CoV-2 also employs a receptor-binding motif (RBM) of its spike protein to bind a host receptor, the angiotensin-converting enzyme 2 (ACE2), to gain entry. Currently, several mRNA or adenoviral vaccines encoding for the spike protein of SARS-CoV-2 are being used to boost antibodies capable of inhibiting spike-ACE2 interaction…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Discovery of anti-infective adipostatins through bioactivity-guided isolation and heterologous expression of a type III polyketide synthase</strong> - Antibiotic resistance and emerging viral pandemics have posed an urgent need for new anti-infective drugs. By screening our microbial extract library against the main protease of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the notorious ESKAPE pathogens, an active fraction was identified and purified, leading to an initial isolation of adipostatins A (1) and B (2). In order to diversify the chemical structures of adipostatins toward enhanced biological activities, a type III…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Lipopeptide-based pan-CoV fusion inhibitors potently inhibit HIV-1 infection</strong> - No abstract</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Detection of SARS-CoV-2 genome and whole transcriptome sequencing in Frontal Cortex of COVID-19 patients</strong> - SARS-Cov-2 infection is frequently associated with Nervous System manifestations. However, it is not clear how SARS-CoV-2 can cause neurological dysfunctions and which molecular processes are affected in the brain. In this work, we examined the frontal cortex tissue of patients who died of COVID-19 for the presence of SARS-CoV-2, comparing qRT-PCR with ddPCR. We also investigated the transcriptomic profile of frontal cortex from COVID-19 patients and matched controls by RNA-seq analysis to…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Single-dose BNT162b2 mRNA COVID-19 vaccine significantly boosts neutralizing antibody response in health care workers recovering from asymptomatic or mild natural SARS-CoV-2 infection</strong> - CONCLUSIONS: A single vaccination in people with mild or asymptomatic previous infection further boosts SARS-CoV-2 humoral immunity to levels higher than those obtained by complete two-vaccination in uninfected subjects.</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>The ORF8 protein of SARS-CoV-2 mediates immune evasion through down-regulating MHC-iota</strong> - COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a global pandemic and has claimed over 2 million lives worldwide. Although the genetic sequences of SARS-CoV and SARS-CoV-2 have high homology, the clinical and pathological characteristics of COVID-19 differ significantly from those of SARS. How and whether SARS-CoV-2 evades (cellular) immune surveillance requires further elucidation. In this study, we show that SARS-CoV-2 infection leads to major…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Chemotherapy vs. Immunotherapy in combating nCOVID19: An update</strong> - The nCOVID-19 pandemic initiated its course of contagion from the city of Wuhan and now it has spread all over the globe. SARS-CoV-2 is the causative virus and the infection as well as its symptoms are distributed across the multi-organ perimeters. Interactions between the host and virus governs the induction of ‘cytokine storm’ resulting various immunopathological consequences leading to death. Till now it has caused tens of millions of casualties and yet no credible cure has emerged to vision….</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Intragastric and atomized administration of canagliflozin inhibit inflammatory cytokine storm in lipopolysaccharide-treated sepsis in mice: A potential COVID-19 treatment</strong> - To date, drugs to attenuate cytokine storm in severe cases of Corona Virus Disease 2019 (COVID-19) are not available. In this study, we investigated the effects of intragastric and atomized administration of canagliflozin (CAN) on cytokine storm in lung tissues of lipopolysaccharides (LPS)-induced mice. Results showed that intragastric administration of CAN significantly and widely inhibited the production of inflammatory cytokines in lung tissues of LPS-induced sepsis mice. Simultaneously,…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>The interaction of the bioflavonoids with five SARS-CoV-2 proteins targets: An in silico study</strong> - Flavonoids have been shown to have antioxidant, anti-inflammatory, anti-proliferative, antibacterial and antiviral efficacy. Therefore, in this study, we choose 85 flavonoid compounds and screened them to determine their in-silico interaction with protein targets crucial for SARS-CoV-2 infection. The five important targets chosen were the main protease (Mpro), Spike receptor binding domain (Spike-RBD), RNA - dependent RNA polymerase (RdRp or Nsp12), non-structural protein 15 (Nsp15) of…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>The SARS-CoV-2 SSHHPS Recognized by the Papain-like Protease</strong> - Viral proteases are highly specific and recognize conserved cleavage site sequences of ∼6-8 amino acids. Short stretches of homologous host-pathogen sequences (SSHHPS) can be found spanning the viral protease cleavage sites. We hypothesized that these sequences corresponded to specific host protein targets since >40 host proteins have been shown to be cleaved by Group IV viral proteases and one Group VI viral protease. Using PHI-BLAST and the viral protease cleavage site sequences, we searched…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Tocilizumab in COVID-19: a meta-analysis, trial sequential analysis, and meta-regression of randomized-controlled trials</strong> - CONCLUSIONS: For hospitalized COVID-19 patients, there is some evidence that tocilizumab use may be associated with a short-term mortality benefit, but further high-quality data are required. Its benefits may also lie in reducing the need for mechanical ventilation.</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>In silico Studies on the Interaction Between Mpro and PLpro From SARS-CoV-2 and Ebselen, its Metabolites and Derivatives</strong> - The COVID-19 pandemic caused by the SARS-CoV-2 has mobilized scientific attention in search of a treatment. The cysteine-proteases, main protease (Mpro) and papain-like protease (PLpro) are important targets for antiviral drugs. In this work, we simulate the interactions between the Mpro and PLpro with Ebselen, its metabolites and derivatives with the aim of finding molecules that can potentially inhibit these enzymes. The docking data demonstrate that there are two main interactions between the…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Anti-IgE monoclonal antibodies as potential treatment in COVID-19</strong> - Coronavirus disease 2019 (COVID-19) is associated with irreversible effects on vital organs, especially the respiratory and cardiac systems. While the immune system plays a key role in the survival of patients to viral infections, in COVID-19, there is a hyperinflammatory immune response evoked by all the immune cells, such as neutrophils, monocytes, and includes release of various cytokines, resulting in an exaggerated immune response, named cytokine storm. This severe, dysregulated immune…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>In silico Exploration of Interactions Between Potential COVID-19 Antiviral Treatments and the Pore of the hERG Potassium Channel-A Drug Antitarget</strong> - Background: In the absence of SARS-CoV-2 specific antiviral treatments, various repurposed pharmaceutical approaches are under investigation for the treatment of COVID-19. Antiviral drugs considered for this condition include atazanavir, remdesivir, lopinavir-ritonavir, and favipiravir. Whilst the combination of lopinavir and ritonavir has been previously linked to prolongation of the QT(c) interval on the ECG and risk of torsades de pointes arrhythmia, less is known in this regard about…</p></li>
|
|||
|
</ul>
|
|||
|
<h1 data-aos="fade-right" id="from-patent-search">From Patent Search</h1>
|
|||
|
<ul>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>METHOD OF IDENTIFYING SEVERE ACUTE RESPIRATORY SYNDROME CORONA VIRUS 2 (SARS-COV-2) RIBONUCLEIC ACID (RNA)</strong> - - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=AU323956811">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>IMPROVEMENTS RELATED TO PARTICLE, INCLUDING SARS-CoV-2, DETECTION AND METHODS THEREFOR</strong> - - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=AU323295937">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>DEEP LEARNING BASED SYSTEM FOR DETECTION OF COVID-19 DISEASE OF PATIENT AT INFECTION RISK</strong> - The present invention relates to Deep learning based system for detection of covid-19 disease of patient at infection risk. The objective of the present invention is to solve the problems in the prior art related to technologies of detection of covid-19 disease using CT scan image processing. - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=IN324122821">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A COMPREHENSIVE DISINFECTION SYSTEM DURING PANDEMIC FOR PERSONAL ITEMS AND PROTECTIVE EQUIPMENT (PPE) TO SAFEGUARD PEOPLE</strong> - The current Covid-19 pandemic has led to an enormous demand for gadgets / objects for personal protection. To prevent the spread of virus, it is important to disinfect commonly touched objects. One of the ways suggested is to use a personal UV-C disinfecting box that is “efficient and effective in deactivating the COVID-19 virus. The present model has implemented the use of a UV transparent material (fused silica quartz glass tubes) as the medium of support for the objects to be disinfected to increase the effectiveness of disinfection without compromising the load bearing capacity. Aluminum foil, a UV reflecting material, was used as the inner lining of the box for effective utilization of the UVC light emitted by the UVC lamps. Care has been taken to prevent leakage of UVC radiation out of the system. COVID-19 virus can be inactivated in 5 minutes by UVC irradiation in this disinfection box - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=IN322882412">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>UBIQUITOUS COMPUTING SYSTEM FOR MENTAL HEALTH MONITORING OF PERSON DURING THE PANDEMIC OF COVID-19</strong> - - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=AU323295498">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>USE OF IMINOSUGAR COMPOUND IN PREPARATION OF ANTI-SARS-COV-2 VIRUS DRUG</strong> - - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=AU322897928">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>一种高灵敏SARS-CoV-2中和抗体的检测方法、检测试剂盒</strong> - 本发明公开了一种高灵敏SARS‑CoV‑2中和抗体的检测方法、检测试剂盒,属于生物医学检测技术领域,本发明试剂盒包括层析试纸、卡壳和样本稀释液,所述层析试纸包括底板、样品垫、结合垫、NC膜和吸水垫,所述NC膜上依次设置有捕获线、检测线和质控线,所述捕获线包被有ACE2蛋白,所述检测线包被有RBD蛋白,所述结合垫设置有RBD蛋白标记物;本发明采用阻断法加夹心法原理提高检测中和抗体的灵敏度,通过添加捕获线的方式,将靶向RBD的非中和抗体提前捕获,保证后续通过夹心法检测中和抗体的特异性。 - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=CN323798634">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>逆转录酶突变体及其应用</strong> - 本发明提供一种MMLV逆转录酶突变体,在野生型MMLV逆转录酶氨基酸序列(如SEQ ID No.1序列所示)中进行七个氨基酸位点的突变,氨基酸突变位点为:R205H;V288T;L304K;G525D;S526D;E531G;E574G。该突变体可以降低MMLV逆转录酶对Taq DNA聚合酶的抑制作用,大大提高了一步法RT‑qPCR的灵敏度。 - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=CN323494119">link</a></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Konstruktion einer elektrochemischen Atemmaske zum aktiven Schutz vor Coronavirus</strong> -
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
</p><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">Konstruktion einer elektrochemischen medizinischen Atemmaske (1) für den aktiven Schutz gegen Infektion mit Coronaviren dadurch gekennzeichnet, dass ein elektrochemischer Effekt durch eine allgemein positives Magnetfeld der Maske erzeugbar ist, das die positiv geladenen Coronavirus-Mikroorganismen von der Person vertreibt, indem eine aktive elektrochemische Atemmaske (1) aus einem zweischichtigen Material verwendet wird, umfassend eine äußeren Schicht (2) aus einer hochmolekularen Verbindung aus Bambus in Mischung mit Kupfer-, Silber- oder Goldmetallfasern und einer inneren Schicht (3) aus einem Vliesstoff auf Basis von Polypropylenfasern SMS oder SNS, wobei der Maskenkörper aus zwei in der Mitte der Gesichtssymmetrie genähten Elementen gebildet ist, um die Kontur der Gesichtskurven so weit wie möglich zu wiederholen, ausgestattet mit einem Atemfilter (9) mit einem Einsatz aus zwei Schichten ferromagnetischen Metallgewebes, wobei das Filter (9) hat eine herausnehmbare SMS- oder SNS-Vlieskartusche in einem Kunststoffrand (14) und eine Öse zur Fixierung im Filtergehäuse umfasst, wobei die Maske (1) jeweils einen Nasen- und Kinnbügel aus einem flexiblen Einschubstreifen zwischen den beiden Lagen des Maskengewebes aufweist, die eine Fixierung auf Basis von doppelseitig klebendem Silikonklebeband in den Maskenseitenkanten sowie Nacken- und Kopfbefestigungsschlaufen ermöglichen.</p></li>
|
|||
|
</ul>
|
|||
|
<img alt="embedded image" id="EMI-D00000"/>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"></p>
|
|||
|
<ul>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=DE324122059">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Compositions and methods for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) infection</strong> - - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=AU321590214">link</a></p></li>
|
|||
|
</ul>
|
|||
|
|
|||
|
|
|||
|
<script>AOS.init();</script></body></html>
|