192 lines
50 KiB
HTML
192 lines
50 KiB
HTML
|
<!DOCTYPE html>
|
|||
|
<html lang="" xml:lang="" xmlns="http://www.w3.org/1999/xhtml"><head>
|
|||
|
<meta charset="utf-8"/>
|
|||
|
<meta content="pandoc" name="generator"/>
|
|||
|
<meta content="width=device-width, initial-scale=1.0, user-scalable=yes" name="viewport"/>
|
|||
|
<title>29 August, 2023</title>
|
|||
|
<style>
|
|||
|
code{white-space: pre-wrap;}
|
|||
|
span.smallcaps{font-variant: small-caps;}
|
|||
|
span.underline{text-decoration: underline;}
|
|||
|
div.column{display: inline-block; vertical-align: top; width: 50%;}
|
|||
|
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
|
|||
|
ul.task-list{list-style: none;}
|
|||
|
</style>
|
|||
|
<title>Covid-19 Sentry</title><meta content="width=device-width, initial-scale=1.0" name="viewport"/><link href="styles/simple.css" rel="stylesheet"/><link href="../styles/simple.css" rel="stylesheet"/><link href="https://unpkg.com/aos@2.3.1/dist/aos.css" rel="stylesheet"/><script src="https://unpkg.com/aos@2.3.1/dist/aos.js"></script></head>
|
|||
|
<body>
|
|||
|
<h1 data-aos="fade-down" id="covid-19-sentry">Covid-19 Sentry</h1>
|
|||
|
<h1 data-aos="fade-right" data-aos-anchor-placement="top-bottom" id="contents">Contents</h1>
|
|||
|
<ul>
|
|||
|
<li><a href="#from-preprints">From Preprints</a></li>
|
|||
|
<li><a href="#from-clinical-trials">From Clinical Trials</a></li>
|
|||
|
<li><a href="#from-pubmed">From PubMed</a></li>
|
|||
|
<li><a href="#from-patent-search">From Patent Search</a></li>
|
|||
|
</ul>
|
|||
|
<h1 data-aos="fade-right" id="from-preprints">From Preprints</h1>
|
|||
|
<ul>
|
|||
|
<li><strong>Family Separation and COVID-19: The Impact of International Border Restrictions on Refugees in Australia</strong> -
|
|||
|
<div>
|
|||
|
COVID-19 resulted in global restrictions on migration, with pronounced consequences in Australia, where the resettlement of refugees was significantly curtailed from March 2020. This research, comprising a third phase in an ongoing study, seeks to understand the broader implications of these restrictions on family separation and reunion among resettled refugees in Australia. Employing a mixed-method approach of surveys and family interviews conducted in late 2021, we explore various themes the pandemic’s effects on family reunion, concerns about family still `at home’, maintaining social connections, post-migration difficulties and financial hardships. The findings reveal a negative impact of COVID-19 on refugees’ ability to reunite with families, with evidence pointing differences between gender, visa category, and language group/ethnicity. The research underscores the need for innovative approaches in resettlement to address the negative impacts of family separation and for governments to expedite family reunion pathways to alleviate isolation and uncertainty among resettled refugees.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://osf.io/preprints/socarxiv/vuz75/" target="_blank">Family Separation and COVID-19: The Impact of International Border Restrictions on Refugees in Australia</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>In Vivo Antiviral Efficacy of LCTG-002, a Pooled, Purified Human Milk Secretory IgA product, Against SARS-CoV-2 in a Murine Model of COVID-19</strong> -
|
|||
|
<div>
|
|||
|
Immunoglobulin A (IgA) is the most abundant antibody (Ab) in human mucosal compartments including the respiratory tract, with the secretory form of IgA (sIgA) being dominant and uniquely stable in these environments. sIgA is naturally found in human milk, which could be considered a global resource for this biologic, justifying the development of human milk sIgA as a dedicated airway therapeutic for respiratory infections such as SARS-CoV-2. In the present study, methods were therefore developed to efficiently extract human milk sIgA from donors who were either immunologically naive to SARS-CoV-2 (pooled as a control IgA) or had recovered from a PCR-confirmed SARS-CoV-2 infection that elicited high-titer anti-SARS-CoV-2 Spike sIgA Abs in their milk (pooled together to make LCTG-002). Mass spectrometry determined that proteins with a relative abundance of 1.0% or greater were all associated with sIgA. None of the proteins exhibited statistically significant differences between batches. Western blot demonstrated all batches consisted predominantly of sIgA. Compared to control IgA, LCTG-002 demonstrated significantly higher binding to Spike, and was also capable of blocking the Spike - ACE2 interaction in vitro with 6.3x greater potency compared to control IgA (58% inhibition at ~240ug/mL). LCTG-002 was then tested in vivo for its capacity to reduce viral burden in the lungs of K18+hACE2 transgenic mice inoculated with SARS-CoV-2. LCTG-002 was demonstrated to significantly reduce SARS-CoV-2 titers in the lungs compared to control IgA when administered at either 250ug/day or 1 mg/day, as measured by TCID50, plaque forming units (PFU), and qRT-PCR, with a maximum reduction of 4.9 logs. This innovative study demonstrates that LCTG-002 is highly pure, efficacious, and well tolerated in vivo, supporting further development of milk-derived, polyclonal sIgA therapeutics against SARS-CoV-2 and other mucosal infections.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2023.08.25.554813v1" target="_blank">In Vivo Antiviral Efficacy of LCTG-002, a Pooled, Purified Human Milk Secretory IgA product, Against SARS-CoV-2 in a Murine Model of COVID-19</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Participatory Approaches in Community Health in light of the COVID-19 Pandemic: A Scoping Review Protocol</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
Background Participatory approaches are considered essential to ensure community health in the context of the COVID-19 pandemic. Previous reviews on community participation have explored different aspects of participation in specific contexts, such as public health emergencies, but none has examined participatory approaches both in depth and in breadth across diverse activities during the COVID-19 pandemic and considering diverse communities in all country contexts. This scoping review seeks to: (a) provide an overview of participatory approaches in terms of the features and depth of participation, the breadth of the communities and stakeholders involved, and for what types of activities and interventions in light of the COVID-19 pandemic across all country contexts; (b) explore the challenges and facilitators of participation processes; and (c) analyse to what extent participation impacts community health, including health equity, in the context of a public health emergency. Methods We developed this protocol following the latest JBI guidance on scoping reviews. A comprehensive search strategy combining the concepts of participation, community health, and COVID-19 was used to search the databases of Medline/Ovid, Embase.com, Cochrane CENTRAL, Web of Science, APA PsycInfo/Ovid, Global Health/Ovid, ERIC/OvidSP, CINAHL/EBSCOhost, ClinTrials.gov, and the grey literature through Google Scholar. At least two reviewers will perform screening of titles/abstracts and full text using the inclusion and exclusion criteria defined in this protocol. Article characteristics and data on participatory approaches and community health will be charted to provide an overview of the literature, map the variations in participatory approaches and community health, and explore patterns in the links between participation, community health, and the type of activities to address the challenges related to the COVID-19 pandemic. Discussion We anticipate that review findings will contribute to advance innovative thinking about community participation and facilitating better application and integration of participatory approaches to ensure community health in a future public health emergency or in building back better fairer in the new normal.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2023.08.24.23294551v2" target="_blank">Participatory Approaches in Community Health in light of the COVID-19 Pandemic: A Scoping Review Protocol</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Improvement of immune dysregulation and health-related quality of life in individuals with long COVID at 24-months following SARS-CoV-2 infection</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
This study investigated the humoral and cellular immune responses in individuals with long COVID (LC) compared to age and gender matched recovered COVID-19 controls (MC) over 24-months. LC participants showed elevated spike and nucleocapsid IgG levels, higher neutralizing capacity, and increased spike- and nucleocapsid-specific CD4+ T cells, PD-1, and TIM-3 expression on CD4+ and CD8+ T cells at 3- and 8-months, but these differences did not persist at 24-months. Some LC participants had detectable IFN-β and IFN-γ that was attributed to reinfection and antigen re-exposure. Single-cell RNA sequencing at 24-month timepoint revealed similar immune cell proportions and reconstitution of naive T and B cell subsets in LC. No significant differences in exhaustion scores or antigen-specific T cell clones were observed. These findings suggest resolution of immune activation in LC and return to comparable immune responses between LC and MC over time. Improvement in self-reported health-related quality of life at 24-months was also evident in the majority of LC (62%). PTX3, CRP levels and platelet count were associated with improvements in health-related quality of life.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2023.08.27.23294704v1" target="_blank">Improvement of immune dysregulation and health-related quality of life in individuals with long COVID at 24-months following SARS-CoV-2 infection</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Deep metric learning for few-shot X-ray image classification</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
Deep learning models have proven the potential to aid professionals with medical image analysis, including many image classification tasks. However, the scarcity of data in medical imaging poses a significant challenge, as the limited availability of diverse and comprehensive datasets hinders the development and evaluation of accurate and robust imaging algorithms and models. Few-shot learning approaches have emerged as a potential solution to address this issue. In this research, we propose to deploy the Generalized Metric Learning Model for Few-Shot X-ray Image Classification. The model comprises a feature extractor to embed images into a lower-dimensional space and a distance-based classifier for label assignment based on the relative distance of these embeddings. We extensively evaluate the model using various pre-trained convolutional neural networks (CNNs) and vision transformers (ViTs) as feature extractors. We also assess the performance of the commonly used distance-based classifiers in several few-shot settings. Finally, we analyze the potential to adapt the feature encoders to the medical domain with both supervised and self-supervised frameworks. Our model achieves 0.689 AUROC in 2-way 5-shot COVID-19 recognition task when combined with REMEDIS (Robust and Efficient Medical Imaging with Self-supervision) domain-adapted model as feature extractor, and 0.802 AUROC in 2-way 5-shot tuberculosis recognition task with domain-adapted DenseNet-121 model. Moreover, the simplicity and flexibility of our approach allows for easy improvement in the feature, either by incorporating other few-shot methods or new, powerful architectures into the pipeline.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2023.08.27.23294690v1" target="_blank">Deep metric learning for few-shot X-ray image classification</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Topological data analysis identifies emerging adaptive mutations in SARS-CoV-2</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
The COVID-19 pandemic has initiated an unprecedented worldwide effort to characterize its evolution through the mapping of mutations of the coronavirus SARS-CoV-2. The early identification of mutations that could confer adaptive advantages to the virus, such as higher infectivity or immune evasion, is of paramount importance. However, the large number of currently available genomes precludes the efficient use of phylogeny-based methods. Here we present CoVtRec, a fast and scalable Topological Data Analysis approach for the surveillance of emerging adaptive mutations in large genomic datasets. Our method overcomes limitations of state-of-the-art phylogeny-based approaches by quantifying the potential adaptiveness of mutations merely by their topological footprint in the genome alignment, without resorting to the reconstruction of a single optimal phylogenetic tree. Analyzing millions of SARS-CoV-2 genomes from GISAID, we find a correlation between topological signals and adaptation to the human host. By leveraging the stratification by time in sequence data, our method enables the high-resolution longitudinal analysis of topological signals of adaptation. We characterize the convergent evolution of the coronavirus throughout the whole pandemic to date, report on emerging potentially adaptive mutations, and pinpoint mutations in Variants of Concern that are likely associated with positive selection. Our approach can improve the surveillance of mutations of concern and guide experimental studies.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.06.10.21258550v3" target="_blank">Topological data analysis identifies emerging adaptive mutations in SARS-CoV-2</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Neuropsychiatric Disturbances in Mild Cognitive Impairment: A Scientometric Analysis</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
Behavioral and psychological symptoms of dementia (BPSD) have been extensively studied in dementia than its prodromal stage, known as mild cognitive impairment (MCI). A scientometric study on BPSD in MCI would be valuable in synthesizing the existing body of research and provide insights into the trends, networks, and influencers within this area. We searched for related literature in the Web of Science database and extracted complete text and citation records of each publication. The primary objective was to map the research evolution of BPSD in MCI and highlight dominant research themes. The secondary objective was to identify research network characteristics (authors, journals, countries, and institutions) and abundances. A total of 12,369 studies published between 1980 to 2022 were included in the analysis. We found 51 distinct clusters from the co-cited reference network that were highly credible with significant modularity (Q = 0.856) and silhouette scores (S = 0.932). Five major research domains were identified: symptoms, diagnosis, brain substrates, biochemical pathways, and interventions. Within recent years, the research focus in this area is on gut microbiota, e-health, COVID-19, cognition, and delirium. Collectively, findings from this scientometric analysis can help clarify the scope and direction of future research and clinical practices.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2023.08.26.23294661v1" target="_blank">Neuropsychiatric Disturbances in Mild Cognitive Impairment: A Scientometric Analysis</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Immune and behavioral correlates of protection against symptomatic post-vaccination SARS-CoV-2 infection</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
Background: We sought to determine immune and behavioral pre-infection correlates of protection against SARS-CoV-2 post-vaccine infections in a joint analysis of epidemiological and immunological cohort data. Methods: Serum and saliva samples from 176 BNT162b2-vaccinated adults in the Prospective Assessment of SARS-CoV-2 Seroconversion study were collected between October and December 2021 and assessed for serum and saliva levels of Wuhan-1 wild-type (WT) SARS-CoV-2 Spike (S)-specific IgG and IgA binding antibodies (bAb) using a multiplex microsphere-based immunoassay (MMIA). Serum samples were also assessed for WT receptor binding domain (RBD)-specific bAb by two commercial assays, BA.1 S-specific IgG bAb by MMIA, and neutralization activity against D614G, Delta (B.1.617.2), and Omicron BA.1 and BA.1.1 variants using a lentiviral pseudovirus neutralization assay. After the Fall 2021 visit, participants reported all positive PCR and/or antigen tests for SARS-CoV-2. Duration, severity, and type of symptoms, as well as risk exposures and adherence to precautionary measures, were assessed by questionnaires during the Spring 2022 visit. Results: Thirty-two participants (18.2%) developed symptomatic post-vaccination SARS-CoV-2 infections (PVI) between December 7, 2021 and April 1, 2022. Pre-infection WT (geometric mean (GM) of 3,863 vs 2,736 binding antibody unit [BAU]/ml, uninfected vs PVI, p=0.0098) and BA.1 (GM of 276.9 vs 179.9 arbitrary bAb unit [AU]/ml, uninfected vs PVI, p=0.04) anti-S IgG bAb levels measured by MMIA and neutralizing titers (NT) against BA.1 (GM titer [GMT] of 493.6 vs 286.2, uninfected vs PVI, p=0.0313) and BA.1.1 (GMT of 552.0 vs 302.5, uninfected vs PVI, p=0.021) were significantly higher in individuals that did not develop PVIs. WT anti-S bAb levels greater than 5,000 BAU/ml were associated with > 90% protection against symptomatic PVI. In individuals that developed PVI, WT anti-S IgG bAb levels correlated with lower disease severity scores (ρ= -0.3859, p=0.032) and shorter duration of clinical disease (ρ= -0.5273, p=0.0023). WT anti-RBD bAb levels measured by commercial assays correlated strongly with bAb levels measured by MMIA (ρ=0.8239, p<0.0001 and ρ=0.6929, p<0.0001, Roche and Siemens assays, respectively), but did not reach statistical significance for correlation with protection against PVI. Home risk score, but neither work nor home precautionary measures, correlated strongly with risk of PVI (mean score of 20.77 vs 47.33, uninfected vs PVI respectively, p<0.0001). Conclusions: Anti-S IgG bAb levels (directed against either WT or Omicron BA.1 subvariant) and NTs served as correlates of protection against symptomatic SARS-CoV-2 infection. Anti-S (WT) IgG bAb levels remained a significant correlate of protection against PVIs when adjusting for demography and risk behavior. Results of this study also suggest that commercial assays for anti-S bAb may need to be reformatted to enable detection of higher maximum values for use as predictors of increased susceptibility to SARS-CoV-2 infection.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2023.08.25.23294626v1" target="_blank">Immune and behavioral correlates of protection against symptomatic post-vaccination SARS-CoV-2 infection</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Prevalence and pattern of Post Covid-19 symptoms in recovered patients of Delhi: A Population-Based study</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
Background: Post-coronavirus disease (COVID) is widely reported but the data of Post COVID-19 after infection with the Omicron variant is limited. This prospective study was conducted to determine the prevalence, pattern, and duration of symptoms related to Covid-19 recovered patients. Methods: Adults (>18 years old) in 11 districts of Delhi who had recovered from Covid-19 were followed up at 3 months and 6 months post-recovery. Results: The study found that the participants had a mean age of 42.07 years, with a standard deviation of 14.89. Additionally, a significant proportion of the participants (79.7%) experienced post-Covid symptoms. The participants elicited a history of Joint Pain (36%), Persistent dry cough (35.7%), anxiousness (28.4%) and shortness of breath (27.1%). The other symptoms reported were persistent fatigue (21.6%), persistent headache (20%), forgetfulness (19.7%) and weakness in limbs (18.6%). The longest duration of symptom was observed in participants reporting anxiousness (138.75 +54.14) followed by fatigue (137.57+48.33), shortness of breath (131.89+60.21) and joint pain/swelling (131.59+58.76). During the first follow-up, 2.2% of participants had an abnormal ECG reading, while no abnormalities were reported during the second follow-up. Additionally, 4.06% of participants had abnormal chest X-ray findings during the first follow-up, with this number decreasing to 2.16% during the second follow-up. Conclusion: Our study concluded that the clinical symptoms persist in participants until 6 months and a multi-system involvement is seen in the post-COVID period. Thus, the findings necessitate long-term, regular follow-ups.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2023.08.25.23294654v1" target="_blank">Prevalence and pattern of Post Covid-19 symptoms in recovered patients of Delhi: A Population-Based study</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Kinetics and durability of humoral responses to SARS-CoV-2 infection and vaccination</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
We analyzed the kinetics and durability of the humoral responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and vaccination using >8,000 longitudinal samples collected over a three-year period (April 2020 to April 2023) in the New York City metropolitan area. Upon primary immunization, participants with pre-existing immunity mounted higher antibody responses faster and achieved higher steady-state levels compared to naive individuals. Antibody durability was characterized by two phases: an initial rapid decay, followed by a phase of stabilization with very slow decay resulting in an individual spike binding antibody steady state. Booster vaccination equalized the differences in antibody levels between participants with and without hybrid immunity, but the antibody titers reached decreased with each successive antigen exposure. Break-through infections increased antibody titers to similar levels as an additional vaccine dose in naive individuals. Our study provides strong evidence for the fact that SARS-CoV-2 antibody responses are long lasting, with an initial waning phase followed by a stabilization phase.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2023.08.26.23294679v1" target="_blank">Kinetics and durability of humoral responses to SARS-CoV-2 infection and vaccination</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Potent and broadly neutralizing antibodies against sarbecoviruses induced by sequential COVID-19 vaccination</strong> -
|
|||
|
<div>
|
|||
|
The current SARS-CoV-2 variants strikingly evade all authorized monoclonal antibodies and threaten the efficacy of serum-neutralizing activity elicited by vaccination or prior infection, urging the need to develop antivirals against SARS-CoV-2 and related sarbecoviruses. Here, we identified both potent and broadly neutralizing antibodies from a five-dose vaccinated donor who exhibited cross-reactive serum neutralizing activity against diverse coronaviruses. Through single B cell sorting and sequencing followed by a tailor-made computational pipeline, we successfully selected 86 antibodies with potential cross-neutralizing ability from 684 antibody sequences. Among them, one potently neutralized all SARS-CoV-2 variants that arose prior to Omicron BA.5, and the other three could broadly neutralize all current SARS-CoV-2 variants of concern, SARS-CoV and their related sarbecoviruses (Pangolin-GD, RaTG13, WIV-1, and SHC014). Cryo-EM analysis demonstrates that these antibodies have diverse neutralization mechanisms, such as disassembling spike trimers, or binding to RBM or SD1 to affect ACE2 binding. In addition, prophylactic administration of these antibodies significantly protects nasal turbinate and lung infections against BA.1, XBB.1 and SARS-CoV viral challenge in golden Syrian hamsters, respectively. This study reveals the potential utility of computational process to assist screening cross-reactive antibodies, as well as the potency of vaccine-induced broadly neutralizing antibodies against current SARS-CoV-2 variants and related sarbecoviruses, offering promising avenues for the development of broad therapeutic antibody drugs.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2023.08.22.554373v2" target="_blank">Potent and broadly neutralizing antibodies against sarbecoviruses induced by sequential COVID-19 vaccination</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>No Substitute for the Real Thing? Physical and Digital Cultural Participation in Denmark during the COVID-19 Pandemic: A Research Note</strong> -
|
|||
|
<div>
|
|||
|
In this research note, we analyze the impact of the COVID-19 pandemic on cultural participation. We use rich survey data from Denmark to construct pooled time-series cross-sectional data for each month of the years 2019-2021 and report three findings. First, participation in physical cultural activities (e.g., attending a concert or a museum) plummeted during two lockdowns and did not return to its pre-pandemic level by the end of 2021. Second, participation in digital activities (e.g., reading a digital book or following a museum on social media) did not change much during the pandemic. Overall, we find little evidence of substitution from physical to digital cultural participation during the COVID-19 lockdown in Denmark. Third, socioeconomic gradients in cultural participation decreased during the pandemic for physical cultural participation, but did not change for digital cultural participation. We end by discussing what we can learn from our results about how social disruptions affect patterns of cultural participation and inequality.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://osf.io/preprints/socarxiv/ksy9w/" target="_blank">No Substitute for the Real Thing? Physical and Digital Cultural Participation in Denmark during the COVID-19 Pandemic: A Research Note</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Environmental surveillance for SARS-CoV-2 for outbreak detection in hospital: A single centre prospective study</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
Identifying COVID-19 outbreaks in hospitals at an early stage requires active surveillance. Our objective was to assess whether floor swabs correlated with COVID-19 outbreak status in hospital. We swabbed the floors of an inpatient ward at Mount Sinai Hospital for 32 weeks, from October 31, 2022 to June 15, 2023 and RT-qPCR analysis provided a quantification cycle of detection for each positive swab. 182 swabs were processed for SARS CoV-2, of which 98.4% were positive. Two COVID-19 outbreaks were declared during the study period. The median viral copy number was 210 (IQR, 49 to 1018) during non-outbreak periods and 653 (IQR, 300 to 1754) during outbreak periods. Analyzing the number of viral copies of SARS-CoV-2, instead of percentage positivity, gave a clearer view of changes in outbreak status over time, thereby illustrating the benefits of this approach to monitor pathogen load in hospital settings.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2023.08.28.23294549v1" target="_blank">Environmental surveillance for SARS-CoV-2 for outbreak detection in hospital: A single centre prospective study</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Self-assembly vascularized human cardiac organoids model cardiac diseases in petri dishes and in mice</strong> -
|
|||
|
<div>
|
|||
|
In this study, we generated self-assembly cardiac organoids (COs) from human pluripotent stem cells by dual-phase modulation of Wnt/{beta}-catenin pathway, utilizing CHIR99021 and IWR-1-endo. The resulting COs exhibited a diverse array of cardiac-specific cell lineages, cardiac cavity-like structures and demonstrated the capacity of spontaneous beating and vascularization in vitro. We further employed these complex and functional COs to replicate conditions akin to human myocardial infarction and SARS-CoV-2 induced fibrosis. These models accurately captured the pathological characteristics of these diseases, in both in vitro and in vivo settings. In addition, we transplanted the COs into NOD SCID mice and observed that they survived and exhibited ongoing expansion in vivo. Impressively, over a span of 75-day transplantation, these COs not only established blood vessel-like structures but also integrated with the host mice's vascular system. It is noteworthy that these COs developed to a size of approximately 8 mm in diameter, slightly surpassing the dimensions of the mouse heart. This innovative research highlighted the potential of our COs as a promising avenue for cardiovascular research and therapeutic exploration.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2023.08.26.554935v1" target="_blank">Self-assembly vascularized human cardiac organoids model cardiac diseases in petri dishes and in mice</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Household Hardships during the COVID-19 Pandemic: Examining Household Vulnerability and Responses to Pandemic Related Shocks in Eastern Ethiopia</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
COVID-19 is associated with one of the largest disturbances to life around the world. To quell disease spread, governments implemented lockdowns that likely created hardships for households. To improve knowledge of consequences, we examine how the pandemic period was associated with household hardships and assess factors associated with these hardships. We conducted a cross-sectional study using quasi-Poisson regression to examine factors associated with household hardships. Data were collected between August and September of 2021 from a random sample of 880 households living in a Health and Demographic Surveillance System (HDSS) located in the Harari Region and the District of Kersa, both in Ethiopia. Having a head of household with no education, residing in a rural area, larger household size, lower income and/or wealth, and community responses to COVID-19 including lockdowns and travel restrictions were independently associated with experiencing household hardships. Our results identify characteristics of groups at-risk for food insecurity during the pandemic; households that were already struggling prior to the onset of the pandemic were at greatest risk of adverse consequences during the pandemic period. These findings may inform future efforts to mitigate the consequences of COVID-19 and future disease outbreaks.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2023.02.01.23285322v4" target="_blank">Household Hardships during the COVID-19 Pandemic: Examining Household Vulnerability and Responses to Pandemic Related Shocks in Eastern Ethiopia</a>
|
|||
|
</div></li>
|
|||
|
</ul>
|
|||
|
<h1 data-aos="fade-right" id="from-clinical-trials">From Clinical Trials</h1>
|
|||
|
<ul>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>THE EFFECT OF ARGININE AND GLUTAMINE ON COVID-19 PATIENTS OUTCOME: A RANDOMIZED CLINICAL TRIAL</strong> - <b>Condition</b>: COVID-19<br/><b>Intervention</b>: Dietary Supplement: Neomune<br/><b>Sponsors</b>: Universitas Sriwijaya; M. Djamil General Hospital<br/><b>Completed</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Study of Obeldesivir in Children and Adolescents With COVID-19</strong> - <b>Condition</b>: COVID-19<br/><b>Intervention</b>: Drug: Obeldesivir<br/><b>Sponsor</b>: Gilead Sciences<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>KAND567 Versus Placebo in Subjects Hospitalized With COVID-19</strong> - <b>Condition</b>: Covid19<br/><b>Interventions</b>: Drug: KAND567; Drug: Microcrystalline cellulose<br/><b>Sponsor</b>: Kancera AB<br/><b>Terminated</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Aerobic Training for Rehabilitation of Patients With Post Covid-19 Syndrome</strong> - <b>Conditions</b>: Post-COVID-19 Syndrome; Long-COVID-19 Syndrome<br/><b>Intervention</b>: Behavioral: Aerobic Exercise Training<br/><b>Sponsors</b>: University of Witten/Herdecke; Verein und Institut für Rehabilitationsforschung Norderney<br/><b>Completed</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Immunogenicity and Safety of AdCLD-CoV19-1 OMI as a Booster: A COVID-19 Preventive Vaccine in Healthy Volunteers</strong> - <b>Conditions</b>: COVID-19; Vaccines<br/><b>Interventions</b>: Biological: AdCLD-CoV19-1 OMI; Biological: Comirnaty Bivalent 0.1mg/mL (tozinameran and riltozinameran)<br/><b>Sponsor</b>: Cellid Co., Ltd.<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A Pilot Clinical Evaluation of Astepro® Nasal Spray for Management of Early SARS-CoV-2 Infection</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Drug: Experimental: Primary Cohort; Other: Placebo Comparator: Primary Cohort - Placebo<br/><b>Sponsor</b>: University of Chicago<br/><b>Active, not recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Using Text Messages to Boost COVID-19 Vaccine Booking Rate</strong> - <b>Conditions</b>: Vaccination Hesitancy; COVID-19<br/><b>Interventions</b>: Behavioral: Behavioural science-informed text messages; Behavioral: Control<br/><b>Sponsors</b>: The Behavioural Insights Team; Public Health England; Department of Health and Social Care; NHS England and NHS Improvement<br/><b>Completed</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Digital Health Literacy on COVID-19 for All: Co-creation and Evaluation of Interventions for Ethnic Minorities and Chinese People With Chronic Illnesses in Hong Kong</strong> - <b>Conditions</b>: Digital Health Literacy; COVID-19<br/><b>Intervention</b>: Behavioral: Digital health literacy intervention<br/><b>Sponsor</b>: The Hong Kong Polytechnic University<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Ivermectin to Prevent SARS-CoV-2 (COVID-19) Hospitalisation in Subjects Over 50</strong> - <b>Conditions</b>: COVID-19; SARS-CoV-2<br/><b>Interventions</b>: Drug: Ivermectin; Drug: Placebo<br/><b>Sponsor</b>: Insud Pharma<br/><b>Terminated</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>COVID-19 Vaccination Hesitancy in Adults With Sickle Cell Disease</strong> - <b>Conditions</b>: Sickle Cell Disease; COVID-19 Vaccine; Vaccine Hesitancy<br/><b>Intervention</b>: Behavioral: SCD-specific COVID-19 vaccination information (SCVI) video<br/><b>Sponsors</b>: Duke University; American Society of Hematology<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Leveraging Community Health Workers to Combat COVID-19 and Mental Health Misinformation in Haiti, Malawi, and Rwanda</strong> - <b>Conditions</b>: Mental Health; COVID-19; Misinformation<br/><b>Interventions</b>: Behavioral: Card-Sorting Activity (Pre-intervention design); Behavioral: SMS Crafting (Pre-intervention design); Behavioral: SMS Messaging<br/><b>Sponsors</b>: Harvard Medical School (HMS and HSDM); Partners in Health<br/><b>Active, not recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Effect of Pulmonary Rehabilitation Among Post-COVID-19 Patients in a Tertiary Care Hospital in Bangladesh</strong> - <b>Condition</b>: Pulmonary Pathology<br/><b>Intervention</b>: Behavioral: Pulmonary Rehabilitation<br/><b>Sponsor</b>: Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh<br/><b>Active, not recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A Study to Learn About New COVD-19 RNA Vaccine Candidates for New Varients in Healthy Individuals</strong> - <b>Conditions</b>: SARS-CoV-2 Infection; COVID-19<br/><b>Intervention</b>: Biological: BNT162b2 (Omi XBB.1.5)<br/><b>Sponsors</b>: BioNTech SE; Pfizer<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Pulmonary Artery Pressure in COVID-19 Survivors</strong> - <b>Condition</b>: Pulmonary Hypertension Secondary<br/><b>Intervention</b>: Diagnostic Test: right heart catheterization (RHC).<br/><b>Sponsors</b>: Mansoura University Hospital; Ahmed Abdel-Gawad Mohamed Radi; Magdy Mahmoud emara; Tamer Ali Elhadidy; Mohammed Ahmed ibrahim<br/><b>Enrolling by invitation</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Randomized, Double-blind, Placebo-controlled Trial of the Efficacy and Safety of Tianeptine in the Treatment of Covid Fog Symptoms in Patients After COVID-19.</strong> - <b>Condition</b>: Nervous System Diseases<br/><b>Interventions</b>: Drug: Tianeptine; Drug: Placebo<br/><b>Sponsors</b>: Military Institute od Medicine National Research Institute; ABM Industries<br/><b>Recruiting</b></p></li>
|
|||
|
</ul>
|
|||
|
<h1 data-aos="fade-right" id="from-pubmed">From PubMed</h1>
|
|||
|
<ul>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>The hope and hype of ellagic acid and urolithins as ligands of SARS-CoV-2 Nsp5 and inhibitors of viral replication</strong> - Non-structural protein 5 (Nsp5) is a cysteine protease that plays a key role in SARS-CoV-2 replication, suppressing host protein synthesis and promoting immune evasion. The investigation of natural products as a potential strategy for Nsp5 inhibition is gaining attention as a means of developing antiviral agents. In this work, we have investigated the physicochemical properties and structure-activity relationships of ellagic acid and its gut metabolites, urolithins A-D, as ligands of Nsp5….</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Customizably designed multibodies neutralize SARS-CoV-2 in a variant-insensitive manner</strong> - The COVID-19 pandemic evolves constantly, requiring adaptable solutions to combat emerging SARS-CoV-2 variants. To address this, we created a pentameric scaffold based on a mammalian protein, which can be customized with up to 10 protein binding modules. This molecular scaffold spans roughly 20 nm and can simultaneously neutralize SARS-CoV-2 Spike proteins from one or multiple viral particles. Using only two different modules targeting the Spike’s RBD domain, this construct outcompetes human…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Drug-induced phospholipidosis is not correlated with the inhibition of SARS-CoV-2 - inhibition of SARS-CoV-2 is cell line-specific</strong> - Recently, Tummino et al. reported that 34 compounds, including Chloroquine and Fluoxetine, inhibit SARS-CoV-2 replication by inducing phospholipidosis, although Chloroquine failed to suppress viral replication in Calu-3 cells and patients. In contrast, Fluoxetine represses viral replication in human precision-cut lung slices (PCLS) and Calu-3 cells. Thus, it is unlikely that these compounds have similar mechanisms of action. Here, we analysed a subset of these compounds in the viral replication…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Investigation of the Host Kinome Response to Coronavirus Infection Reveals PI3K/mTOR Inhibitors as Betacoronavirus Antivirals</strong> - Host kinases play essential roles in the host cell cycle, innate immune signaling, the stress response to viral infection, and inflammation. Previous work has demonstrated that coronaviruses specifically target kinase cascades to subvert host cell responses to infection and rely upon host kinase activity to phosphorylate viral proteins to enhance replication. Given the number of kinase inhibitors that are already FDA approved to treat cancers, fibrosis, and other human disease, they represent an…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Azvudine and mortality in patients with coronavirus disease 2019: A retrospective cohort study</strong> - CONCLUSION: Our results reveal that in patients with COVID-19, FNC administration was associated with a significantly reduced 28-day mortality.</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Hexamethylene Amiloride Binds the SARS-CoV-2 Envelope Protein at the Protein-Lipid Interface</strong> - The SARS-CoV-2 envelope (E) protein forms a five-helix bundle in lipid bilayers whose cation-conducting activity is associated with the inflammatory response and respiratory distress symptoms of COVID-19. E channel activity is inhibited by the drug 5-(N,N-hexamethylene) amiloride (HMA). However, the binding site of HMA in E has not been determined. Here we use solid-state NMR to measure distances between HMA and the E transmembrane domain (ETM) in lipid bilayers. ^(13) C, ^(15) N-labeled HMA is…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Effectiveness of Bivalent Omicron-Containing Booster Vaccines against SARS-CoV-2 Omicron Variant among Individuals with and without Prior SARS-CoV-2 Infection</strong> - In this study, we evaluated the effectiveness of the bivalent mRNA COVID-19 vaccines against the Omicron variant in individuals with or without prior SARS-CoV-2 infection history. We assessed the SARS-CoV-2-specific neutralizing antibody in serum samples by surrogate virus neutralizing assay (sVNT) and determined the serum’s neutralizing capacity against the Omicron BA.5 by a plaque reduction neutralizing test (PRNT50). The results of the sVNT assay demonstrate a higher percentage of inhibition…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Evaluation of Nafamostat as Chemoprophylaxis for SARS-CoV-2 Infection in Hamsters</strong> - The successful development of a chemoprophylaxis against SARS-CoV-2 could provide a tool for infection prevention that is implementable alongside vaccination programmes. Nafamostat is a serine protease inhibitor that inhibits SARS-CoV-2 entry in vitro, but it has not been characterised for chemoprophylaxis in animal models. Clinically, nafamostat is limited to intravenous delivery and has an extremely short plasma half-life. This study sought to determine whether intranasal dosing of nafamostat…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Interchangeability of the Assays Used to Assess the Activity of Anti-SARS-CoV-2 Monoclonal Antibodies</strong> - The recent global COVID-19 pandemic caused by SARS-CoV-2 lasted for over three years. A key measure in combatting this pandemic involved the measurement of the monoclonal antibody (mAb)-mediated inhibition of binding between the spike receptor-binding domain (RBD) and hACE2 receptor. Potency assessments of therapeutic anti-SARS-CoV-2 mAbs typically include binding or cell-based neutralization assays. We assessed the inhibitory activity of five anti-SARS-CoV-2 mAbs using ELISA, surface plasmon…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Phenothiazines Inhibit SARS-CoV-2 Entry through Targeting Spike Protein</strong> - Novel coronavirus disease 2019 (COVID-19), a respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has brought an unprecedented public health crisis and continues to threaten humanity due to the persistent emergence of new variants. Therefore, developing more effective and broad-spectrum therapeutic and prophylactic drugs against infection by SARS-CoV-2 and its variants, as well as future emerging CoVs, is urgently needed. In this study, we screened several…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Clinical Utility of SARS-CoV-2 Antibody Titer Multiplied by Binding Avidity of Receptor-Binding Domain (RBD) in Monitoring Protective Immunity and Clinical Severity</strong> - Conventional serum antibody titer, which expresses antibody level, does not provide antigen binding avidity of the variable region of the antibody, which is essential for the defense response to infection. Here, we quantified anti-SARS-CoV-2 antibody binding avidity to the receptor-binding domain (RBD) by competitive binding-inhibition activity (IC50) between SARS-CoV-2 S1 antigen immobilized on the DCP microarray and various RBD doses added to serum and expressed as 1/IC50 nM. The binding…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Airway Epithelial-Derived Immune Mediators in COVID-19</strong> - The airway epithelium, which lines the conducting airways, is central to the defense of the lungs against inhaled particulate matter and pathogens such as SARS-CoV-2, the virus that causes COVID-19. Recognition of pathogens results in the activation of an innate and intermediate immune response which involves the release of cytokines and chemokines by the airway epithelium. This response can inhibit further viral invasion and influence adaptive immunity. However, severe COVID-19 is characterized…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong><em>Lavandula austroapennina</em>: Assessment of the Antiviral Activity of Lipophilic Extracts from Its Organs</strong> - In a framework aimed at the recovery and enhancement of medicinal plants endemic to the territory of the Cilento and Vallo di Diano National Park, Lavandula austroapennina N.G. Passal., Tundis and Upson has aroused interest. An insight into the chemical composition of the corolla, calyx, leaf, stem, and root organs was carried out following ultrasound-assisted maceration in n-hexane. The obtained lipophilic extracts were explored using ultra-high-performance chromatography coupled to…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Antiviral Effect of Candies Containing Persimmon-Derived Tannin against SARS-CoV-2 Delta Strain</strong> - Inactivation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the mouth has the potential to reduce the spread of coronavirus disease 2019 (COVID-19), due to the virus being readily transmitted by dispersed saliva. Persimmon-derived tannin has strong antioxidant and antimicrobial activity owing to its strong adhesion to proteins, and it also exhibited antiviral effects against non-variant and Alpha-variant SARS-CoV-2 in our previous study. In this study, we first demonstrated…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Immunogenicity of Mix-and-Match CoronaVac/BNT162b2 Regimen versus Homologous CoronaVac/CoronaVac Vaccination: A Single-Blinded, Randomized, Parallel Group Superiority Trial</strong> - (1) Background: This study aimed to compare the immunogenicity of the mix-and-match CoronaVac/BNT162b2 vaccination to the homologous CoronaVac/CoronaVac regimen. (2) Methods: We conducted a simple-blinded randomized superiority trial to measure SARS-CoV-2 neutralization antibodies and anti-spike receptor binding domain (RBD) IgG concentrations in blood samples of participants who had received the first dose of CoronaVac vaccine followed by a dose of BNT162b2 or CoronaVac vaccine. The primary…</p></li>
|
|||
|
</ul>
|
|||
|
<h1 data-aos="fade-right" id="from-patent-search">From Patent Search</h1>
|
|||
|
|
|||
|
|
|||
|
<script>AOS.init();</script></body></html>
|