192 lines
56 KiB
HTML
192 lines
56 KiB
HTML
|
<!DOCTYPE html>
|
|||
|
<html lang="" xml:lang="" xmlns="http://www.w3.org/1999/xhtml"><head>
|
|||
|
<meta charset="utf-8"/>
|
|||
|
<meta content="pandoc" name="generator"/>
|
|||
|
<meta content="width=device-width, initial-scale=1.0, user-scalable=yes" name="viewport"/>
|
|||
|
<title>30 October, 2021</title>
|
|||
|
<style type="text/css">
|
|||
|
code{white-space: pre-wrap;}
|
|||
|
span.smallcaps{font-variant: small-caps;}
|
|||
|
span.underline{text-decoration: underline;}
|
|||
|
div.column{display: inline-block; vertical-align: top; width: 50%;}
|
|||
|
</style>
|
|||
|
<title>Covid-19 Sentry</title><meta content="width=device-width, initial-scale=1.0" name="viewport"/><link href="styles/simple.css" rel="stylesheet"/><link href="../styles/simple.css" rel="stylesheet"/><link href="https://unpkg.com/aos@2.3.1/dist/aos.css" rel="stylesheet"/><script src="https://unpkg.com/aos@2.3.1/dist/aos.js"></script></head>
|
|||
|
<body>
|
|||
|
<h1 data-aos="fade-down" id="covid-19-sentry">Covid-19 Sentry</h1>
|
|||
|
<h1 data-aos="fade-right" data-aos-anchor-placement="top-bottom" id="contents">Contents</h1>
|
|||
|
<ul>
|
|||
|
<li><a href="#from-preprints">From Preprints</a></li>
|
|||
|
<li><a href="#from-clinical-trials">From Clinical Trials</a></li>
|
|||
|
<li><a href="#from-pubmed">From PubMed</a></li>
|
|||
|
<li><a href="#from-patent-search">From Patent Search</a></li>
|
|||
|
</ul>
|
|||
|
<h1 data-aos="fade-right" id="from-preprints">From Preprints</h1>
|
|||
|
<ul>
|
|||
|
<li><strong>Sexual minority orientation is associated with greater psychological impact due to the COVID-19 crisis—evidence from a longitudinal cohort study of young Swiss men</strong> -
|
|||
|
<div>
|
|||
|
This article has been publish in Frontiers in Public Health: https://doi.org/10.3389/fpubh.2021.692884 The COVID-19 pandemic and its countermeasures may have had a significant impact on the psychological well-being of specific population subgroups. The present study investigated whether sexual minority men from an ongoing cohort study of young Swiss men experienced different psychological impacts, levels of substance use and addictive behaviours. Methods An ongoing cohort sample based on the general population of young Swiss men (mean age=29.07 years; SD=1.27) was assessed before and during the COVID-19 crisis for depression, stress, sleep quality, substance use and addictive behaviours. Additionally, during the crisis, we assessed its impact in form of fear, isolation and traumatic experiences. Potential associations between these outcomes and sexual orientation (sexual minority vs heterosexual) were tested using linear regression models. Results Compared to heterosexual men, sexual minority men showed higher levels of psychological trauma (b=0.37 [0.25, 0.49]), fear (b=0.18 [0.06, 0.30]) and isolation (b=0.32 [0.20, 0.44]) due to the COVID-19 pandemic as well as higher levels of depression (b=0.31 [0.20, 0.41]) and lower sleep quality (b=-0.13 [-0.24, -0.02]) during the crisis. These differences were to a large degree explained by higher pre-crisis levels of mental health problems and the personality dimension of neuroticism-anxiety. Sexual minority men showed higher overall levels of substance use and addictive behaviours, but these differences were already present before the crisis. Conclusion The COVID-19 crisis may have worsened pre-existing vulnerabilities in sexual minority men, leading to its greater psychological impact on them than on heterosexual men. Services offering psychological support to sexual minorities may need to be reinforced during crises.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://psyarxiv.com/xg94c/" target="_blank">Sexual minority orientation is associated with greater psychological impact due to the COVID-19 crisis—evidence from a longitudinal cohort study of young Swiss men</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>The psychological impact of the COVID-19 crisis on young Swiss men participating in a cohort study</strong> -
|
|||
|
<div>
|
|||
|
This article has been published in Swiss Medical Weekly: https://doi.org/10.4414/smw.2021.w30028 The COVID-19 pandemic caused many disturbances to daily life worldwide and may also have significantly affected people’s psychological well-being. The present study aimed to describe the psychological impact of the crisis on our sample of young Swiss men and to examine differences due to their linguistic region, experiencing COVID-19 symptoms and living arrangements. Method Based on an ongoing cohort study, we assessed a general-population sample of young Swiss men (n = 2345; average 29 years old) shortly before (from April 2019) and early on during the COVID-19 crisis (between 13 May and 8 June 2020). This was a unique opportunity to estimate the crisis’ psychological impact in form of depression, perceived stress and sleep quality (assessed before and during COVID-19), and any crisis-induced fears, isolation or psychological trauma. Associations of psychological impact with living arrangements, experiencing COVID-19 symptoms and linguistic region (German-speaking vs French-speaking) were investigated using linear regression models. Findings By the time participants responded to our questionnaire, less than 1% had been tested positive for COVID-19, 2.6% had been tested negative, and 14.7% had had some COVID-19 symptoms but had not been tested. About 8.2% of the sample reported at least some symptoms of psychological trauma (≥ 24 points on the Impact of Event Scale). On average, participants reported higher levels of fear for others (43.6% at least moderate) and economical fear (12.7% at least moderate) than fear for themselves (5.8% at least moderate). Those living alone and those who reported having COVID-19 symptoms themselves, or knowing someone with symptoms, reported higher overall psychological impact in the form of depression, perceived stress, sleep quality, psychological trauma, fear and isolation. Associations with linguistic region varied by outcome, with higher levels of depression and fear in French-speaking regions and higher levels of perceived stress and isolation in German-speaking regions. Interpretation The crisis had a considerable impact on the psychological well- being of our sample of young Swiss men, and some groups were more affected than others: those living alone and those who had shown COVID-19 symptoms themselves; or had known someone with symptoms, may have felt a greater psychological impact from the crisis. Supporting those at a higher risk of psychological consequences in such crises, whether through structural measures or via individual support, should be an important aspect of crisis management and could help reduce the overall impact of the current pandemic on Switzerland’s population.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html- link">
|
|||
|
🖺 Full Text HTML: <a href="https://psyarxiv.com/kwxhd/" target="_blank">The psychological impact of the COVID-19 crisis on young Swiss men participating in a cohort study</a>
|
|||
|
</div></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Analyzing SARS CoV-2 Patient Data Using Quantum Supervised Machine Learning</strong> -
|
|||
|
<div>
|
|||
|
The novel coronavirus disease 2019 (COVID-19) has created a serious threat to global health. We developed a new quantum machine learning (QML) assisted diagnostic method that can provide an accurate diagnosis to aid decision processes of medical providers. One of the key elements in our method was to implement the quantum variational method to efficiently classify data, taking crucial multiple correlations among the features into account. We established and fine-tuned this quantum classifier by using a group of data drawn from publicly available COVID-19 cases. We have shown that QML is capable of processing patient information efficiently and accurately for the diagnosis of COVID-19.
|
|||
|
</div></li>
|
|||
|
</ul>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2021.10.26.466019v1" target="_blank">Analyzing SARS CoV-2 Patient Data Using Quantum Supervised Machine Learning</a>
|
|||
|
</div>
|
|||
|
<ul>
|
|||
|
<li><strong>Identification of COVID-19 and COPD common key genes and pathways using a protein-protein interaction approach</strong> -
|
|||
|
<div>
|
|||
|
Coronavirus disease (COVID-19) is an extremely contagious and cognitive disease that could cause immense hypoxemia. The rise in critically ill patients in epidemic regions has put enormous pressure on hospitals. There is a need to define extreme COVID- 19 clinical determinants to optimize clinical diagnosis and the management system is strong. Chronic obstructive pulmonary disease (COPD) is linked to a rapidly increasing risk of death rates in population pneumonia. In this research, a network of protein-protein interaction (PPI) was developed using constructed datasets of COVID-19 and COPD genes to define the interrelationship between COVID-19 and COPD, how it affects each other, and the genes that are responsible for the process. The PPI network shows the top 10 common overlapping genes, which include IL10, TLR4, TNF, IL6, CXCL8, IL4, ICAM1, IFNG, TLR2, and IL18. These are the genes that COVID-19 and high-risk COPD patients are known to be expressed. These important genes shared by COVID-19 and COPD are involved in pathways such as malaria, African trypanosomiasis, inflammatory bowel disease, Chagas disease, influenza, and tuberculosis.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2021.10.28.466298v1" target="_blank">Identification of COVID-19 and COPD common key genes and pathways using a protein-protein interaction approach</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Efficacy of anti-microbial gel vapours against aerosolised coronavirus, bacteria, and fungi</strong> -
|
|||
|
<div>
|
|||
|
Background: The urban population spends up to 90% of their time indoors. The indoor environment harbours a diverse microbial population including viruses, bacteria, and fungi. Pathogens present in the indoor environment can be transmitted to humans through aerosols. Aim: This study evaluated the efficacy of an antimicrobial gel containing a mix of essential oils against aerosols of bacteria, fungi, and coronavirus. Methods: The antimicrobial gel was allowed to vapourize inside a glass chamber for 10 or 20 minutes. Microbial aerosols of Escerichia coli, Aspergillus flavus spores or murine hepatitis virus MHV 1, a surrogate of SARS CoV-2 was passed through the gel vapours and then collected on a 6-stage Andersen sampler. The number of viable microbes present in the aerosols collected in the different stages were enumerated and compared to number of viable microbes in control microbial aerosols that were not exposed to the gel vapours. Results: Vaporizing the antimicrobial gel for 10 and 20 minutes resulted in a 48% (p = 0.002 Vs. control) and 53% (p = 0.001 Vs. control) reduction in the number of MHV-1 in the aerosols, respectively. The antimicrobial gel vaporised for 10 minutes, reduced the number of viable E. coli by 51% (p = 0.032 Vs. control) and Aspergillus flavus spores by 72% (p=0.008 Vs. control) in the aerosols. Conclusions: The antimicrobial gel may be able to reduce aerosol transmission of microbes. Keywords: Aerosol, Coronavirus, SARS-CoV-2, Indoor Air, Antimicrobial, Essential oils
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2021.10.27.466182v1" target="_blank">Efficacy of anti-microbial gel vapours against aerosolised coronavirus, bacteria, and fungi</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Novel pectin from crude polysaccharide of Syzygium aromaticum against SARS-CoV-2 activities by targeting 3CLpro</strong> -
|
|||
|
<div>
|
|||
|
To date, COVID-19 is still a severe threat to public health, hence specific effective therapeutic drugs development against SARS-CoV-2 is urgent needed. 3CLpro and PLpro and RdRp are the enzymes required for the SARS-CoV-2 RNA synthesis. Therefore, binding to the enzyme may interfere the enzyme function. Before, we found that sulfated polysaccharide binding to 3CLpro might block the virus replication. Hence, we hypothesize that negative charged pectin glycan may also impede the virus replication. Here we show that 922 crude polysaccharide from Syzygium aromaticum may near completely block SARS-CoV-2 replication. The inhibition rate was 99.9% (EC50 : 0.90 muM). Interestingly, 922 can associates with 3CLpro, PLpro and RdRp. We further show that the homogeneous glycan 922211 from 922 may specifically attenuate 3CL protease activity. The IC50s of 922 and 922211 against 3CLpro are 4.73 plusmn 1.05 muM and 0.18 plusmn 0.01 muM, respectively. Monosaccharide composition analysis reveals that 922211 with molecular weight of 78.7 kDa is composed of rhamnose, galacturonic acid, galactose and arabinose in the molar ratio of 8.21 : 37.81 : 3.58 : 4.49. The structure characterization demonstrated that 922211 is a homogalacturonan linked to RG-I pectin polysaccharide. The linear homogalacturonan part in the backbone may be partly methyl esterified while RG-I type part bearing 1, 4-linked alpha-GalpA, 1, 4-linked alpha-GalpAOMe and 1, 2, 4-linked alpha-Rhap. There are four branches attached to C-1 or C4 position of Rhamnose glycosyl residues on the backbone. The branches are composed of 1, 3-linked beta-Galp, terminal (T)-linked beta-Galp, 1, 5-linked alpha-Araf, T-linked alpha-Araf, 4-linked alpha-GalpA and/or 4-linked beta-GalpA. The above results suggest that 922 and 922211 might be a potential novel leading compound for anti-SARS-CoV-2 new drug development.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2021.10.27.466067v1" target="_blank">Novel pectin from crude polysaccharide of Syzygium aromaticum against SARS-CoV-2 activities by targeting 3CLpro</a>
|
|||
|
</div></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Camel nanobodies broadly neutralize SARS-CoV-2 variants</strong> -
|
|||
|
<div>
|
|||
|
With the emergence of SARS-CoV-2 variants, there is urgent need to develop broadly neutralizing antibodies. Here, we isolate two VHH nanobodies (7A3 and 8A2) from dromedary camels by phage display, which have high affinity for the receptor-binding domain (RBD) and broad neutralization activities against SARS-CoV-2 and its emerging variants. Cryo-EM complex structures reveal that 8A2 binds the RBD in its up mode and 7A3 inhibits receptor binding by uniquely targeting a highly conserved and deeply buried site in the spike regardless of the RBD conformational state. 7A3 at a dose of [≥]5 mg/kg efficiently protects K18-hACE2 transgenic mice from the lethal challenge of B.1.351 or B.1.617.2, suggesting that the nanobody has promising therapeutic potentials to curb the COVID-19 surge with emerging SARS-CoV-2 variants.
|
|||
|
</div></li>
|
|||
|
</ul>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2021.10.27.465996v1" target="_blank">Camel nanobodies broadly neutralize SARS-CoV-2 variants</a>
|
|||
|
</div>
|
|||
|
<ul>
|
|||
|
<li><strong>SARS-CoV-2 spike protein as a bacterial lipopolysaccharide delivery system in an overzealous inflammatory cascade</strong> -
|
|||
|
<div>
|
|||
|
Accumulating evidence indicates a potential role for bacterial lipopolysaccharide (LPS) in the overactivation of the immune response during SARS-CoV-2 infection. LPS is recognised by Toll-like receptor 4 (TLR4) in innate immunity. Here, we showed that LPS binds to multiple hydrophobic pockets spanning both the S1 and S2 subunits of the SARS-CoV-2 spike (S) protein. LPS binds to the S2 pocket with a lower affinity compared to S1, suggesting its possible role as an intermediate in the TLR4 cascade. Congruently, nuclear factor-kappa B (NF-{kappa}B) activation in vitro is strongly boosted by S2. In vivo, however, a boosting effect is observed for both S1 and S2, with the former potentially facilitated by proteolysis. Collectively, our study suggests the S protein may act as a delivery system for LPS in host innate immune pathways. The LPS binding pockets are highly conserved across different SARS-CoV-2 variants and therefore represent potential therapeutic targets.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2021.10.29.466401v1" target="_blank">SARS-CoV-2 spike protein as a bacterial lipopolysaccharide delivery system in an overzealous inflammatory cascade</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>The glycosylated extracellular domain of MUC1 protects against SARS-CoV-2 infection at the respiratory surface</strong> -
|
|||
|
<div>
|
|||
|
Mucins play an essential role in protecting the respiratory tract against microbial infections. The heavily O-glycosylated gel-forming mucins MUC5AC and MUC5B eliminate pathogens by mucociliary clearance while transmembrane mucins MUC1, MUC4, and MUC16 restrict microbial invasion at the apical surface of the epithelium. In this study, we determined the impact of host mucins and mucin glycans on SARS-CoV-2 spike-mediated epithelial entry. Human lung epithelial Calu-3 cells have endogenous expression of the SARS-CoV-2 entry receptor ACE2 and express high levels of glycosylated MUC1 on the surface but not MUC4 and MUC16. Removal of the MUC1 extracellular domain (ED) using the O-glycan-specific mucinase StcE greatly enhanced spike binding and viral infection. By contrast, removal of mucin glycans sialic acid and fucose did not impact viral invasion. This study implicates the glycosylated ED of MUC1 as an important component of the host defense that restricts the severity of SARS-CoV-2 infection.
|
|||
|
</div>
|
|||
|
<div class="article- link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2021.10.29.466408v1" target="_blank">The glycosylated extracellular domain of MUC1 protects against SARS-CoV-2 infection at the respiratory surface</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Whole-genome sequencing of Vero E6 (C1008) and comparative analysis of four Vero cell sublines</strong> -
|
|||
|
<div>
|
|||
|
The Vero cell line is an immortalized cell line established from kidney epithelial cells of the African green monkey. A variety of sublines have been established from the original cell line, which display different characteristics. In this study, we determined the whole-genome sequence of Vero E6 (C1008) and performed comparative analysis among Vero JCRB 0111, Vero CCL-81, Vero 76 and Vero E6. Analysis of the copy number changes and loss of heterozygosity revealed that all sublines share a large deletion and loss of heterozygosity on chromosome 12, which harbors type I interferon and CDKN2 gene clusters. We identified a substantial number of genetic differences among the sublines including single nucleotide variants, indels, and copy number variations. The spectrum of single nucleotide variants indicated a close genetic relationship between Vero JCRB0111 and Vero CCL-81, and between Vero 76 and Vero E6, and a considerable genetic gap between the former two and the latter two lines. In contrast, we confirmed the pattern of genomic integration sites of simian endogenous retroviral sequences, which was consistent among the sublines. We identified subline-specific/enriched loss of function and missense variants, which potentially contribute to the differences in response to viral infection among the Vero sublines. In particular, we focused on Vero E6-specific/enriched variants and identified four genes (IL1RAP, TRIM25, RB1CC1, and ATG2A) that contained missense variants specific or enriched in Vero E6. In addition, we found that V739I variants of ACE2, which functions as the receptor for SARS-CoV-2, were heterozygous in Vero JCRB0111, Vero CCL-81, and Vero 76; however, Vero E6 contained the allele with isoleucine, resulting from the loss of one of the X chromosomes.
|
|||
|
</div>
|
|||
|
<div class="article-link article- html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2021.10.26.466002v1" target="_blank">Whole-genome sequencing of Vero E6 (C1008) and comparative analysis of four Vero cell sublines</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Prime-boost vaccination regimens with INO-4800 and INO-4802 augment and broaden immune responses against SARS-CoV-2 in nonhuman primates</strong> -
|
|||
|
<div>
|
|||
|
The enhanced transmissibility and immune evasion associated with emerging SARS-CoV-2 variants demands the development of next-generation vaccines capable of inducing superior protection amid a shifting pandemic landscape. Since a portion of the global population harbors some level of immunity from vaccines based on the original Wuhan-Hu-1 SARS-CoV-2 sequence or natural infection, an important question going forward is whether this immunity can be boosted by next-generation vaccines that target emerging variants while simultaneously maintaining long-term protection against existing strains. Here, we evaluated the immunogenicity of INO-4800, our synthetic DNA vaccine candidate for COVID-19 currently in clinical evaluation, and INO-4802, a next-generation DNA vaccine designed to broadly target emerging SARS- CoV-2 variants, as booster vaccines in nonhuman primates. Rhesus macaques primed over one year prior with the first- generation INO-4800 vaccine were boosted with either INO-4800 or INO-4802 in homologous or heterologous prime-boost regimens. Both boosting schedules led to an expansion of antibody responses which were characterized by improved neutralizing and ACE2 blocking activity across wild-type SARS-CoV-2 as well as multiple variants of concern. These data illustrate the durability of immunity following vaccination with INO-4800 and additionally support the use of either INO-4800 or INO-4802 in prime-boost regimens.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2021.10.27.466163v1" target="_blank">Prime-boost vaccination regimens with INO-4800 and INO-4802 augment and broaden immune responses against SARS-CoV-2 in nonhuman primates</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>A multi-tissue study of immune gene expression profiling highlights the key role of the nasal epithelium in COVID-19 severity</strong> -
|
|||
|
<div>
|
|||
|
Background: COVID-19 symptoms range from mild to severe illness; the cause for this differential response to infection remains unknown. Unravelling the immune mechanisms acting at different levels of the colonization process might be key to understand these differences. Methods and findings: We carried out a multi-tissue (nasal, buccal and blood; n = 156) gene expression analysis of immune-related genes from patients affected by different COVID-19 severities, and healthy controls through the nCounter technology. We then used a differential expression approach and pathways analysis to detect tissue specific immune severity signals in COVID-19 patients. Mild and asymptomatic cases showed a powerful innate antiviral response in nasal epithelium, characterized by activation of interferon (IFN) pathway and downstream cascades, successfully controlling the infection at local level. In contrast, weak macrophage/monocyte driven innate antiviral response and lack of IFN signalling activity were shown in severe cases. Consequently, oral mucosa from severe patients showed signals of viral activity, cell arresting and viral dissemination to the lower respiratory tract, which ultimately could explain the exacerbated innate immune response and impaired adaptative immune responses observed at systemic level. Results from saliva transcriptome suggest that the buccal cavity might play a key role in SARS-CoV-2 infection and dissemination in patients with worse prognosis. Conclusions: We found severity-related signatures in patient tissues mainly represented by genes involved in the innate immune system and cytokine/chemokine signalling. Local immune response could be key to determine the course of the systemic response and thus COVID-19 severity. Our findings provide a framework to investigate severity host gene biomarkers and pathways that might be relevant to diagnosis, prognosis, and therapy.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2021.10.27.466206v1" target="_blank">A multi-tissue study of immune gene expression profiling highlights the key role of the nasal epithelium in COVID-19 severity</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>An iTSC-derived placental model of SARS-CoV-2 infection unveils ACE2-dependent susceptibility in syncytiotrophoblasts</strong> -
|
|||
|
<div>
|
|||
|
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causing coronavirus disease 2019 (COVID-19) has caused a global health crisis. The primary site of infection is in the respiratory tract but the virus has been associated with a variety of complications involving the gastrointestinal and cardiovascular systems. Since the virus affects a variety of tissue types, there has been interest in understanding SARS-CoV-2 infection in early development and the placenta. The expression of ACE2 or TMPRSS2, both genes critical for viral entry, is present in placental- specific cell types such as extravillous trophoblasts (EVTs) and, especially, syncytiotrophoblasts (STs). The potential of SARS-CoV-2 to infect these placental cells and its effect on placental development and function is still unclear. Furthermore, it is crucial to understand the possible mechanism of vertical transmission of SARS-CoV-2 through the placenta. Here, we developed an in vitro model of SARS-CoV-2 infection of placental cell types using induced trophoblast stem cells (iTSCs). This model allowed us to show that STs but not EVTs are infected. Importantly, infected STs lack the expression of key differentiation genes, lack typically observed differentiated morphology and produce significantly lower human chorionic gonadotropin (HCG) compared to non-infected controls. We also show that an anti-ACE2 antibody prevents SARS-CoV-2 infection and restores normal ST differentiation and function. We highlight the establishment of a platform to study SARS-CoV-2 infection in early placental cell types, which will facilitate investigation of antiviral therapy to protect the placenta during early pregnancy and development.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html- link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2021.10.27.465224v1" target="_blank">An iTSC- derived placental model of SARS-CoV-2 infection unveils ACE2-dependent susceptibility in syncytiotrophoblasts</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Multi-label topic classification for COVID-19 literature annotation using an ensemble model based on PubMedBERT</strong> -
|
|||
|
<div>
|
|||
|
The BioCreative VII Track 5 calls for participants to tackle the multi-label classification task for automated topic annotation of COVID-19 literature. In our participation, we evaluated several deep learning models built on PubMedBERT, a pre-trained language model, with different strategies addressing the challenges of the task. Specifically, multi-instance learning was used to deal with the large variation in the lengths of the articles, and focal loss function was used to address the imbalance in the distribution of different topics. We found that the ensemble model performed the best among all the models we have tested. Test results of our submissions showed that our approach was able to achieve satisfactory performance with an F1 score of 0.9247, which is significantly better than the baseline model (F1 score: 0.8678) and the mean of all the submissions (F1 score: 0.8931).
|
|||
|
</div>
|
|||
|
<div class="article-link article- html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2021.10.26.465946v1" target="_blank">Multi-label topic classification for COVID-19 literature annotation using an ensemble model based on PubMedBERT</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Phylogenetic analysis and in silico studies link spike Q675H mutation to SARS-CoV-2 adaptive evolution</strong> -
|
|||
|
<div>
|
|||
|
Genotype screening was implemented in Italy and showed a significant prevalence of new SARS-CoV-2 mutants carrying Q675H mutation, near the furin cleavage site of spike protein. Currently, this mutation, which is expressed on different SARS-CoV-2 lineages circulating worldwide, has not been thoughtfully investigated. Therefore, we performed phylogenetic and biocomputational analysis to better understand SARS-CoV-2 Q675H mutants evolutionary relationships with other circulating lineages and Q675H function in its molecular context. Our studies reveal that Q675H spike mutation is the result of parallel evolution because it arose independently in separate evolutionary clades. In silico data show that the Q675H mutation gives rise to a hydrogen-bonds network in the spike polar region delimiting the conformational space of the highly flexible loop containing the furin cleavage site. This results in an optimized directionality of arginine residues involved in interaction of spike with the furin binding pocket, thus improving proteolytic exposure of the viral protein. Furin was found to have a greater affinity for Q675H than Q675 substrate conformations. As a consequence, Q675H mutation is likely to confer a fitness advantage to SARS-CoV-2 by promoting a more efficient viral entry. Interestingly, here we show an ongoing increase in the occurrence of Q675H spike mutation in the most common SARS-CoV-2 variants of concern (VOC). This finding highlights that, VOC are still evolving and start acquiring the Q675H mutation. At the same time, it suggests that our hypothesis of fitness advantage prompted by Q675H could be concrete.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2021.10.27.466055v1" target="_blank">Phylogenetic analysis and in silico studies link spike Q675H mutation to SARS-CoV-2 adaptive evolution</a>
|
|||
|
</div></li>
|
|||
|
</ul>
|
|||
|
<h1 data-aos="fade-right" id="from-clinical-trials">From Clinical Trials</h1>
|
|||
|
<ul>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>COVID-19 Study of Pharmacokinetics, Safety, Tolerability, and Efficacy of Intravenous Anti-Spike(s) SARS-CoV-2 Monoclonal Antibodies (Casirivimab+Imdevimab) for the Treatment of Pediatric Patients Hospitalized Due to COVID-19</strong> - <b>Condition</b>: COVID-19<br/><b>Intervention</b>: Drug: casirivimab+imdevimab<br/><b>Sponsor</b>: <br/>
|
|||
|
Regeneron Pharmaceuticals<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Immunogenicity and Safety of Heterologous and Homologous Boosting With ChAdOx1-S and CoronaVac or a Formulation of SCB-2019 (COVID-19)</strong> - <b>Condition</b>: Covid19<br/><b>Interventions</b>: Biological: ChAdOx1-S COVID-19 Vaccine(Fiocruz/Oxford- AstraZeneca); Biological: CoronaVac (Sinovac Biotech); Biological: Adjuvanted Recombinant SARS-CoV-2 TrimericS- protein Subunit Vaccine (SCB-2019 - Clover)<br/><b>Sponsors</b>: D’Or Institute for Research and Education; Bill and Melinda Gates Foundation; Instituto Fernandes Figueira<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Tocilizumab Versus Baricitinib in Patients With Severe COVID-19</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Drug: Tocilizumab; Drug: Baricitinib<br/><b>Sponsor</b>: University Hospital of Patras<br/><b>Recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>The Efficacy and Safety of Pyramax in Mild to Moderate COVID-19 Patients (Phase3)</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Drug: Pyramax; Drug: Placebo<br/><b>Sponsor</b>: <br/>
|
|||
|
Shin Poong Pharmaceutical Co. Ltd.<br/><b>Recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>JINZHEN for Treatment of Mild to Moderate COVID-19</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Drug: JINZHEN Granules for Oral Solution; Drug: Placebo<br/><b>Sponsor</b>: Lianyungang Kanion Group, Ltd.<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Effectiveness of Using Interactive Consulting System to Enhance Decision Aids of COVID-19 Vaccination</strong> - <b>Condition</b>: COVID-19<br/><b>Intervention</b>: Device: Chatbot<br/><b>Sponsor</b>: Sun Yat- sen University<br/><b>Recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Efficacy and Safety of Apixaban in COVID-19 Coagulopathy Patients With Respiratory Severity Under Critical Care</strong> - <b>Condition</b>: COVID-19<br/><b>Intervention</b>: Drug: Apixaban<br/><b>Sponsors</b>: <br/>
|
|||
|
Scotmann Pharmaceuticals; Rawalpindi Medical College<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Clinical Validation of Breath Analyser Tests for Diagnosis of COVID-19.</strong> - <b>Condition</b>: COVID-19<br/><b>Intervention</b>: Diagnostic Test: Breath Sample analysis<br/><b>Sponsor</b>: Tera Group<br/><b>Recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Efficacy, Safety, and Immunogenicity Study of the Recombinant Two-component COVID-19 Vaccine (CHO Cell)</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Biological: Recombinant two-component COVID-19 vaccine (CHO cell); Biological: Placebo<br/><b>Sponsor</b>: Jiangsu Rec-Biotechnology Co., Ltd.<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Cardiovascular Assessment in Patient Recovered From COVID-19 and Recovery of Autonomic Nervous System in Association With the Severity of the Disease</strong> - <b>Condition</b>: COVID-19<br/><b>Intervention</b>: Other: Non invasive cardiovascular monitoring with CNAP device of arterial pressure, ECG and respiratory activity<br/><b>Sponsor</b>: IRCCS Policlinico S. Donato<br/><b>Recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Safety and Efficacy of KOVIR (TD0068) in the Combination Regimen With Background Treatment in COVID-19 Patients (KOVIR)</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Dietary Supplement: KOVIR (TD0068) oral capsule; Dietary Supplement: Placebo oral capsule<br/><b>Sponsors</b>: Sunstar Joint Stock Company; Vietstar Biomedical Research<br/><b>Recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Phase 1 Trial of ChAd68 and Ad5 Adenovirus COVID-19 Vaccines Delivered by Aerosol</strong> - <b>Conditions</b>: COVID-19; SARS-CoV2 Infection<br/><b>Interventions</b>: Biological: Ad5-triCoV/Mac; Biological: ChAd-triCoV/Mac<br/><b>Sponsors</b>: McMaster University; Canadian Institutes of Health Research (CIHR)<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Effect of PBM on Functional Capacity and Fatigability in Post Covid-19 Elderly</strong> - <b>Condition</b>: Post Covid-19 Elderly<br/><b>Interventions</b>: Radiation: photobiomodulation; Other: placebo intervention by photobiomodulation device<br/><b>Sponsor</b>: Cairo University<br/><b>Recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Recombinant SARS-CoV-2 Fusion Protein Vaccine (V-01) Booster Study</strong> - <b>Condition</b>: COVID-19 Pandemic<br/><b>Interventions</b>: Biological: Recombinant SARS-CoV-2 Fusion Protein Vaccine (V-01); Biological: Blank Preparation of Recombinant SARS-CoV-2 Fusion Protein Vaccine (V-01)<br/><b>Sponsor</b>: Livzon Pharmaceutical Group Inc.<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Home-based Brain Stimulation Treatment for Post-acute Sequelae of COVID-19 (PASC)</strong> - <b>Condition</b>: Post-Acute Sequelae of COVID-19<br/><b>Interventions</b>: Device: Active tDCS; Device: Sham tDCS<br/><b>Sponsor</b>: Massachusetts General Hospital<br/><b>Not yet recruiting</b></p></li>
|
|||
|
</ul>
|
|||
|
<h1 data-aos="fade-right" id="from-pubmed">From PubMed</h1>
|
|||
|
<ul>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Dysregulation of RNA interference components in COVID-19 patients</strong> - OBJECTIVE: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the novel coronavirus causing severe respiratory illness (COVID-19). This virus was initially identified in Wuhan city, a populated area of the Hubei province in China, and still remains one of the major global health challenges. RNA interference (RNAi) is a mechanism of post-transcriptional gene silencing that plays a crucial role in innate viral defense mechanisms by inhibiting the virus replication as well as…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>APOL1 risk variants in individuals of African genetic ancestry drive endothelial cell defects that exacerbate sepsis</strong> - The incidence and severity of sepsis is higher among individuals of African versus European ancestry. We found that genetic risk variants (RVs) in the trypanolytic factor apolipoprotein L1 (APOL1), present only in individuals of African ancestry, were associated with increased sepsis incidence and severity. Serum APOL1 levels correlated with sepsis and COVID-19 severity, and single-cell sequencing in human kidneys revealed high expression of APOL1 in endothelial cells. Analysis of mice with…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Specific delivering of RNAi using Spike’s aptamer-functionalized lipid nanoparticles for targeting SARS-CoV-2: A strong anti-Covid drug in a clinical case study</strong> - Coronavirus (SARS-CoV-2) as a global pandemic has attracted the attention of many scientific centers to find the right treatment. We expressed and purified the recombinant receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein, and specific RBD aptamers were designed using SELEX method. RNAi targeting nucleocapsid phosphoprotein was synthesized and human lung cells were inoculated with aptamer-functionalized lipid nanoparticles (LNPs) containing RNAi. The results demonstrated that RBD…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Snake venom phospholipase A(2)s exhibit strong virucidal activity against SARS-CoV-2 and inhibit the viral spike glycoprotein interaction with ACE2</strong> - The COVID-19 pandemic caused by SARS-CoV-2 requires new treatments both to alleviate the symptoms and to prevent the spread of this disease. Previous studies demonstrated good antiviral and virucidal activity of phospholipase A(2)s (PLA(2)s) from snake venoms against viruses from different families but there was no data for coronaviruses. Here we show that PLA(2)s from snake venoms protect Vero E6 cells against SARS-CoV-2 cytopathic effects. PLA(2)s showed low cytotoxicity to Vero E6 cells with…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Racial/Ethnic Disparities in State-Level COVID-19 Vaccination Rates and Their Association with Structural Racism</strong> - CONCLUSIONS: There are marked racial disparities in COVID-19 vaccination throughout the USA, and structural racism is strongly associated with the magnitude of these disparities. Efforts to reduce these disparities must address not only individual behavior but must also confront the structural barriers that are inhibiting equitable vaccine distribution.</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Virtual Screening on Marine Natural Products for Discovering TMPRSS2 Inhibitors</strong> - Although SARS-CoV-2 entry to cells strictly depends on angiotensin-converting enzyme 2 (ACE2), the virus also needs transmembrane serine protease 2 (TMPRSS2) for its spike protein priming. It has been shown that the entrance of SARS- CoV-2 through ACE2 can be blocked by cellular TMPRSS2 blockers. The main aim of this study was to find potential inhibitor(s) of TMPRSS2 through virtual screening against a homology model of TMPRSS2 using the library of marine natural products (MNPs). The homology…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Acting Proactively to Manage Job Insecurity: How Worrying About the Future of One’s Job May Obstruct Future-Focused Thinking and Behavior</strong> - An increasing number of people experience insecurity about the future of their job, making it more important than ever to manage this insecurity. While previous research suggests that proactive coping is a promising way to alleviate job insecurity, we suggest that, paradoxically, it may be particularly difficult to act proactively when feeling emotionally distressed about the future of one’s job. Drawing on the principle of resource scarcity and the Conservation of Resources theory, we propose…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Co-infection of SARS-CoV-2 and influenza virus causes more severe and prolonged pneumonia in hamsters</strong> - Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently a serious public health concern worldwide. Notably, co-infection with other pathogens may worsen the severity of COVID-19 symptoms and increase fatality. Here, we show that co-infection with influenza A virus (IAV) causes more severe body weight loss and more severe and prolonged pneumonia in SARS-CoV-2-infected hamsters. Each virus can efficiently spread in the lungs without…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Characterizing the BCR repertoire during lymphocyte reduction and recovery mediated by cyclophosphamide and granulocyte-macrophage colony-stimulating factor</strong> - Leukopenia is a common manifestation of many diseases, including global outbreak SAS-CoV-2 infection. Granulocyte- macrophage colony-stimulating factor (GM -CSF) has been proved to be effective in promoting lymphocyte regeneration, but adverse immunological effects have also emerged. This study aim to investigate the effect of GM -CSF on BCR heavy chain CDR3 repertoire while promoting lymphocyte regeneration. Cyclophosphamide (CTX) and GM -CSF were used to inhibit and stimulate bone marrow…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>COVID-19: A review of newly formed viral clades, pathophysiology, therapeutic strategies and current vaccination tasks</strong> - Today, the world population is facing an existential threat by an invisible enemy known as severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) or COVID-19. It is highly contagious and has infected a larger fraction of human population across the globe on various routes of transmission. The detailed knowledge of the SARS-CoV-2 structure and clinical aspects offers an important insight into the evolution of infection, disease progression and helps in executing the different therapies…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Fentanyl-induced acute and conditioned behaviors in two inbred mouse lines: potential role for Glyoxalase</strong> - An increase in opioid-overdose deaths was evident before the COVID-19 pandemic, and has escalated since its onset. Fentanyl, a highly potent synthetic opioid, is the primary driver of these recent trends. The current study used two inbred mouse strains, C57BL/6J and A/J, to investigate the genetics of behavioral responses to fentanyl. Mice were tested for conditioned place preference and fentanyl-induced locomotor activity. C57BL/6J mice formed a conditioned place preference to fentanyl…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Heart-rate-variability (HRV), predicts outcomes in COVID-19</strong> - CONCLUSION: Higher HRV predicts greater chances of survival, especially in patients aged 70 years and older with COVID-19, independent of major prognostic factors. Low HRV predicts ICU indication and admission in the first week after hospitalization.</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Quercetin and its derivates as antiviral potentials: A comprehensive review</strong> - Quercetin, widely distributed in fruits and vegetables, is a flavonoid known for its antioxidant, antiviral, antimicrobial, and antiinflammatory properties. Several studies highlight the potential use of quercetin as an antiviral, due to its ability to inhibit the initial stages of virus infection, to be able to interact with proteases important for viral replication, and to reduce inflammation caused by infection. Quercetin could also be useful in combination with other drugs to potentially…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>SARS-CoV-2 Spike Glycoprotein S1 Induces Neuroinflammation in BV-2 Microglia</strong> - In addition to respiratory complications produced by SARS-CoV-2, accumulating evidence suggests that some neurological symptoms are associated with the disease caused by this coronavirus. In this study, we investigated the effects of the SARS-CoV-2 spike protein S1 stimulation on neuroinflammation in BV-2 microglia. Analyses of culture supernatants revealed an increase in the production of TNF-α, IL-6, IL-1β and iNOS/NO. S1 also increased protein levels of phospho-p65 and phospho-IκBα, as well…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Celecoxib, Glipizide, Lapatinib, and Sitagliptin as potential suspects of aggravating SARS-CoV-2 (COVID-19) infection: a computational approach</strong> - COVID-19 caused by SARS-CoV-2 has emerged as a potential threat to human life, especially to people suffering from chronic diseases. In this study, we investigated the ability of selected FDA-approved drugs to inhibit TACE (tumor necrosis factor α converting enzyme), which is responsible for the shedding of membrane-bound ACE2 (angiotensin- converting enzyme2) receptors into soluble ACE2. The inhibition of TACE would lead to an increased population of membrane-bound ACE2, which would facilitate…</p></li>
|
|||
|
</ul>
|
|||
|
<h1 data-aos="fade-right" id="from-patent-search">From Patent Search</h1>
|
|||
|
<ul>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Anti-SARS-CoV-2 antibodies and uses thereof I</strong> - - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=AU339290405">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Anti-SARS-CoV-2 antibodies and uses thereof II</strong> - - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=AU339290406">link</a></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>휴대용 자화 육각수물 발생기</strong> - 본인의 발명은, 사람의 신체에서 육각수물 생성에는 한계가 있으며, 동맥혈관, 정맥혈관 내부 혈액은 수분이 약 90% 이며, 건강한 성인이면, 육각수 물은 약 62% 이며, COVID-19 환자, 사고의 부상, 17만개의 질병, 질환으로 조직세포가 손상되면 자기 신체수복을 위해서 육각수 물을 평소보다 많이 흡수 하면서 동반 산소부족 상태가 되며, 육각수물 보충 없이 산소 호흡기를 사용하면 심각한 후유증이 발병 할 수 있다.</p></li>
|
|||
|
</ul>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">육각수물 부족 상태를 해결하기 위해서, 객관적인 과학적으로 네오디뮴(원자번호 = 60) 3.000 가우스의 자기장을 이용하여서 육각수 물을 62% ~ 80% 이상, 상시 유지 시켜주는 제조 방법이며, 휴대용으로 항시 착용 가능하다. 결론은 COVID-19, 질병, 질환의 근본적인 원인은, 육각수물 부족 상태가 되면 동반 산소 부족 상태가 되면서, 염증 -> 통증 -> 극심한 통증 -> 석회화, 섬유화, 암 까지 발병 한다. - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=KR338655754">link</a></p>
|
|||
|
<ul>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>휴대용 자화 육각수물 발생기</strong> - 본인의 발명은, 사람의 신체에서 육각수 생성에는 한계가 있으며, 동맥혈관, 정맥혈관 내부 혈액은 수분이 90% 이며, 육각수물은 약 62% 이며, COVID-19, 사고 부상, 질병, 질환으로 조직세포가 손상되면 자기 신체수복을 위해서 육각수물을 평소보다 많이 흡수하면서 산소부족 상태가 되며, 육각수 보충 없이 산소호흡기를 사용하면 심각한 후유증이 발병 할 수 있다 육각수물 부족 상태를 해결하기 위해서, 객관적인 과학적으로 네오디뮴(원자번호 = 60) 3.000 가우스의 자기장을 이용하여서 육각수물을 62% ~ 80% 상시 유지 시켜주는 제조 방법이며, 휴대용으로 항시 착용 가능하다. 결론은 COVID-19, 질병, 질환의 근본적인 원인은, 육각수물 부족 상태가 되면 동반 산소 부족 상태가 되면서, 염증 -> 통증 -> 극심한 통증 -> 석회화, 섬유화, 암 까지 발병 한다. - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=KR338650904">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>用于检测新冠病毒的配对抗体及其应用</strong> - 本发明涉及一种用于检测新冠病毒的配对抗体及其应用,其包括第一检测抗体和第二检测抗体;第一检测抗体具有如SEQ ID NO:1~3所示的轻链互补决定区,以及如SEQ ID NO:4~6所示的重链互补决定区,第二检测抗体具有如SEQ ID NO:7~9所示的轻链互补决定区,以及如SEQ ID NO:10~12所示的重链互补决定区。本发明筛选得到具有上述互补决定区序列的配对抗体,其识别N蛋白的不同表位,且由于两种抗体识别的是N蛋白非核酸结合区域,不会受核酸负电荷干扰,对核酸抗原表现出了兼容性,具有较好的稳定性,同时上述配对抗体具有较高的亲和力,病毒N蛋白检测灵敏度高。 - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=CN339127990">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>抗KL-6双特异性抗体及基因、重组载体、药物、试剂盒</strong> - 本发明公开了抗KL‑6双特异性抗体或其变体、或其功能性片段,所述抗KL‑6双特异性抗体或其变体、或其功能性片段包括抗PTS域和抗SEA域,所述抗PTS域的重链可变区的CDR1、CDR2和CDR3分别具有SEQ ID NO.1~3所示的氨基酸序列。本发明还提供了基因、重组载体、药物、试剂盒。本发明的抗KL‑6双特异性抗体或其变体、或其功能性片段用于与KL‑6蛋白特异性结合,基因、重组载体用于抗KL‑6双特异性抗体的制备,药物用于治疗KL‑6蛋白引起的相关疾病,试剂盒用于KL‑6蛋白的定量检测。 - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=CN338723529">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>基于决策树模型与逻辑回归模型组合的感染筛查方法</strong> - 本发明公开了一种基于决策树模型与逻辑回归模型组合的感染筛查方法,其检测操作方便,可提高感染筛查准确性,该方法基于生命体征监护仪实现,生命体征监护仪与远程数据服务平台通信连接,远程数据服务平台依据临床数据进行感染筛查,该方法包括:通过生命体征监护仪检测获取用户临床数据,将临床数据随机划分为训练集、测试集,将训练集均分为两份:训练集A、训练集B,基于训练集A构建决策树模型,同时,对训练集A进行特征选择,将关键特征向量作为已构建的决策树模型的输入,获取新构造特征向量,基于组合特征向量,构造逻辑回归模型,基于决策树模型和逻辑回归模型组合,对测试集进行预测分类,获取分类结果。 - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=CN339127711">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>病毒中和抗体与非中和抗体联合检测方法、检测卡及应用</strong> - 一种病毒中和抗体与非中和抗体联合检测方法、检测卡及其应用,通过病毒受体结合蛋白夹心法原理检测中和抗体,其为通过提前设置病毒受体结合蛋白和能阻断中和抗体与其结合的作为配体的蛋白所形成的复合物,将靶向受体蛋白的非中和抗体提前捕获,保证后续通过夹心法检测中和抗体的特异性。解决了现有技术中中和抗体检测灵敏度低、特异性差以及不能区分中和抗体与非中和抗体的问题,提供了一种简便、快速、灵敏度高、特异性高的病毒中和抗体与非中和抗体联合检测方法、检测卡及其应用。 - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=CN338613501">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>扩增△500-532的SARS-CoV-2 Nsp1基因的引物对及其检测方法</strong> - 本发明公开了一种扩增Δ500‑532的SARS‑CoV‑2 Nsp1基因的引物对及其检测方法。引物对的具体序列如SEQ ID NO.1和SEQ ID NO.2所示,其检测方法为:采用引物对对SARS‑CoV‑2 Nsp1基因进行PCR,对PCR产物进行变性退火后,加入T7EI内切酶孵育,再进行PCR扩增,并判断是否存在Δ500‑532的SARS‑CoV‑2 Nsp1基因。本发明可简便快捷的区分出SARS‑CoV‑2 Nsp1基因突变型和野生型。 - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=CN339334235">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>多肽及其在新型冠状病毒检测中的应用</strong> - 本发明涉及生物医学领域,具体而言,涉及一种多肽及其在新型冠状病毒检测中的应用。所述多肽包括如下部分:S——Linker——N——avi‑tag。通过经过优化的刚性linker序列把S蛋白和N蛋白串联起来,使得这两个蛋白即具备相对独立的空间构象,又增加了许多优势表位,很大程度上提高了灵敏度和信号值;此外,融合蛋白引入Avi‑tag,使得重组蛋白可以通过固定的位点被固相化,降低包被过程所带来的空间位阻的影响。由此,该多肽能够达到很高的灵敏度和特异性,并且不易发生漏检。 - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=CN339334229">link</a></p></li>
|
|||
|
</ul>
|
|||
|
|
|||
|
|
|||
|
<script>AOS.init();</script></body></html>
|