Daily-Dose/archive-covid-19/22 February, 2024.html

175 lines
48 KiB
HTML
Raw Normal View History

2024-02-22 12:41:29 +00:00
<!DOCTYPE html>
<html lang="" xml:lang="" xmlns="http://www.w3.org/1999/xhtml"><head>
<meta charset="utf-8"/>
<meta content="pandoc" name="generator"/>
<meta content="width=device-width, initial-scale=1.0, user-scalable=yes" name="viewport"/>
<title>22 February, 2024</title>
<style>
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
span.underline{text-decoration: underline;}
div.column{display: inline-block; vertical-align: top; width: 50%;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
</style>
<title>Covid-19 Sentry</title><meta content="width=device-width, initial-scale=1.0" name="viewport"/><link href="styles/simple.css" rel="stylesheet"/><link href="../styles/simple.css" rel="stylesheet"/><link href="https://unpkg.com/aos@2.3.1/dist/aos.css" rel="stylesheet"/><script src="https://unpkg.com/aos@2.3.1/dist/aos.js"></script></head>
<body>
<h1 data-aos="fade-down" id="covid-19-sentry">Covid-19 Sentry</h1>
<h1 data-aos="fade-right" data-aos-anchor-placement="top-bottom" id="contents">Contents</h1>
<ul>
<li><a href="#from-preprints">From Preprints</a></li>
<li><a href="#from-clinical-trials">From Clinical Trials</a></li>
<li><a href="#from-pubmed">From PubMed</a></li>
<li><a href="#from-patent-search">From Patent Search</a></li>
</ul>
<h1 data-aos="fade-right" id="from-preprints">From Preprints</h1>
<ul>
<li><strong>Confirmation of Covid Infection Status and Reporting of Long Covid Symptoms in a Population-Based Birth Cohort: No Evidence of a Nocebo Effect</strong> -
<div>
Some patients with COVID-19 develop symptoms after the acute infection, known as Long COVID. We examined whether or not confirmation of COVID-19 infection status could act as a nocebo, using data from questionnaires distributed to the Avon Longitudinal Study of Parents and Children cohort. We examined associations between confirmation of COVID-19 infection status (confirmed by a positive test versus unconfirmed) and reporting of Long COVID symptoms. We explored the roles of sex and anxiety as potential moderators. There was no clear evidence of a strong association between confirmation of COVID-19 infection status and the Long COVID composite score, physical or psychological symptoms, or duration of symptoms. There was no clear evidence of moderation by sex or anxiety. We therefore found no evidence of a nocebo effect. Our data suggest that this psychological mechanism does not play a role in the medical symptomatology experienced by patients with Long COVID.
</div>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://osf.io/preprints/psyarxiv/pwq9b/" target="_blank">Confirmation of Covid Infection Status and Reporting of Long Covid Symptoms in a Population-Based Birth Cohort: No Evidence of a Nocebo Effect</a>
</div></li>
<li><strong>Affordable private rental supply and demand: short-term disruption (20162021) and longer-term structural change (19962021)</strong> -
<div>
This research analyses the ABS Census to reveal changes in the supply of private rental housing affordable and available to lower-income households (Q1 and Q2 households) over both the short term (201621) and the longer term (19962021). It also provides analysis of how COVID-19 policy and population responses temporarily altered the long-run structural trajectory of the private rental sector (PRS) in Australia. In 2021, the Australian PRS housed more than 2.363 million households, a 17 per cent increase of nearly 340,000 households since the 2016 Census. This growth has been greater than total household growth in each intercensal period since 1996. Between 2016 and 2021 PRS growth was concentrated at mid-market levels; in dwellings renting from around $300$530 per week ($2021). This continues a major change trend first established in 2011, reinforcing the structural shift to a market concentration of dwellings renting at mid-to-higher levels. The long-term shift in the national distribution of PRS household incomes reveals the growth of households with incomes at mid to high levels ($1,246 a week and above). In 1996, these wealthier households comprised 40 per cent of all PRS households (or 489,000 households); in 2021, they comprised 64 per cent (or 1,519,000 households), a 211 per cent increase. In comparison, the total number of PRS households increased by 91 per cent between 1996 and 2021 (from 1,234,000 households to 2,362,000). Over the same time frame, there has been a relatively constant total number of lower income renters in the PRS; 508,000 households in1996 and 488,000 in 2024. Nevertheless, there was a shortage of 348,000 affordable and available private rental homes for very-low income (Q1) households in 2021 and that, as a result, 82 per cent of Q1 PRS households paid unaffordable rents.
</div>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://osf.io/preprints/socarxiv/h3tfk/" target="_blank">Affordable private rental supply and demand: short-term disruption (20162021) and longer-term structural change (19962021)</a>
</div></li>
<li><strong>COVID-19 and Changes in Young Adults Weight Concerns</strong> -
<div>
The COVID-19 pandemic introduced fundamental challenges to nearly all aspects of college students lives, yet changes in key domains of their health, including weight concerns, remain untested. The current study utilized a longitudinal project comprised of 355 young-adult college students (Mage=19.5, 66.8% female, 33.2% male) oversampled for recent substance use behavior. Participants completed multiple assessments (mode=5) from September 2017 to September 2021. Piecewise growth-curve models tested whether COVID-19 onset was associated with changes in the trajectories of young adults weight concerns. Analyses also examined participants sex as a moderator of these trajectories. On average, participants reported a significant increase in weight concern levels around the start of COVID-19, although weight concern slopes were not significantly different before and after COVID-19. Additionally, moderation analyses showed that females (but not males) had a significant increase in weight concern levels after COVID-19 onset.
</div>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://osf.io/wuhvb/" target="_blank">COVID-19 and Changes in Young Adults Weight Concerns</a>
</div></li>
<li><strong>Mathematical Modeling of Impacts of Patient Differences on Renin-Angiotensin System and Applications to COVID-19 Lung Fibrosis Outcomes</strong> -
<div>
Patient-specific premorbidity, age, and sex are significant heterogeneous factors that influence the severe manifestation of lung diseases, including COVID-19 fibrosis. The renin-angiotensin system (RAS) plays a prominent role in regulating the effects of these factors. Recent evidence suggests patient-specific alteration of RAS homeostasis with premorbidity and the expression level of angiotensin converting enzyme 2 (ACE2) during COVID-19. However, conflicting evidence suggests decreases, increases, or no changes in RAS after SARS-CoV-2 infection. In addition, detailed mechanisms connecting the patient-specific conditions before infection to infection-induced RAS alteration are still unknown. Here, a mathematical model is developed to quantify the systemic contribution of heterogeneous factors of RAS during COVID-19. Three submodels are connectedan ABM COVID-19 in-host lung tissue model, a RAS model, and a fibrosis model to investigate the effects of patient-group-specific factors in the systemic alteration of RAS and collagen deposition in the lung. The model results indicate cell death due to inflammatory response as a major contributor to the reduction of ACE and ACE2. In contrast, there are no significant changes in ACE2 dynamics due to viral-bound internalization of ACE2. Reduction of ACE and ACE2 reduces the homeostasis of RAS, including angiotensin II (ANGII), in the lung tissue. At the same time, the decrease in ACE2 increases systemic ANGII and results in severe lung injury and fibrosis. The model explains possible mechanisms for conflicting evidence of RAS alterations in previously published studies, and simulated results are consistent with reported RAS peptide values for SARS-CoV-2-negative and SARS-CoV-2-positive patients. We observed decreased RAS peptides for all patient groups with aging in both sexes. In contrast, large variations in the magnitude of reduction were observed between male and female patients in the older and middle-aged groups. We also predicted that feedback of ANGII{middle dot}AT1R to renin could restore ANGI homeostasis but fails to restore homeostasis values of RAS peptides downstream of ANGI. In addition, the results show that ACE2 variations with age and sex significantly alter RAS peptides and lead to collagen deposition with slight variations depending on age and sex. This model may find further applications in patient-specific calibrations of tissue models for acute and chronic lung diseases to develop personalized treatments.
</div>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2022.11.06.515367v2" target="_blank">Mathematical Modeling of Impacts of Patient Differences on Renin-Angiotensin System and Applications to COVID-19 Lung Fibrosis Outcomes</a>
</div></li>
<li><strong>Maternal Psychological Distress &amp; Mental Health Service Use during the COVID-19 Pandemic</strong> -
<div>
Background: Mental health problems are increasingly recognized as a significant and concerning secondary effect of the COVID-19 pandemic. Research on previous epidemics/pandemics suggest that families, particularly mothers, may be at increased risk, but this population has yet to be examined. The current study (1) described prevalence rates of maternal depressive and anxiety symptoms from an online convenience sample during the COVID-19 pandemic, (2) identified risk and protective factors for elevated symptoms, and (3) described current mental health service use and barriers. Methods: Participants (N = 641) were mothers of children age 0-8 years, including expectant mothers. Mothers completed an online survey assessing mental health, sociodemographic information, and COVID-19-related variables. Results: Clinically-relevant depression was indicated in 33.16%, 42.55%, and 43.37% of mothers of children age 0-18 months, 18 months to 4 years, and 5 to 8 years, respectively. Prevalence of anxiety was 36.27%, 32.62%, and 29.59% for mothers across age groups, respectively. Binary logistic regressions indicated significant associations between risk factors and depression/anxiety across child age groups. Limitations: Cross-sectional data was used to describe maternal mental health problems during COVID-19 limiting the ability to make inferences about the long-term impact of maternal depression and anxiety on family well-being. Conclusions: Maternal depression and anxiety appear to be elevated in the context of COVID-19 compared to previously reported population norms. Identified risk factors for depression and anxiety across different child age ranges can inform targeted early intervention strategies to prevent long-term impacts of the COVID-19 pandemic on family well-being and child development.
</div>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://osf.io/preprints/psyarxiv/a53zb/" target="_blank">Maternal Psychological Distress &amp; Mental Health Service Use during the COVID-19 Pandemic</a>
</div></li>
<li><strong>Adaptations of microbial genomes to human body chemistry</strong> -
<div>
Water and oxygen availability vary in normal physiology and disease, so evolutionary adjustments of protein sequences to optimally use these chemical resources would represent a competitive advantage for host-associated microbial genomes. In this study, reference proteomes for taxa derived from the Genome Taxonomy Database (GTDB) were combined with 16S rRNA-based taxonomic abundances in order to calculate chemical metrics for community reference proteomes. This permits new insight into community-level genomic adaptation to specific chemical conditions in body sites. Surprisingly, reference proteomes for gut communities appear to be shaped by the physiological function of water absorption in the intestine more than by reducing conditions. Reference proteomes of gut communities in COVID-19 and inflammatory bowel disease (IBD) patients are generally more reduced than controls despite higher relative abundances of aerotolerant organisms and lower abundances of Faecalibacterium and other obligate anaerobes. The trend of chemical reduction in patients is supported by multi-omics (i.e., metagenomic and metaproteomic) data for COVID-19 and can be attributed to relatively oxidized protein sequences for obligate anaerobes compared to aerotolerant genera in gut communities. Genomic adaptation to transiently oxygenated conditions, reflected in more oxidized protein sequences, may be an evolutionary strategy for obligate anaerobes to compete with aerotolerant organisms in the chemical context of gut inflammation.
</div>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2023.02.12.528246v2" target="_blank">Adaptations of microbial genomes to human body chemistry</a>
</div></li>
<li><strong>Prior exposure to malaria decreases SARS-CoV-2 mediated mortality in K18-hACE2 mice without influencing viral load in lungs</strong> -
<div>
Abstract: Background: Epidemiological evidence for decreased prevalence and/or mortality due to SARS-CoV-2 infections in countries endemic for malaria have been reported. However, such associational studies in human population are limited by known and several unknown confounding factors. The current study, the first of its kind, was designed to seek experimental evidence to test the hypothesis if prior exposure to Plasmodial infections cross-protect against SARS-CoV-2 challenge infection in a murine model, K-18 human ACE2 transgenic mice. Methods: Mice that had recovered from Plasmodium chabaudi infection 40 days earlier were challenged with a virulent strain of SARS-CoV-2 and viral load in lungs as well as mortality were scored and compared with K18 hACE2 mice that had not experienced prior malaria. Results: The viral load in lungs 6 days post challenge were comparable in malaria recovered mice and controls suggesting no significant generation of anti-viral immunity. However, mice with prior malaria exposure were significantly protected against SARS-CoV-2 induced mortality. Significant differences were observed in several host immune responses between the two groups when cytokines, chemokines and transcription factors were quantified in lungs. The plasma levels of several cytokines and chemokines were also significantly different between the two groups. Conclusion: The results of the study suggest that prior exposure to malaria protects mice against viral induced mortality in K18 hACE2 transgenic mice challenged with a virulent isolate of SARS- CoV-2 in the absence of demonstrable host immunity inhibiting viral growth in lungs.
</div>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2024.02.19.579434v1" target="_blank">Prior exposure to malaria decreases SARS-CoV-2 mediated mortality in K18-hACE2 mice without influencing viral load in lungs</a>
</div></li>
<li><strong>Characterization of the SARS-CoV-2 BA.5 Variants in H11-K18-hACE2 Hamsters</strong> -
<div>
This study aims to comprehensively characterize the SARS-CoV-2 BA.5 variants using K18 hACE2 transgenic mice and golden hamsters as model organisms. Previous research on SARS-CoV-2 has utilized both mouse and hamster models, leading to conflicting results concerning the virus's lethality. In our study, the finding suggests that H11-K18 hACE2 golden hamsters closely mimic the disease progression observed in human COVID-19 cases caused by BA.5 variants, demonstrating consistent severity and symptoms comparable to severe infections. Additionally, hamsters exhibit heightened respiratory viral replication, accurately reflecting the clinical viral kinetics observed in humans. The study emphasizes the critical importance of selecting an appropriate animal model for SARS-CoV-2 research, while also providing robust support for the hypothesis that BA.5 variants contribute to fatal outcomes in COVID-19 cases. These findings highlight the pivotal role of the golden hamster model in advancing our understanding of the pathogenic mechanisms underlying SARS-CoV-2 variants, as well as in the development of targeted therapeutic strategies.
</div>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2024.02.19.581112v1" target="_blank">Characterization of the SARS-CoV-2 BA.5 Variants in H11-K18-hACE2 Hamsters</a>
</div></li>
<li><strong>Predicting Antibody and ACE2 Affinity for SARS-CoV-2 BA.2.86 and JN.1 with In Silico Protein Modeling and Docking</strong> -
<div>
The emergence of the Omicron sublineage of SARS-CoV-2 virus BA.2.86 (nicknamed “Pirola”) has raised concerns about its potential impact on public health and personal health as it has many mutations with respect to previous variants. We conducted an in silico analysis of neutralizing antibody binding to BA.2.86. Selected antibodies came from patients who were vaccinated and/or infected. We predicted binding affinity between BA.2.86 and antibodies. We also predicted the binding affinity between the same antibodies and several previous SARS-CoV2 variants (Wuhan and Omicron descendants BA.1, BA.2, and XBB.1.5). Additionally, we examined binding affinity between BA.2.86 and human angiotensin converting enzyme 2 (ACE2) receptor, a cell surface protein crucial for viral entry. We found no statistically significant difference in binding affinity between BA.2.86 and other variants, indicating a similar immune response. These findings contradict media reports of BA.2.86s high immune evasion potential based on its mutations. We discuss the implications of our findings and highlight the need for modeling and docking studies to go above and beyond mutation and basic serological neutralization analysis. Future research in this area will benefit from increased structural analyses of memory B-cell derived antibodies and should emphasize the importance of choosing appropriate samples for in silico studies to assess protection provided by vaccination and infection. This research contributes to understanding the BA.2.86 variants potential impact on public health. Moreover, we introduce new methodologies for predictive medicine in ongoing efforts to combat the evolving SARS-CoV-2 pandemic and prepare for other hazards.
</div>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2023.11.22.568364v3" target="_blank">Predicting Antibody and ACE2 Affinity for SARS-CoV-2 BA.2.86 and JN.1 with In Silico Protein Modeling and Docking</a>
</div></li>
<li><strong>Information bias of vaccine effectiveness estimation due to informed consent for national registration of COVID-19 vaccination</strong> -
<div>
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
Background: Registration in the Dutch national COVID-19 vaccination register requires consent from the vaccinee. This causes misclassification of non-consenting vaccinated persons as being unvaccinated. We quantified and corrected the resulting information bias in the estimation of vaccine effectiveness (VE). Methods: National data were used for the period dominated by the SARS-CoV-2 Delta variant (11 July to 15 November 2021). VE ((1-relative risk)*100%) against COVID-19 hospitalization and ICU admission was estimated for individuals 12-49, 50-69, and ≥70 years of age using negative binomial regression. Anonymous data on vaccinations administered by the Municipal Health Services were used to determine informed consent percentages and estimate corrected VEs by iteratively imputing corrected vaccination status. Absolute bias was calculated as the absolute change in VE; relative bias as uncorrected / corrected relative risk. Results: A total of 8,804 COVID-19 hospitalizations and 1,692 COVID-19 ICU admissions were observed. The bias was largest in the 70+ age group where the non-consent proportion was 7.0% and observed vaccination coverage was 87%: VE of primary vaccination against hospitalization changed from 75.5% (95% CI 73.5-77.4) before to 85.9% (95% CI 84.7-87.1) after correction (absolute bias -10.4 percentage point, relative bias 1.74). VE against ICU admission in this group was 88.7% (95% CI 86.2-90.8) before and 93.7% (95% CI 92.2-94.9) after correction (absolute bias -5.0 percentage point, relative bias 1.79). Conclusions: VE estimates can be substantially biased with modest non-consent percentages for registration of vaccination. Data on covariate specific non-consent percentages should be available to correct this bias.
</p>
</div>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2023.05.23.23290384v2" target="_blank">Information bias of vaccine effectiveness estimation due to informed consent for national registration of COVID-19 vaccination</a>
</div></li>
<li><strong>Robust SARS-CoV-2 Neutralizing Antibodies Sustained through Three Months Post XBB.1.5 mRNA Vaccine Booster</strong> -
<div>
SARS-CoV-2-neutralizing antibodies were substantially expanded one month after a shot of XBB.1.5 monovalent mRNA vaccine (XBB.1.5 MV) booster, but the durability of this response remained unknown. Here, we addressed this question by performing neutralization assays on four viral variants (D614G, BA.5, XBB.1.5, and JN.1) using sera from 39 adult participants obtained at ~1 month and ~3 months post an XBB.1.5 MV booster. Our findings indicate that the resultant neutralizing antibody titers were robust and generally maintained at stable levels for the study period, similar to those following XBB infection. Importantly, this durability of neutralizing antibody titers contrasts with the decline observed after a booster of the original monovalent or BA.5 bivalent mRNA vaccine. Our results are in line with the recent national data from the Centers for Disease Control and Prevention, showing the efficacy against symptomatic SARS-CoV-2 infection is sustained for up to 4 months after an XBB.1.5 MV booster.
</div>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2024.02.16.580687v1" target="_blank">Robust SARS-CoV-2 Neutralizing Antibodies Sustained through Three Months Post XBB.1.5 mRNA Vaccine Booster</a>
</div></li>
<li><strong>COVID-19 during pregnancy alters circulating extracellular vesicle cargo and their effects on trophoblast</strong> -
<div>
SARS-CoV-2 infection and the resulting coronavirus disease (COVID-19) complicate pregnancies as the result of placental dysfunction which increases the risk of adverse pregnancy outcomes. While abnormal placental pathology resulting from COVID-19 is common, direct infection of the placenta is rare. This suggests maternal response to infection is responsible for placental dysfunction. We hypothesized that maternal circulating extracellular vesicles (EVs) are altered by COVID-19 during pregnancy and contribute to placental dysfunction. To examine this, we characterized maternal circulating EVs from pregnancies complicated by COVID-19 and tested their functional effect on trophoblast cells in vitro. We found the timing of infection is a major determinant of the effect of COVID-19 on circulating EVs. Additionally, we found differentially expressed EV mRNA cargo in COVID-19 groups compared to Controls that regulates the differential gene expression induced by COVID-19 in the placenta. In vitro exposure of trophoblasts to EVs isolated from patients with an active infection, but not EVs isolated from Controls, reduced key trophoblast functions including hormone production and invasion. This demonstrates circulating EVs from subjects with an active infection disrupt vital trophoblast function. This study determined that COVID-19 has a long-lasting effect on circulating EVs and circulating EVs are likely to participate in the placental dysfunction induced by COVID-19.
</div>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2024.02.17.580824v1" target="_blank">COVID-19 during pregnancy alters circulating extracellular vesicle cargo and their effects on trophoblast</a>
</div></li>
<li><strong>A Genome-Wide Arrayed CRISPR Screen Reveals PLSCR1 as an Intrinsic Barrier to SARS-CoV-2 Entry</strong> -
<div>
Interferons (IFNs) play a crucial role in the regulation and evolution of host-virus interactions. Here, we conducted a genome-wide arrayed CRISPR knockout screen in the presence and absence of IFN to identify human genes that influence SARS-CoV-2 infection. We then performed an integrated analysis of genes interacting with SARS-CoV-2, drawing from a selection of 67 large-scale studies, including our own. We identified 28 genes of high relevance in both human genetic studies of COVID-19 patients and functional genetic screens in cell culture, with many related to the IFN pathway. Among these was the IFN-stimulated gene PLSCR1. PLSCR1 did not require IFN induction to restrict SARS-CoV-2 and did not contribute to IFN signaling. Instead, PLSCR1 specifically restricted spike-mediated SARS-CoV-2 entry. The PLSCR1-mediated restriction was alleviated by TMPRSS2 over-expression, suggesting that PLSCR1 primarily restricts the endocytic entry route. In addition, recent SARS-CoV-2 variants have adapted to circumvent the PLSCR1 barrier via currently undetermined mechanisms. Our study contributes to understanding the association between PLSCR1 variants and severe COVID-19 cases reported in a recent GWAS.
</div>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2024.02.16.580725v1" target="_blank">A Genome-Wide Arrayed CRISPR Screen Reveals PLSCR1 as an Intrinsic Barrier to SARS-CoV-2 Entry</a>
</div></li>
<li><strong>Non-Consensual Sex among Japanese Women in the COVID-19 Pandemic: A Large-Scale Nationwide Survey-Based Study</strong> -
<div>
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
Background: Non-consensual sex including rape and sexual assault has been a global concern and may have been influenced by the COVID-19 pandemic, however the information on this topic is limited. Therefore, our objective was to survey the incidence rate of non-consensual sex among Japanese women aged 15-79 years between April to September 2020, following the COVID-19 pandemic in Japan.   Materials and Methods: We utilized the data obtained from a nationwide, cross-sectional internet survey conducted in Japan between August and September 2020. Sampling weights were applied to calculate national estimates, and multivariable logistic regression was performed to identify factors associated with non-consensual sex. Data was extracted from a cross-sectional, web-based, self-administered survey of approximately 2.2 million individuals from the general public, including in men and women.   Results: Excluding men and responses with inconsistencies, the final analysis included 12,809 women participants, with 138 (1.1%) reporting experiencing non-consensual sex within a five-month period. Being aged 1529 years and having a worsened mental or economic status were associated with experiencing non-consensual sex.   Conclusions: Early intervention to prevent individuals from becoming victims of sexual harm should be extended to economically vulnerable and young women, especially during times of societal upheaval such as the COVID-19 pandemic. Additionally, Japan should prioritize the implementation of comprehensive education on the concept of sexual consent.
</p>
</div>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2024.02.16.24302967v1" target="_blank">Non-Consensual Sex among Japanese Women in the COVID-19 Pandemic: A Large-Scale Nationwide Survey-Based Study</a>
</div></li>
<li><strong>RISK OF THROMBOEMBOLISM AFTER COVID-19 VACCINATION AND COVID-19 INFECTION</strong> -
<div>
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
Background: Vaccine safety monitoring systems worldwide have reported cases of venous thromboembolism and arterial thromboembolism following a COVID-19 vaccination. However, evidence shows that the association between thromboembolism and SARS-CoV-2 infection is stronger, compared to SARS-CoV-2 vaccination. Hence, weighing the risks and benefits of vaccination should also encounter the roles of vaccination in reducing infection rate, and potentially indirectly lowering the risk of thromboembolism caused by infection. Methods: We conducted a self-controlled case series study (SCCS) from Dec 1st 2020 to 31st August 2022 (before the bivalent vaccine was available) to examinate the association between the first two doses Pfizer/Moderna vaccination and thrombotic events among patients in Corewell Health East (CHE, formerly known as Beaumont Health) healthcare system. We also investigated the effect SARS-CoV-2 infection on the risk of thrombosis events and observed a significant increased risk using the SCCS design. However, because of misclassification bias, SCCS indeed overestimated incidence rate ratio (IRR) of acute event after infection, we then proposed a case-control study addressing this misclassification issues and obtained odd ratio comparing effect of exposure on thrombosis and a subset of controls group. Finally, we analyzed the risk of thromboembolism between vaccinated and unvaccinated groups by a simple diagram, explaining possible factors that affects the probability of experiencing an acute thromboembolism event after a COVID-19 vaccination. Results: Using EHR data at Corewell East, we found an increased risk of thrombosis after the first two doses of COVID-19 vaccination, with incidence rate ratios after the first dose is 1.16 (CI: [1.04, 1.29]), and after the second dose of 1.19 (CI: [1.07,1.32]). The association between thromboembolism and SARS-Cov-2 infection depends on prior vaccination status, as the conditional OR among unvaccinated and vaccinated groups are 1.77 (CI: [1.48, 2.1]) and 1.34 (CI: [1.09, 1.66]) respectively. Encountering the vaccine efficacy (VE), receiving the COVID-19 vaccine decreases the risk of thromboembolism, and the benefits of COVID-19 vaccines are much stronger in the period of high infection rate.
</p>
</div>
<div class="article-link article-html-link">
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2024.02.12.24302535v1" target="_blank">RISK OF THROMBOEMBOLISM AFTER COVID-19 VACCINATION AND COVID-19 INFECTION</a>
</div></li>
</ul>
<h1 data-aos="fade-right" id="from-clinical-trials">From Clinical Trials</h1>
<ul>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Attention Training for COVID-19 Related Distress</strong> - <b>Conditions</b>: Anxiety <br/><b>Interventions</b>: Behavioral: Attention Bias Modification; Behavioral: Attention Control Training; Behavioral: Neutral training <br/><b>Sponsors</b>: Palo Alto University <br/><b>Not yet recruiting</b></p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>World Health Organization (WHO) , COVID19 Case Series of Post Covid 19 Rhino Orbito Cerebral Mucormycosis in Egypt</strong> - <b>Conditions</b>: Mucormycosis; Rhinocerebral (Etiology); COVID-19 <br/><b>Interventions</b>: Procedure: debridment <br/><b>Sponsors</b>: Nasser Institute For Research and Treatment <br/><b>Completed</b></p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Treatment of Post-COVID-19 With Hyperbaric Oxygen Therapy: a Randomized, Controlled Trial</strong> - <b>Conditions</b>: Post-COVID-19 Syndrome; Post-COVID Syndrome; Post COVID-19 Condition; Post-COVID Condition; Post COVID-19 Condition, Unspecified; Long COVID; Long Covid19 <br/><b>Interventions</b>: Drug: Hyperbaric oxygen <br/><b>Sponsors</b>: Erasmus Medical Center; Da Vinci Clinic; HGC Rijswijk <br/><b>Not yet recruiting</b></p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Mindfulness-based Mobile Applications Program</strong> - <b>Conditions</b>: COVID-19; Cell Phone Use; Nurse; Mental Health <br/><b>Interventions</b>: Device: mindfulness-based mobile applications program <br/><b>Sponsors</b>: Yu-Chien Huang <br/><b>Completed</b></p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Correlation of Antibody Response to COVID-19 Vaccination in Pregnant Woman and Transplacental Passage Into Cord Blood.</strong> - <b>Conditions</b>: Covid-19 <br/><b>Interventions</b>: Diagnostic Test: COVID-19 Spike Protein IgG Quantitative Antibody (CMIA) <br/><b>Sponsors</b>: Vachira Phuket Hospital <br/><b>Recruiting</b></p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>UNAIR Inactivated COVID-19 Vaccine as Homologue Booster (Immunobridging Study)</strong> - <b>Conditions</b>: COVID-19 Pandemic; COVID-19 Vaccines; COVID-19 Virus Disease <br/><b>Interventions</b>: Biological: INAVAC (Vaksin Merah Putih - UA- SARS CoV-2 (Vero Cell Inactivated) 5 μg <br/><b>Sponsors</b>: Dr. Soetomo General Hospital; Universitas Airlangga; Biotis Pharmaceuticals, Indonesia; Indonesia-MoH <br/><b>Recruiting</b></p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>High-definition Transcranial Direct Current Ctimulation and Chlorella Pyrenoidosa to Reduce Cardiovascular Risk</strong> - <b>Conditions</b>: Cardiovascular Diseases; Long Covid19 <br/><b>Interventions</b>: Other: High Definition-transcranial Direct Current Stimulation; Dietary Supplement: Chlorella Pyrenoidosa <br/><b>Sponsors</b>: Federal University of Paraíba; City University of New York <br/><b>Recruiting</b></p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Safety and Immunogenicity of a Sub-unit Protein CD40.RBDv Bivalent COVID-19 Vaccine, Adjuvanted or Not, as a Booster in Volunteers.</strong> - <b>Conditions</b>: COVID-19 <br/><b>Interventions</b>: Drug: CD40.RBDv vaccin (SARS-Cov2 Vaccin) <br/><b>Sponsors</b>: ANRS, Emerging Infectious Diseases; LinKinVax; Vaccine Research Institute (VRI), France <br/><b>Not yet recruiting</b></p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>SGB for COVID-induced Parosmia</strong> - <b>Conditions</b>: COVID-19-Induced Parosmia <br/><b>Interventions</b>: Drug: Stellate Ganglion Block; Drug: Placebo Sham Injection <br/><b>Sponsors</b>: Washington University School of Medicine <br/><b>Recruiting</b></p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Investigating the Effectiveness of Vimida</strong> - <b>Conditions</b>: Long COVID; Post COVID-19 Condition <br/><b>Interventions</b>: Behavioral: vimida <br/><b>Sponsors</b>: Gaia AG; Medical School Hamburg; Institut Long-Covid Rostock <br/><b>Not yet recruiting</b></p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Effects of Physiotherapy Via Video Calls in Patients With COVID-19</strong> - <b>Conditions</b>: COVID-19; Long COVID-19; Cardiopulmonary Function; Physical Function <br/><b>Interventions</b>: Behavioral: Exercise training <br/><b>Sponsors</b>: Chulabhorn Hospital <br/><b>Active, not recruiting</b></p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Acute Cardiovascular Responses to a Single Exercise Session in Patients With Post-COVID-19 Syndrome</strong> - <b>Conditions</b>: Post-Acute COVID-19 Syndrome <br/><b>Interventions</b>: Behavioral: Exercise session; Behavioral: Control session <br/><b>Sponsors</b>: University of Nove de Julho <br/><b>Not yet recruiting</b></p></li>
</ul>
<h1 data-aos="fade-right" id="from-pubmed">From PubMed</h1>
<ul>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A case report of QTc prolongation: Drug induced or myocarditis in Severe Acute Respiratory Syndrome Coronavirus 2</strong> - Remdesivir is a nucleotide prodrug of an adenosine analog. It binds to the viral Ribonucleic Acid (RNA)-dependent RNA polymerase and inhibits viral replication by terminating RNA transcription prematurely. Remdesivir has demonstrated in vitro and in vivo activity against Severe Acute Respiratory Syndrome Coronavirus 2; it also acts in vitro neutralization activity against the Omicron variant and its subvariants. We reported a 54-years-old woman admitted with Coronavirus disease 2019. Considering…</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Network analysis-guided drug repurposing strategies targeting LPAR receptor in the interplay of COVID, Alzheimers, and diabetes</strong> - The COVID-19 pandemic caused by the SARS-CoV-2 virus has greatly affected global health. Emerging evidence suggests a complex interplay between Alzheimers disease (AD), diabetes (DM), and COVID-19. Given COVID-19s involvement in the increased risk of other diseases, there is an urgent need to identify novel targets and drugs to combat these interconnected health challenges. Lysophosphatidic acid receptors (LPARs), belonging to the G protein-coupled receptor family, have been implicated in…</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Synergistic inhibition effects of andrographolide and baicalin on coronavirus mechanisms by downregulation of ACE2 protein level</strong> - The SARS-CoV-2 virus, belonging to the Coronavirus genus, which poses a threat to human health worldwide. Current therapies focus on inhibiting viral replication or using anti-inflammatory/immunomodulatory compounds to enhance host immunity. This makes the active ingredients of traditional Chinese medicine compounds ideal therapies due to their proven safety and minimal toxicity. Previous research suggests that andrographolide and baicalin inhibit coronaviruses; however, their synergistic…</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Novel high-yield potato protease inhibitor panels block a wide array of proteases involved in viral infection and crucial tissue damage</strong> - Viruses critically rely on various proteases to ensure host cell entry and replication. In response to viral infection, the host will induce acute tissue inflammation pulled by granulocytes. Upon hyperactivation, neutrophil granulocytes may cause undue tissue damage through proteolytic degradation of the extracellular matrix. Here, we assess the potential of protease inhibitors (PI) derived from potatoes in inhibiting viral infection and reducing tissue damage. The original full spectrum of…</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Individual ingredients of NP-101 (Thymoquinone formula) inhibit SARS-CoV-2 pseudovirus infection</strong> - Thymoquinone TQ, an active ingredient of Nigella Sativa, has been shown to inhibit COVID-19 symptoms in clinical trials. Thymoquinone Formulation (TQF or NP-101) is developed as a novel enteric-coated medication derivative from Nigella Sativa. TQF consists of TQ with a favorable concentration and fatty acids, including palmitic, oleic, and linoleic acids. In this study, we aimed to investigate the roles of individual ingredients of TQF on infection of SARS-CoV-2 variants in-vitro, by utilizing…</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Design, synthesis and biological evaluation of novel 1,2,4a,5-tetrahydro-4H-benzo[b][1,4]oxazino[4,3-d][1,4]oxazine-based AAK1 inhibitors with anti-viral property against SARS-CoV-2</strong> - Coronavirus entry into host cells hinges on the interaction between the spike glycoprotein of the virus and the cell-surface receptor angiotensin-converting enzyme 2 (ACE2), initiating the subsequent clathrin-mediated endocytosis (CME) pathway. AP-2-associated protein kinase 1 (AAK1) holds a pivotal role in this pathway, regulating CME by modulating the phosphorylation of the μ subunit of adaptor protein 2 (AP2M1). Herein, we report a series of novel AAK1 inhibitors based on previously reported…</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Role of epinephrine in attenuating cytokine storm, decreasing ferritin, and inhibiting ferroptosis in SARS-CoV-2</strong> - CONCLUSION: Epinephrine may attenuate CS and inhibit ferroptosis which is an iron-dependent, non-apoptotic mode of cell death. Epi interacts with ferric and/or ferrous iron and built a stable complex that impedes activation of beta-adrenergic receptors. Epi may cause marked decrease of ferritin and other inflammatory markers. Epi may be used to decrease iron overload which is associated with many medical diseases like type 2 diabetes mellitus and cardiometabolic diseases such as coronary heart…</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Challenges Experienced by Saudi Patients With Cancer and Their Family Caregivers in Using Digital Healthcare Technology Platforms in the COVID-19 Pandemic</strong> - COVID-19 has provided a unique boost to the use of digital healthcare technology, putting many vulnerable people at risk of digital exclusion. To promote digital healthcare equity, it is important to identify the challenges that may inhibit cancer patients and family caregivers from benefiting from such technology. This study explored the challenges that cancer patients and family caregivers experience in using digital healthcare technology platforms during the COVID-19 pandemic. A qualitative…</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Inhibition of SARS-CoV-2 replication by a ssDNA aptamer targeting the nucleocapsid protein</strong> - The nucleocapsid protein of SARS-CoV-2 plays significant roles in viral assembly, immune evasion, and viral stability. Due to its immunogenicity, high expression levels during COVID-19, and conservation across viral strains, it represents an attractive target for antiviral treatment. In this study, we identified and characterized a single-stranded DNA aptamer, N-Apt17, which effectively disrupts the liquid-liquid phase separation (LLPS) mediated by the N protein. To enhance the aptamers…</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Transcriptional regulation of SARS-CoV-2 receptor ACE2 by SP1</strong> - Angiotensin-converting enzyme 2 (ACE2) is a major cell entry receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The induction of ACE2 expression may serve as a strategy by SARS-CoV-2 to facilitate its propagation. However, the regulatory mechanisms of ACE2 expression after viral infection remain largely unknown. Using 45 different luciferase reporters, the transcription factors SP1 and HNF4α were found to positively and negatively regulate ACE2 expression, respectively,…</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Anemoside B4 inhibits SARS-CoV-2 replication in vitro and in vivo</strong> - CONCLUSION: Our results indicated that AB4 inhibited SARS-CoV-2 replication through the RLR pathways and moderated the RNA metabolism, suggesting that it would be a potential lead compound for the development of anti-SARS-CoV-2 drugs.</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Targeting host-virus interactions: in silico analysis of the binding of human milk oligosaccharides to viral proteins involved in respiratory infections</strong> - Respiratory viral infections, a major public health concern, necessitate continuous development of novel antiviral strategies, particularly in the face of emerging and re-emerging pathogens. In this study, we explored the potential of human milk oligosaccharides (HMOs) as broad-spectrum antiviral agents against key respiratory viruses. By examining the structural mimicry of host cell receptors and their known biological functions, including antiviral activities, we assessed the ability of HMOs…</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Integrated network pharmacology and experimental validation-based approach to reveal the underlying mechanisms and key material basis of Jinhua Qinggan granules against acute lung injury</strong> - CONCLUSIONS: In summary, our finding clarified the underlying mechanisms and material basis of JHQG therapy for ALI by integrated network pharmacology and experimental validation-based strategy.</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Molnupiravir inhibits human norovirus and rotavirus replication in 3D human intestinal enteroids</strong> - Human norovirus (HuNoV) and human rotavirus (HRV) are the leading causes of gastrointestinal diarrhea. There are no approved antivirals and rotavirus vaccines are insufficient to cease HRV associated mortality. Furthermore, treatment of chronically infected immunocompromised patients is limited to off-label compassionate use of repurposed antivirals with limited efficacy, highlighting the urgent need of potent and specific antivirals for HuNoV and HRV. Recently, a major breakthrough in the in…</p></li>
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Type-II IFN inhibits SARS-CoV-2 replication in human lung epithelial cells and ex vivo human lung tissues through indoleamine 2,3-dioxygenase-mediated pathways</strong> - Interferons (IFNs) are critical for immune defense against pathogens. While type-I and -III IFNs have been reported to inhibit SARS-CoV-2 replication, the antiviral effect and mechanism of type-II IFN against SARS-CoV-2 remain largely unknown. Here, we evaluate the antiviral activity of type-II IFN (IFNγ) using human lung epithelial cells (Calu3) and ex vivo human lung tissues. In this study, we found that IFNγ suppresses SARS-CoV-2 replication in both Calu3 cells and ex vivo human lung tissues….</p></li>
</ul>
<h1 data-aos="fade-right" id="from-patent-search">From Patent Search</h1>
<script>AOS.init();</script></body></html>