213 lines
56 KiB
HTML
213 lines
56 KiB
HTML
|
<!DOCTYPE html>
|
|||
|
<html lang="" xml:lang="" xmlns="http://www.w3.org/1999/xhtml"><head>
|
|||
|
<meta charset="utf-8"/>
|
|||
|
<meta content="pandoc" name="generator"/>
|
|||
|
<meta content="width=device-width, initial-scale=1.0, user-scalable=yes" name="viewport"/>
|
|||
|
<title>10 August, 2021</title>
|
|||
|
<style type="text/css">
|
|||
|
code{white-space: pre-wrap;}
|
|||
|
span.smallcaps{font-variant: small-caps;}
|
|||
|
span.underline{text-decoration: underline;}
|
|||
|
div.column{display: inline-block; vertical-align: top; width: 50%;}
|
|||
|
</style>
|
|||
|
<title>Covid-19 Sentry</title><meta content="width=device-width, initial-scale=1.0" name="viewport"/><link href="styles/simple.css" rel="stylesheet"/><link href="../styles/simple.css" rel="stylesheet"/><link href="https://unpkg.com/aos@2.3.1/dist/aos.css" rel="stylesheet"/><script src="https://unpkg.com/aos@2.3.1/dist/aos.js"></script></head>
|
|||
|
<body>
|
|||
|
<h1 data-aos="fade-down" id="covid-19-sentry">Covid-19 Sentry</h1>
|
|||
|
<h1 data-aos="fade-right" data-aos-anchor-placement="top-bottom" id="contents">Contents</h1>
|
|||
|
<ul>
|
|||
|
<li><a href="#from-preprints">From Preprints</a></li>
|
|||
|
<li><a href="#from-clinical-trials">From Clinical Trials</a></li>
|
|||
|
<li><a href="#from-pubmed">From PubMed</a></li>
|
|||
|
<li><a href="#from-patent-search">From Patent Search</a></li>
|
|||
|
</ul>
|
|||
|
<h1 data-aos="fade-right" id="from-preprints">From Preprints</h1>
|
|||
|
<ul>
|
|||
|
<li><strong>Regulatory Focus and Perceived Safety with Casual Partners: Implications for Perceived Risk and Casual Sex Intentions During the COVID-19 Pandemic</strong> -
|
|||
|
<div>
|
|||
|
Motives for security (i.e., prevention focus) or pleasure (i.e., promotion focus) help regulate risk perceptions. Individuals focused on prevention (vs. promotion) tend to be more aware of health risks, more careful in their sexual behaviors, and less likely to take risks with casual partners. However, feeling safer with casual partners seem to mitigate some of these risks. We administered an online survey in English, Spanish, and German at the onset of the COVID-19 pandemic to 550 participants who were single (57.6% women). Participants predominantly focused on prevention were less fearful of COVID-19 infection, perceived to be well informed about COVID-19, and retrieved their information from scientific sources. Participants predominantly focused on promotion were more fearful of COVID-19 infection and perceived to be well informed about COVID-19 but retrieved their information from non-scientific sources. These participants also had stronger intentions to have casual sex if they felt safer (vs. less safe) with their casual partners. Our findings show the importance of individual motivations and interpersonal dynamics for risk perception and sexual activity during the pandemic.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://psyarxiv.com/wsg89/" target="_blank">Regulatory Focus and Perceived Safety with Casual Partners: Implications for Perceived Risk and Casual Sex Intentions During the COVID-19 Pandemic</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Character growth following collective life events: A study on perceived and measured changes in character strengths during the first wave of the COVID-19 pandemic</strong> -
|
|||
|
<div>
|
|||
|
Did the COVID-19 pandemic promote character growth? Studies using sequential samples suggest that collective life events can result in character growth, but their conclusions have been questioned. This study used three approaches to examine character growth during the first wave of the pandemic: perceived changes in oneself and in a close other, and a longitudinal analysis of changes. Additionally, we tested whether character strengths assessed before the pandemic predicted specific instances of growth, that is, engagement in volunteering and compliance with regulations during the pandemic. German-speaking participants (N = 366, 76.5% female, mean age: 45.33 years) who had completed an assessment of character strengths before the pandemic reported on perceived changes in character strengths, engagement in volunteering, and compliance with regulations. A subsample also completed a second assessment of character strengths. The results showed that (a) participants reported perceived changes for most character strengths in both themselves and close others, while (b) longitudinal increases were only observed for humility and prudence. Pre-crisis character strengths predicted (c) engagement in volunteering and (d) compliance with regulations. We conclude that actual character growth was smaller than the perceived changes but that the character strengths did predict relevant behaviors related to the COVID-19 pandemic.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://psyarxiv.com/hm5at/" target="_blank">Character growth following collective life events: A study on perceived and measured changes in character strengths during the first wave of the COVID-19 pandemic</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Nature’s contributions in coping with a pandemic in the 21st century: A narrative review of evidence during COVID-19</strong> -
|
|||
|
<div>
|
|||
|
While COVID-19 lockdowns have slowed coronavirus transmission, such structural measures also have unintended consequences on mental and physical health. Growing evidence shows that exposure to the natural environment (e.g., blue- green spaces) can improve human health and wellbeing. In this narrative review, we synthesized the evidence about nature’s contributions to health and wellbeing during the first year of the COVID-19 pandemic. We found that during lockdowns, people experienced multiple types of nature, including both outdoors and indoors. Frequency of visits to outdoor natural areas (i.e., public parks) depended on lockdown severity and socio-cultural contexts. Other forms of nature exposure, such as spending time in private gardens and viewing outdoor greenery from windows, may have increased. The majority of the evidence suggests nature exposure during lockdowns was associated with less depression, anxiety, stress, and more happiness and life satisfaction. Additionally, nature exposure was correlated with less physical inactivity and fewer sleep disturbances. Evidence was mixed regarding associations between nature exposure and COVID- related health outcomes, while nature visits might be associated with greater rates of COVID-19 transmission and mortality when proper social distancing measures were not maintained. Findings on whether nature exposure during lockdowns helped ameliorate health inequities by, for example, impacting the health of lower-socioeconomic populations more than their higher-socioeconomic counterparts, were mixed. Based on these findings, we argue that nature exposure may have buffered the negative mental and behavioral impacts of lockdowns during the first year of the COVID-19 pandemic. Recovery and resilience during the current and future public health crises might be improved with nature-based solutions, interventions, designs, and governance.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://ecoevorxiv.org/j2pa8/" target="_blank">Nature’s contributions in coping with a pandemic in the 21st century: A narrative review of evidence during COVID-19</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Individual Preparedness for Distant Wildfires and the Delta Variant in the United States: A Survey of 2,250 US Residents</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
Background COVID-19 virus travels in the air and collects indoors through tiny particles from exhaled breath, and remains a growing concern globally especially since case studies of vaccine breakthrough infections are being reported. Last year9s wildfires resulted in the worst air quality on record in the Western US due to toxic wildfire smoke (PM 2.5 pollution) traveling from distant wildfires and this year can potentially be even worse due to extremely dry conditions. Precautions such as high-filtration (Hi-Fi) masks and HEPA air purifiers are useful to effectively reduce inhalation of most of these toxic aerosols. Whereas the lack of fit or filtration in a mask or use of an air purifier of insufficient size (capacity) for the room can inadvertently render these precautions ineffective. Here we investigate the public9s concerns about wildfires and the COVID-19 variants (e.g. delta), their use of aerosol precautions, and whether these are being done in an effective manner. Methods We conducted possibly the largest, national survey (2,250 US residents) to date in order to understand the public concerns about airborne threats and their usage of airborne (aerosol) precautions. Results We find over 66% of US residents surveyed are worried about inhaling COVID-19 and its variants, and 52% are worried about toxic wildfire particles in the air. In the mountain and pacific regions the latter rises to 73%. Only a quarter are using masks with higher filtration and high level of fit (or Hi-Fi masks e.g. N95 or similar such as elastomeric N95 or KF94). Two-thirds are still using loose-fitting cloth or surgical masks. Just over 40% of respondents report using air purifiers at home, and of this group only 40% use it in their bedroom where they sleep. Of those using air purifiers, the majority said they chose the size of their air purifier based on “most popular” models, “recommendations,” or “reviews.” However, of those using air purifiers only 42% reported doing a calculation (or using a calculator) to estimate the right size of air purifier needed for the room they are using it in. Notably, a much higher percentage of people (than average) reported use of Hi-Fi masks and home air purifiers in certain occupations such as doctors, healthcare, first responders, public safety, engineering, military, and construction. Conclusion National survey data suggests most Americans are worried about wildfire smoke and Covid variants (e.g. delta variant) but a majority are not prepared for it. This data reveals five specific things that can be immediately done by a majority of Americans with off-the-shelf products to prepare for these and other aerosolized risks (1) use HEPA air cleaners in rooms wherever significant time is spent such as bedrooms, living rooms, classrooms, offices, etc. (2) correctly estimate the size of the HEPA air cleaner for each room using a purpose-built calculator if needed (3) override the auto setting to maximum speed in shared spaces such as classrooms and offices since the fan- speed sensors in HEPA air cleaners typically detect wildfire smoke but not accumulation of virus from exhaled breath (4) use Hi-Fi masks instead of the more common cloth masks and loose-fitting surgical masks e.g. N95, elastomerics, KF94, surgical masks with fitters, etc. (5) “stock up” on HEPA air cleaners and Hi-Fi masks as needed in advance of the Western US wildfire season when there are expected to be shortages once the air quality rapidly deteriorates. Widespread access and adoption of these same aerosol precautions will be useful for future pandemics and national biodefense.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.07.24.21260660v2" target="_blank">Individual Preparedness for Distant Wildfires and the Delta Variant in the United States: A Survey of 2,250 US Residents</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Comparison of two highly-effective mRNA vaccines for COVID-19 during periods of Alpha and Delta variant prevalence</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
Although clinical trials and real-world studies have affirmed the effectiveness and safety of the FDA-authorized COVID-19 vaccines, reports of breakthrough infections and persistent emergence of new variants highlight the need to vigilantly monitor the effectiveness of these vaccines. Here we compare the effectiveness of two full-length Spike protein-encoding mRNA vaccines from Moderna (mRNA-1273) and Pfizer/BioNTech (BNT162b2) in the Mayo Clinic Health System over time from January to July 2021, during which either the Alpha or Delta variant was highly prevalent. We defined cohorts of vaccinated and unvaccinated individuals from Minnesota (n = 25,589 each) matched on age, sex, race, history of prior SARS-CoV-2 PCR testing, and date of full vaccination. Both vaccines were highly effective during this study period against SARS-CoV-2 infection (mRNA-1273: 86%, 95%CI: 81-90.6%; BNT162b2: 76%, 95%CI: 69-81%) and COVID-19 associated hospitalization (mRNA-1273: 91.6%, 95% CI: 81-97%; BNT162b2: 85%, 95% CI: 73-93%). In July, vaccine effectiveness against hospitalization has remained high (mRNA-1273: 81%, 95% CI: 33-96.3%; BNT162b2: 75%, 95% CI: 24-93.9%), but effectiveness against infection was lower for both vaccines (mRNA-1273: 76%, 95% CI: 58-87%; BNT162b2: 42%, 95% CI: 13-62%), with a more pronounced reduction for BNT162b2. Notably, the Delta variant prevalence in Minnesota increased from 0.7% in May to over 70% in July whereas the Alpha variant prevalence decreased from 85% to 13% over the same time period. Comparing rates of infection between matched individuals fully vaccinated with mRNA-1273 versus BNT162b2 across Mayo Clinic Health System sites in multiple states (Minnesota, Wisconsin, Arizona, Florida, and Iowa), mRNA-1273 conferred a two-fold risk reduction against breakthrough infection compared to BNT162b2 (IRR = 0.50, 95% CI: 0.39-0.64). In Florida, which is currently experiencing its largest COVID-19 surge to date, the risk of infection in July after full vaccination with mRNA-1273 was about 60% lower than after full vaccination with BNT162b2 (IRR: 0.39, 95% CI: 0.24-0.62). Our observational study highlights that while both mRNA COVID-19 vaccines strongly protect against infection and severe disease, further evaluation of mechanisms underlying differences in their effectiveness such as dosing regimens and vaccine composition are warranted.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.08.06.21261707v2" target="_blank">Comparison of two highly- effective mRNA vaccines for COVID-19 during periods of Alpha and Delta variant prevalence</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Neuro-COVID long-haulers exhibit broad dysfunction in T cell memory generation and responses to vaccination</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
The high prevalence of post-acute sequelae of SARS-CoV-2 infection (PASC) is a significant health concern. In particular, virus-specific immunity in patients who suffer from chronic neurologic symptoms after mild acute COVID remain poorly understood. Here, we report that neuro-PASC patients have a specific signature composed of humoral and cellular immune responses that are biased towards different structural proteins compared to healthy COVID convalescents. Interestingly, the severity of cognitive deficits or quality of life markers in neuro-PASC patients are associated with reduced effector molecule expression in memory T cells. Furthermore, we demonstrate that T cell responses to SARS-CoV-2 mRNA vaccines are aberrantly elevated in longitudinally sampled neuro-PASC patients compared with healthy COVID convalescents. These data provide a framework for the rational design of diagnostics and predictive biomarkers for long- COVID disease, as well as a blueprint for improved therapeutics.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.08.08.21261763v2" target="_blank">Neuro-COVID long-haulers exhibit broad dysfunction in T cell memory generation and responses to vaccination</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>COVID-19 wastewater surveillance in rural communities: Comparison of lagoon and pumping station samples</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
Wastewater-based epidemiology/wastewater surveillance has been a topic of significant interest over the last year due to its application in SARS-CoV-2 surveillance to track prevalence of COVID-19 in communities. Although SARS- CoV-2 surveillance has been applied in more than 50 countries to date, the application of this surveillance has been largely focused on relatively affluent urban and peri-urban communities. As such, there is a knowledge gap regarding the implementation of reliable wastewater surveillance in small and rural communities for the purpose of tracking rates of incidence of COVID-19 and other pathogens or biomarkers. This study examines the relationships existing between SARS- CoV-2 viral signal from wastewater samples harvested from an upstream pumping station and from an access port at a downstream wastewater treatment lagoon with the community9s COVID-19 rate of incidence (measured as percent test positivity) in a small, rural community in Canada. Real-time quantitative polymerase chain reaction (RT-qPCR) targeting the N1 and N2 genes of SARS-CoV-2 demonstrate that all 24-hr composite samples harvested from the pumping station over a period of 5.5 weeks had strong viral signal, while all samples 24-hr composite samples harvested from the lagoon over the same period were below the limit of quantification. RNA concentrations and integrity of samples harvested from the lagoon were both lower and more variable than from samples from the upstream pumping station collected on the same date, indicating a higher overall stability of SARS-CoV-2 RNA upstream of the lagoon. Additionally, measurements of PMMoV signal in wastewater allowed to normalize SARS-CoV-2 viral signal for fecal matter content, permitting the detection of actual changes in community prevalence with a high level of granularity. As a result, in sewered small and rural communities or low-income regions operating wastewater lagoons, samples for wastewater surveillance should be harvested from pumping stations or the sewershed as opposed to lagoons.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.05.01.21256458v2" target="_blank">COVID-19 wastewater surveillance in rural communities: Comparison of lagoon and pumping station samples</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Diagnosis of COVID-19 from X-rays Using Combined CNN-RNN Architecture with Transfer Learning</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
The confrontation of COVID-19 pandemic has become one of the promising challenges of the world healthcare. Accurate and fast diagnosis of COVID-19 cases is essential for correct medical treatment to control this pandemic. Compared with the reverse-transcription polymerase chain reaction (RT-PCR) method, chest radiography imaging techniques are shown to be more effective to detect coronavirus. For the limitation of available medical images, transfer learning is better suited to classify patterns in medical images. This paper presents a combined architecture of convolutional neural network (CNN) and recurrent neural network (RNN) to diagnose COVID-19 from chest X-rays. The deep transfer techniques used in this experiment are VGG19, DenseNet121, InceptionV3, and Inception-ResNetV2. CNN is used to extract complex features from samples and classified them using RNN. The VGG19-RNN architecture achieved the best performance among all the networks in terms of accuracy in our experiments. Finally, Gradient-weighted Class Activation Mapping (Grad-CAM) was used to visualize class-specific regions of images that are responsible to make decision. The system achieved promising results compared to other existing systems and might be validated in the future when more samples would be available. The experiment demonstrated a good alternative method to diagnose COVID-19 for medical staff.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2020.08.24.20181339v2" target="_blank">Diagnosis of COVID-19 from X-rays Using Combined CNN-RNN Architecture with Transfer Learning</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Did COVID-19 vaccine roll-out increase vaccine hesitancy? Evidence from 28 European countries</strong> -
|
|||
|
<div>
|
|||
|
Vaccine hesitancy is a major concern in ending the COVID-19 pandemic. This paper analyzes trends in vaccine hesitancy across 28 European countries for the period 12 February - 28 March 2021. Currently, four main vaccines have been approved by the European Medical Agency. One of them, AstraZeneca, has been linked with deep-vein thrombosis. This controversy led to its suspension in 17 European countries. We investigate the potential impact of the AstraZeneca suspension on vaccine hesitancy, making two substantial contributions. Firstly, we focus on the AstraZeneca controversy itself, asking if the event increased vaccine hesitancy. Secondly, we assess how a particular policy implementation, i.e., the decision to suspend the AstraZeneca vaccine, affected vaccine hesitancy. The results suggest that vaccine hesitancy grew steadily from the very beginning of the vaccine roll-out. Instead, the AstraZeneca suspension made a modest contribution to increased hesitancy.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://osf.io/preprints/socarxiv/f627u/" target="_blank">Did COVID-19 vaccine roll-out increase vaccine hesitancy? Evidence from 28 European countries</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>High vaccine effectiveness against COVID-19 infection and severe disease among residents and staff of long-term care facilities in Norway, November - June 2021</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
COVID-19 has caused high morbidity and mortality in long-term care facilities (LTCFs) worldwide. We estimated vaccine effectiveness (VE) among residents and health care workers (HCWs) in LTCFs using Cox regressions. The VE against SARS-CoV-2 infection was 81.5 (95%CI: 75.3-86.1 82.7%) and 81.4% (95%CI: 74.5-86.4%) 7 days or more after 2nd vaccine dose among residents and staff respectively. The VE against COVID-19 associated death was 93.1% among residents, no hospitalisations occurred among HCW 7 days or more after 2nd dose.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html- link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.08.08.21261357v1" target="_blank">High vaccine effectiveness against COVID-19 infection and severe disease among residents and staff of long-term care facilities in Norway, November - June 2021</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Anti-CD38 therapy impairs SARS-CoV-2 vaccine response in multiple myeloma patients</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
Multiple myeloma (MM) patients are at risk of fatal outcome after SARS-CoV-2 infection. Preliminary data suggest that MM patients have an impaired response to vaccination. This prospective study analyzed the humoral and cellular immune responses to two doses of BNT162b2 in 72 MM patients, including 48 receiving anti-CD38 immunotherapy. Results evidenced that MM patients display lower levels of SARS-CoV-2 specific IgG and IgA antibodies and decreased neutralization of alpha and delta variants when compared to healthy controls. They also showed decreased numbers of circulating IFNγ-producing Spike SARS-CoV-2 specific T lymphocytes. This defective immune response was particularly marked in patients receiving anti-CD38 immunotherapy. Furthermore, a retrospective investigation of MM patients among COVID-19-related death in the Paris area suggested a limited efficacy of BNT162b2 in patients treated with anti-CD38. Overall, these results show a decreased immunogenicity of BNT162b2 in MM patients and stress the need for novel strategies to improve SARS-CoV-2 prophylaxis in immunocompromised individuals.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.08.08.21261769v1" target="_blank">Anti-CD38 therapy impairs SARS-CoV-2 vaccine response in multiple myeloma patients</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Immunogenicity of BNT162b2 vaccine Against the Alpha and Delta Variants in Immunocompromised Patients</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
Background. The emergence of strains of SARS-CoV-2 exhibiting increase viral fitness and immune escape potential, such as the Delta variant (B.1.617.2), raises concerns in immunocompromised patients. To what extent Delta evades vaccine-induced immunity in immunocompromised individuals with systemic inflammatory diseases remains unclear. Methods. We conducted a prospective study in patients with systemic inflammatory diseases (cases) and controls receiving two doses of BNT162b2. Primary end points were anti-spike antibodies levels and cross-neutralization of Alpha and Delta variants after BNT162b2 vaccine. Secondary end points were T-cell responses, breakthrough infections and safety. Results. Sixty-four cases and 21 controls not previously infected with SARS-CoV-2 were analyzed. Kinetics of anti-spike IgG and IgA after BNT162b2 vaccine showed lower and delayed induction in cases, more pronounced with rituximab. Administration of two doses of BNT162b2 generated a neutralizing response against Alpha and Delta in 100% of controls, while sera from only one of rituximab-treated patients neutralized Alpha (5%) and none Delta. Other therapeutic regimens induced a partial neutralizing activity against Alpha, even lower against Delta. All controls and cases except those treated with methotrexate mounted a SARS-CoV-2 specific T-cell response. Methotrexate abrogated T-cell responses after one dose and dramatically impaired T-cell responses after 2 doses of BNT162b2. Conclusions. Rituximab and methotrexate differentially impact the immunogenicity of BNT162b2, by impairing B-cell and T-cell responses, respectively. Delta fully escapes the humoral response of individuals treated with rituximab. These findings support efforts to improve BNT162b2 immunogenicity in immunocompromised individuals (Funded by the Fonds IMMUNOV; ClinicalTrials.gov number, NCT04870411).
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.08.08.21261766v1" target="_blank">Immunogenicity of BNT162b2 vaccine Against the Alpha and Delta Variants in Immunocompromised Patients</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Limited genomic reconstruction of SARS-CoV-2 transmission history within local epidemiological clusters</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
A detailed understanding of how and when SARS-CoV-2 transmission occurs is crucial for designing effective prevention measures. Other than contact tracing, genome sequencing provides information to help infer who infected whom. However, the effectiveness of the genomic approach in this context depends on both (high enough) mutation and (low enough) transmission rates. Today, the level of resolution that we can obtain when describing SARS-CoV-2 outbreaks using just genomic information alone remains unclear. In order to answer this question, we sequenced 49 SARS-CoV-2 patient samples from ten local clusters for which partial epidemiological information was available, and inferred transmission history using genomic variants. Importantly, we obtained high-quality genomic data, sequencing each sample twice and using unique barcodes to exclude cross-sample contamination. Phylogenetic and cluster analyses showed that consensus genomes were generally sufficient to discriminate among independent transmission clusters. However, levels of intrahost variation were low, which prevented in most cases the unambiguous identification of direct transmission events. After filtering out recurrent variants across clusters, the genomic data were generally compatible with the epidemiological information but did not support specific transmission events over possible alternatives. We estimated the effective transmission bottleneck size to be 1-2 viral particles for sample pairs whose donor-recipient relationship was likely. Our analyses suggest that intrahost genomic variation in SARS-CoV-2 might be generally limited and that homoplasy and recurrent errors complicate identifying shared intrahost variants. Reliable reconstruction of direct SARS-CoV-2 transmission based solely on genomic data seems hindered by a slow mutation rate, potential convergent events, and technical artifacts. Detailed contact tracing seems essential in most cases to study SARS-CoV-2 transmission at high resolution.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.08.08.21261673v1" target="_blank">Limited genomic reconstruction of SARS-CoV-2 transmission history within local epidemiological clusters</a>
|
|||
|
</div></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Time-analysis of COVID-19 dispersion among health care workers and the general population</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
Introduction: Heath care workers with direct (HCW-D) or indirect (HCW-A) patient contact represent 4.2% to 17.8% of COVID-19 cases. We evaluate the temporal COVID-19 infection behavior among HCW-D, HCW-A, and non-HCW. Methods: From February 2020 to April 2021, trained nurses recorded age, gender, occupation, and symptoms in a COVID-19 testing outpatient health center. We allocated data into weekly time fractals and calculated the proportion of COVID-19 positive among HCW vs. non-HCW and incorporated an ARFIMA model (traditionally used in weather forecast) to predict future cases of COVID-19. Results: Among 8,998 COVID-19 RT-PCR tests, 3,462 (42%) patients were HCW-D, and 933 (11%) were HCW-A. Overall, 1,914 (21.3%) returned positive, representing 27%, 25% and 19% of HCW-D, HCW-A and non-HCW, respectively. HCW-D or HCW-A were significantly more likely to test positive for COVID-19 than non-HCW (OR=1.5, p<0.0001). The percentage of positive to negative test results remained steady over time. In the positive cases, the percentage of HCW to non-HCW declined significantly over time (Mann-Kendal trend test: tau=-0.58, p<0.0001). Our ARFIMA model showed a long-memory infection pattern in the occurrence of new COVID-19 cases lasting for months. Average error was 1.9 cases per week comparing predicted to actual values three months later (May-July 2021). Conclusion: HCW have a sustained 50% higher risk of COVID-19 positivity in the pandemic. Time-series analysis showed a long-memory infection pattern with virus spread mainly among HCWs before the general population. The tool http://wdchealth.covid- map.com/shiny/covid-map/ will be updated according to population previous infection and vaccination impact.
|
|||
|
</p>
|
|||
|
</div></li>
|
|||
|
</ul>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.08.07.21261433v1" target="_blank">Time-analysis of COVID-19 dispersion among health care workers and the general population</a>
|
|||
|
</div>
|
|||
|
<ul>
|
|||
|
<li><strong>Speeding and Traffic-Related Injuries and Fatalities during the 2020 COVID-19 Pandemic: The Cases of Seattle and New York City</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
Despite fewer cars on roads during the COVID-19 pandemic, deaths associated with motor vehicle collisions in New York City and Seattle remained largely unchanged in 2020. Using police data on weekly counts of collisions, we compared trends in 2020 with those of 2019, while controlling for the reduction of traffic volumes and seasonal weather conditions. Results of difference-in-differences estimation suggest that during the early months of the pandemic, or March-May, the incidence rates of severe or fatal injury crashes related to speeding increased by nearly 8 times in Seattle and more than 4 times in New York City. In the rest of 2020, they were still significantly higher than what would be expected in the absence of the pandemic. This research suggests that in similar situations that depress travel demand (e.g., another pandemic), policymakers should formulate plans to reduce speeding which may prevent an upswing in severe injuries and fatalities.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.08.08.21261745v1" target="_blank">Speeding and Traffic-Related Injuries and Fatalities during the 2020 COVID-19 Pandemic: The Cases of Seattle and New York City</a>
|
|||
|
</div></li>
|
|||
|
</ul>
|
|||
|
<h1 data-aos="fade-right" id="from-clinical-trials">From Clinical Trials</h1>
|
|||
|
<ul>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Study of Allogeneic Adipose-Derived Mesenchymal Stem Cells to Treat Post COVID-19 “Long Haul” Pulmonary Compromise</strong> - <b>Condition</b>: Covid19<br/><b>Interventions</b>: Biological: COVI-MSC; Biological: Placebo<br/><b>Sponsor</b>: Sorrento Therapeutics, Inc.<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Clinical Trial For Early SARS-CoV-2 (COVID-19) Treatment</strong> - <b>Condition</b>: Covid19<br/><b>Interventions</b>: Drug: Hydroxychloroquine; Drug: Favipiravir; Drug: Favipiravir + Hydroxychloroquine; Drug: Placebo<br/><b>Sponsor</b>: Health Institutes of Turkey<br/><b>Completed</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Echinacea Drug for Covid-19</strong> - <b>Condition</b>: Covid19<br/><b>Intervention</b>: Drug: ECHINACEA ARKOPHARMA<br/><b>Sponsors</b>: <br/>
|
|||
|
Jesús R. Requena; IDIS; SALUD; Laboratoires Arkopharma<br/><b>Recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>SOLIDARITY Finland Long COVID-19</strong> - <b>Condition</b>: Covid19<br/><b>Intervention</b>: Drug: Remdesivir<br/><b>Sponsors</b>: <br/>
|
|||
|
Clinical Urology and Epidemiology Working Group; University of Helsinki; World Health Organization; Helsinki University Central Hospital; Hyvinkää Hospital; Kanta-Häme Central Hospital; Kuopio University Hospital; Oulu University Hospital; Porvoo Hospital; Seinajoki Central Hospital; Mikkeli Central Hospital; Tampere University Hospital<br/><b>Recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>ACTIV-5 / Big Effect Trial (BET-C) for the Treatment of COVID-19</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Drug: Danicopan; Other: Placebo; Drug: Remdesivir<br/><b>Sponsor</b>: National Institute of Allergy and Infectious Diseases (NIAID)<br/><b>Recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Phase I/II Study of COVID-19 DNA Vaccine (AG0302-COVID19 High-dose)</strong> - <b>Condition</b>: COVID-19 Lower Respiratory Infection<br/><b>Interventions</b>: Biological: AG0302-COVID19 for Intramuscular Injection; Biological: AG0302-COVID19 for Intradermal Injection<br/><b>Sponsors</b>: AnGes, Inc.; Japan Agency for Medical Research and Development<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Efficacy of Canrenone as add-on Treatment in Moderate to Severe ARDS in COVID-19</strong> - <b>Condition</b>: COVID-19 Acute Respiratory Distress Syndrome<br/><b>Intervention</b>: <br/>
|
|||
|
Drug: Potassium Canrenoate<br/><b>Sponsors</b>: Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico; University of Milan; IRCCS Azienda Ospedaliero-Universitaria di Bologna<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>COVID-19 Administration of Single-Dose Subcutaneous or Intramuscular Anti- Spike(s) SARS-CoV-2 Monoclonal Antibodies Casirivimab and Imdevimab in High-Risk Pediatric Participants Under 12 Years of Age</strong> - <b>Condition</b>: COVID-19<br/><b>Intervention</b>: Drug: casirivimab and imdevimab<br/><b>Sponsor</b>: <br/>
|
|||
|
Regeneron Pharmaceuticals<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Double Blind Randomized Clinical Trial of Use of Colchicine Added to Standard Treatment in Hospitalized With Covid-19</strong> - <b>Condition</b>: COVID-19 Infection<br/><b>Intervention</b>: Drug: Colchcine<br/><b>Sponsor</b>: <br/>
|
|||
|
Asociacion Instituto Biodonostia<br/><b>Active, not recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>The Efficacy of Nigella Sativa Versus VitaminD3 as Supplement Therapy in Coronavirus Disease 2019 (COVID-19)</strong> - <b>Condition</b>: Covid19<br/><b>Intervention</b>: Dietary Supplement: Nigella Sativa capsule twice daily<br/><b>Sponsor</b>: Ain Shams University<br/><b>Recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Efficacy, Immunogenicity and Safety of COVID-19 Vaccine , Inactivated in Children and Adolescents</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Biological: Inactivated COVID-19 Vaccine; Biological: Controlled vaccine<br/><b>Sponsor</b>: Sinovac Research and Development Co., Ltd.<br/><b>Recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Local and General Immune Response After Coronavirus Disease (COVID-19) Vaccination in Volunteers</strong> - <b>Condition</b>: Covid19<br/><b>Intervention</b>: Procedure: Blood and nasal fluid sampling before and after COVID-19 vaccination<br/><b>Sponsors</b>: University Hospital, Ghent; University Ghent; Vlaams Instituut voor Biotechnologie<br/><b>Active, not recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Immunogenicity And Safety of COVID-19 Vaccine , Inactivated Co -Administration With Quadrivalent Influenza Vaccine And 23-valent Pneumococcal Polysaccharide Vaccine</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Biological: Experimental Group1; Biological: Experimental Group 2; Biological: Experimental Group 3<br/><b>Sponsor</b>: <br/>
|
|||
|
Sinovac Research and Development Co., Ltd.<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Advancing DSME/S and COVID-19 Prevention and Protection Through “emPOWERed to Change” Program</strong> - <b>Conditions</b>: Type2 Diabetes; Covid19<br/><b>Intervention</b>: Behavioral: emPOWERed To Change Program<br/><b>Sponsor</b>: Charles Drew University of Medicine and Science<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Effect of Cyproheptadine on Ventilatory Support-free Days in Critically Ill Patients With COVID-19</strong> - <b>Condition</b>: COVID-19 Pneumonia<br/><b>Intervention</b>: Drug: Cyproheptadine<br/><b>Sponsor</b>: <br/>
|
|||
|
Hospital de Clinicas de Porto Alegre<br/><b>Recruiting</b></p></li>
|
|||
|
</ul>
|
|||
|
<h1 data-aos="fade-right" id="from-pubmed">From PubMed</h1>
|
|||
|
<ul>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Unfolded Protein Response Inhibition Reduces Middle East Respiratory Syndrome Coronavirus-Induced Acute Lung Injury</strong> - Tissue- and cell-specific expression patterns are highly variable within and across individuals, leading to altered host responses after acute virus infection. Unraveling key tissue-specific response patterns provides novel opportunities for defining fundamental mechanisms of virus-host interaction in disease and the identification of critical tissue- specific networks for disease intervention in the lung. Currently, there are no approved therapeutics for Middle East respiratory syndrome…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Antiviral Effect of Budesonide against SARS-CoV-2</strong> - Treatment options for COVID-19, a disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection, are currently severely limited. Therefore, antiviral drugs that efficiently reduce SARS-CoV-2 replication or alleviate COVID-19 symptoms are urgently needed. Inhaled glucocorticoids are currently being discussed in the context of treatment for COVID-19, partly based on a previous study that reported reduced recovery times in cases of mild COVID-19 after…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Resveratrol and Pterostilbene Inhibit SARS-CoV-2 Replication in Air-Liquid Interface Cultured Human Primary Bronchial Epithelial Cells</strong> - The current COVID-19 pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has an enormous impact on human health and economy. In search for therapeutic options, researchers have proposed resveratrol, a food supplement with known antiviral, anti-inflammatory, and antioxidant properties as an advantageous antiviral therapy for SARS-CoV-2 infection. Here, we provide evidence that both resveratrol and its metabolically more stable structural analog, pterostilbene,…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Correction: Template-dependent inhibition of coronavirus RNA-dependent RNA polymerase by remdesivir reveals a second mechanism of action</strong> - No abstract</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Molecular Modeling Targeting Transmembrane Serine Protease 2 (TMPRSS2) as an Alternative Drug Target Against Coronaviruses</strong> - Since November 2019, the new Coronavirus disease (COVID-19) caused by the etiological agent SARS-CoV-2 has been responsible for several cases worldwide, becoming pandemic in March 2020. Pharmaceutical industries and academics have joined their efforts to discover new therapies to control the disease, since there are no specific drugs to combat this emerging virus. Thus, several targets have been explored, among them the transmembrane protease serine 2 (TMPRSS2) has gained greater interest in the…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Polypharmacology of some medicinal plant metabolites against SARS-CoV-2 and host targets: Molecular dynamics evaluation of NSP9 RNA binding protein</strong> - Medicinal plants as rich sources of bioactive compounds are now being explored for drug development against COVID-19. 19 medicinal plants known to exhibit antiviral and anti-inflammatory effects were manually curated, procuring a library of 521 metabolites; this was virtually screened against NSP9, including some other viral and host targets and were evaluated for polypharmacological indications. Leads were identified via rigorous scoring thresholds and ADMET filtering. MM-GBSA calculation was…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Putative Repurposing of Lamivudine, a Nucleoside/Nucleotide Analogue and Antiretroviral to Improve the Outcome of Cancer and COVID-19 Patients</strong> - Lamivudine, also widely known as 3TC belongs to a family of nucleotide/nucleoside analogues of cytidine or cytosine that inhibits the Reverse Transcriptase (RT) of retroviruses such as HIV. Lamivudine is currently indicated in combination with other antiretroviral agents for the treatment of HIV-1 infection or for chronic Hepatitis B (HBV) virus infection associated with evidence of hepatitis B viral replication and active liver inflammation. HBV reactivation in patients with HBV infections who…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>The Role of Innate Immunity and Bioactive Lipid Mediators in COVID-19 and Influenza</strong> - In this review, we discuss spatiotemporal kinetics and inflammatory signatures of innate immune cells specifically found in response to SARS-CoV-2 compared to influenza virus infection. Importantly, we cover the current understanding on the mechanisms by which SARS-CoV-2 may fail to engage a coordinated type I response and instead may lead to exaggerated inflammation and death. This knowledge is central for the understanding of available data on specialized pro-resolving lipid mediators in…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Molecular Dynamics simulations of Quinine encapsulation into biodegradable nanoparticles: a possible new strategy against Sars-CoV-2</strong> - A new coronavirus disease, SARS-CoV-2, has spread into a global pandemic in December 2019. Since no specific therapeutic drugs for treating COVID-19 have been approved by FDA, recent studies suggest that the known antimalarial quinine and its derivatives (chloroquine and hydroxychloroquine) inhibit receptor binding of the viral particles and inhibits the strong “cytokine storm”, which is the main cause of death among infected patients. In particular, the natural alkaloid quinine has shown to…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Clinical Efficacy of Remdesivir and Favipiravir in the Treatment of Covid-19 Patients: Scenario So Far</strong> - The novel SARS-CoV-2 is a new disease that has caused severe destruction to human lives across the globe, including infection, mortality and financial crises, for which, scientific researchers have been directed towards the development of treatment and controlling measures against coronavirus. Currently, there has been no approved drug for the treatment of the disease, but several antiviral drugs have shown therapeutic effects from which, remdesivir and favipiravir are two such drugs. These…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Lacticaseibacillus paracasei DG enhances the lactoferrin anti-SARS-CoV-2 response in Caco-2 cells</strong> - The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing the ongoing global pandemic of coronavirus disease 2019 (COVID-19), which primarily manifests with respiratory distress and may also lead to symptoms associated with the gastrointestinal tract. Probiotics are living microorganisms that have been shown to confer immune benefits. In this study, we investigated the immunomodulatory effects and anti-SARS-CoV-2 activity of three different Lacticaseibacillus probiotic…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Lifestyle-mediated nitric oxide boost to prevent SARS-CoV-2 infection: A perspective</strong> - The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread worldwide and has seriously threatened public health by causing significant morbidity and mortality. Patients with coronavirus disease (COVID-19) with preexisting endothelial dysfunction caused by aging, diabetes, hypertension, and obesity are at high risk for life- threatening thromboembolic complications. This suggests a possibility that reduced endothelial nitric oxide (NO) production and NO bioavailability could be a…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>HD5 and LL-37 Inhibit SARS-CoV and SARS-CoV-2 Binding to Human ACE2 by Molecular Simulation</strong> - The coronavirus (COVID-19) pandemic is still spreading all over the world. As reported, angiotensin-converting enzyme-2 (ACE2) is a receptor of SARS-CoV-2 spike protein that initializes viral entry into host cells. Previously, the human defensin 5 (HD5) has been experimentally confirmed to be functional against the SARS-CoV-2. The present study proposes a human cathelicidin known as LL37 that strongly binds to the carboxypeptidase domain of human ACE2 compared to HD5. Therefore, LL37 bears a…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>SARS-CoV-2 Infection Remodels the Phenotype and Promotes Angiogenesis of Primary Human Lung Endothelial Cells</strong> - SARS-CoV-2-associated acute respiratory distress syndrome (ARDS) and acute lung injury are life-threatening manifestations of severe viral infection. The pathogenic mechanisms that lead to respiratory complications, such as endothelialitis, intussusceptive angiogenesis, and vascular leakage remain unclear. In this study, by using an immunofluorescence assay and in situ RNA-hybridization, we demonstrate the capability of SARS-CoV-2 to infect human primary lung microvascular endothelial cells…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>An Evolving Technology That Integrates Classical Methods with Continuous Technological Developments: Thin-Layer Chromatography Bioautography</strong> - Thin-layer chromatography (TLC) bioautography is an evolving technology that integrates the separation and analysis technology of TLC with biological activity detection technology, which has shown a steep rise in popularity over the past few decades. It connects TLC with convenient, economic and intuitive features and bioautography with high levels of sensitivity and specificity. In this study, we discuss the research progress of TLC bioautography and then establish a definite timeline to…</p></li>
|
|||
|
</ul>
|
|||
|
<h1 data-aos="fade-right" id="from-patent-search">From Patent Search</h1>
|
|||
|
<ul>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Camellia nitidissima C.W.Chi Caffeine and Chlorogenic acid composition for anti-SARS-CoV-2 and preparation method and application thereof</strong> - - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=AU331907401">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A Novel Method COVID -19 infection using Deep Learning Based System</strong> - - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=AU331907400">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A SYSTEM AND METHOD FOR COVID- 19 DIAGNOSIS USING DETECTION RESULTS FROM CHEST X- RAY IMAGES</strong> - - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=AU330927328">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Mascarilla impermeable</strong> - - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=ES329916792">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Advanced Machine Learning System combating COVID-19 virus Detection, Spread, Prevention and Medical Assistance.</strong> - - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=AU329799475">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>一种包装重组流感病毒的重组载体和重组流感病毒及其构建方法和应用</strong> - 本发明提供了一种包装重组流感病毒的重组载体和重组流感病毒及其构建方法和应用,涉及生物医药技术领域。本发明利用A型流感病毒八个基因片段为骨架包装出带有新型冠状病毒SARS‑CoV‑2表面刺突蛋白受体结合域(SARS‑CoV‑2_RBD)片段的重组流感病毒,此重组流感病毒可在复制过程中表达具有生物学活性和免疫原性的刺突蛋白受体结合区域RBD。本发明所述重组流感病毒rgH1N1(PR8)‑PA‑RBD可作为重组病毒类药物,用于2019新型冠状病毒肺炎(COVID‑19)的预防;也可作为体外SARS‑COV‑2 RBD等相关抗原表达和体内递呈系统。 - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=CN331407402">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Differential detection kit for common SARS-CoV-2 variants in COVID-19 patients</strong> - - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=AU328840861">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>新型冠状病毒B.1.525尼日利亚突变株RBD的基因及其应用</strong> - 本发明属于生物技术领域,具体涉及新型冠状病毒B.1.525尼日利亚突变株RBD的基因及其应用。本发明的新型冠状病毒B.1.525尼日利亚突变株RBD的基因,其核苷酸序列如SEQ ID NO.1或SEQ ID NO.6所示。本发明通过优化野生型新型冠状病毒B.1.525尼日利亚突变株RBD的基因序列,并结合筛选确定了相对最佳序列,优化后序列产生的克隆表达效率比野生型新型冠状病毒B.1.525尼日利亚突变株RBD序列表达效率大幅提高,从而,本发明的新型冠状病毒B.1.525尼日利亚突变株RBD的基因可以用于制备新型冠状病毒疫苗。 - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=CN331407276">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>一种新型冠状病毒的mRNA疫苗</strong> - 本发明公开了一种新型冠状病毒的mRNA疫苗。本发明提供的疫苗,其活性成分为mRNA,如序列表的序列6所示。本发明还保护TF‑RBD蛋白,如序列表的序列2所示。本发明的发明人通过一系列序列设计和序列优化得到了特异DNA分子,进一步构建了特异重组质粒,将特异重组质粒进行体外转录,可以得到多聚化TF‑RBD mRNA。进一步的,发明人制备了负载TF‑RBD mRNA的脂质纳米粒。本发明对于新型冠状病毒的防控具有重大的应用推广价值。 - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=CN330068008">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>新型冠状病毒B.1.1.7英国突变株RBD的基因及其应用</strong> - 本发明属于生物技术领域,具体涉及新型冠状病毒B.1.1.7英国突变株RBD的基因及其应用。本发明的新型冠状病毒B.1.1.7英国突变株RBD的基因,其核苷酸序列如SEQ ID NO.1或SEQ ID NO.6所示。本发明通过优化野生型新型冠状病毒B.1.1.7英国突变株RBD的基因序列,并结合筛选确定了相对最佳序列,优化后序列产生的克隆表达效率比野生型新型冠状病毒B.1.1.7英国突变株RBD序列表达效率大幅提高,从而,本发明的新型冠状病毒B.1.1.7英国突变株RBD的基因更有利于用于制备新型冠状病毒疫苗。 - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=CN330068024">link</a></p></li>
|
|||
|
</ul>
|
|||
|
|
|||
|
|
|||
|
<script>AOS.init();</script></body></html>
|