228 lines
55 KiB
HTML
228 lines
55 KiB
HTML
|
<!DOCTYPE html>
|
|||
|
<html lang="" xml:lang="" xmlns="http://www.w3.org/1999/xhtml"><head>
|
|||
|
<meta charset="utf-8"/>
|
|||
|
<meta content="pandoc" name="generator"/>
|
|||
|
<meta content="width=device-width, initial-scale=1.0, user-scalable=yes" name="viewport"/>
|
|||
|
<title>16 August, 2021</title>
|
|||
|
<style type="text/css">
|
|||
|
code{white-space: pre-wrap;}
|
|||
|
span.smallcaps{font-variant: small-caps;}
|
|||
|
span.underline{text-decoration: underline;}
|
|||
|
div.column{display: inline-block; vertical-align: top; width: 50%;}
|
|||
|
</style>
|
|||
|
<title>Covid-19 Sentry</title><meta content="width=device-width, initial-scale=1.0" name="viewport"/><link href="styles/simple.css" rel="stylesheet"/><link href="../styles/simple.css" rel="stylesheet"/><link href="https://unpkg.com/aos@2.3.1/dist/aos.css" rel="stylesheet"/><script src="https://unpkg.com/aos@2.3.1/dist/aos.js"></script></head>
|
|||
|
<body>
|
|||
|
<h1 data-aos="fade-down" id="covid-19-sentry">Covid-19 Sentry</h1>
|
|||
|
<h1 data-aos="fade-right" data-aos-anchor-placement="top-bottom" id="contents">Contents</h1>
|
|||
|
<ul>
|
|||
|
<li><a href="#from-preprints">From Preprints</a></li>
|
|||
|
<li><a href="#from-clinical-trials">From Clinical Trials</a></li>
|
|||
|
<li><a href="#from-pubmed">From PubMed</a></li>
|
|||
|
<li><a href="#from-patent-search">From Patent Search</a></li>
|
|||
|
</ul>
|
|||
|
<h1 data-aos="fade-right" id="from-preprints">From Preprints</h1>
|
|||
|
<ul>
|
|||
|
<li><strong>Model design for non-parametric phylodynamic inference and applications to pathogen surveillance</strong> -
|
|||
|
<div>
|
|||
|
Inference of effective population size from genomic data can provide unique information about demographic history, and when applied to pathogen genetic data can also provide insights into epidemiological dynamics. The combination of non-parametric models for population dynamics with molecular clock models which relate genetic data to time has enabled phylodynamic inference based on large sets of time-stamped genetic sequence data. The methodology for non-parametric inference of effective population size is well-developed in the Bayesian setting, but here we develop a frequentist approach based on non-parametric latent process models of population size dynamics. We appeal to statistical principles based on out-of-sample prediction accuracy in order to optimize parameters that control shape and smoothness of the population size over time. We demonstrate the flexibility and speed of this approach in a series of simulation experiments, and apply the methodology to reconstruct the previously described waves in the seventh pandemic of cholera. We also estimate the impact of non-pharmaceutical interventions for COVID-19 in England using thousands of SARS-CoV-2 sequences. By incorporating a measure of the strength of these interventions over time within the phylodynamic model, we estimate the impact of the first national lockdown in the UK on the epidemic reproduction number.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2021.01.18.427056v2" target="_blank">Model design for non-parametric phylodynamic inference and applications to pathogen surveillance</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>L’enfer c’est les autres? The effects of COVID-19 virus on interpersonal trust</strong> -
|
|||
|
<div>
|
|||
|
Does the COVID-19 pandemic affect interpersonal trust? Most evidence shows that natural disasters reinforce trust and cooperation, but the COVID-19 virus differs from other calamities since it spreads through contact with people, potentially increasing suspicion and distrust. We investigate the link between exposure to COVID-19 and trust in strangers in a representative sample of adults in Italy, one the countries hardest struck by the pandemic. Contrary to intuitive expectations, by conducting a panel study with an embedded survey experiment we find that those who report COVID-19 symptoms trust strangers substantially more than those who do not. Panel data analysis shows that trust increases within individuals who catch COVID-19, although the effect seems to decline once people recover. In addition, our experimental findings reveal that priming people on the risk that the COVID-19 pandemic poses to their health, leads to a substantial increase in trust in strangers, which lasts over time. Priming in terms of job loss and economic recession too leads to a smaller increase in trust in strangers, while solidarity appeals and knowledge of people with COVID-19 symptoms in one’s network has no effects on trust. These findings could be explained partly by people observing altruistic behavior and increasing their estimate of other people’s trustworthiness and partly by conjecturing that when caught in catastrophes people become more dependent on other people’s support and prone to “outward exposure”, consistently with the “emancipation theory of trust”.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://osf.io/preprints/socarxiv/rm4ck/" target="_blank">L’enfer c’est les autres? The effects of COVID-19 virus on interpersonal trust</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Covid-19 Incidence And Mortality By Age Strata And Comorbidities In Mexico City: A Focus In The Pediatric Population</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
Introduction: SARS-COV2 appears less frequently and less severely in the pediatric population than in older age groups. In the face of the urgent need to reactivate activities suspended during the lockdown, mainly those essential for child development, this study aims to describe the risks of death of persons infected with SARS-COV2 by age group and according to the presence of comorbidities. Methodology: We analyzed data of confirmed SARS-COV2 infection cases where symptoms began between February 22th, 2020, and March 31, 2021, as published by the General Epidemiology Direction (DGE) of the Mexican Ministry of Health. We calculated COVID-19 incidence and mortality by age group with population data from the Statistics and Population National Institute (INEGI), estimating the correlation between risk of death and the presence of comorbidities. Results: Mortality in SARS-COV2 infected people varied considerably, between 7 to 155 deaths per million per year in the under-20 age groups compared to 441 to 15929 in the older age groups. Mortality in pediatric populations is strongly associated with comorbidities (OR: 4.6- 47.9) compared to the milder association for older age groups (OR: 3.16-1.23). Conclusions: The risk of death from SARS-COV2 infection in children is low and strongly associated with comorbidities.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.06.21.21259282v2" target="_blank">Covid-19 Incidence And Mortality By Age Strata And Comorbidities In Mexico City: A Focus In The Pediatric Population</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>The Impact of COVID – 19 on Pakistan’s Export Oriented Economic Growth</strong> -
|
|||
|
<div>
|
|||
|
This study focuses on the Impact of COVID-19 on export-oriented economic growths of countries. We had tried to get the adjacent picture of the main affected areas of the world and their effects on economic growth. Pakistan also faced the harmful effects of this pandemic. The situation got worst when it was controlled with lockdown policies. It destabilized the vulnerable economy and economy shrinks down due to COVID-19. A mixed approach was conducted for this research study. As I have to see that to what degree the pandemic has affected the Pakistan’s economy and economic growth. The research aims to discover the impacts of COVID-19 on the export-oriented economic growth of Pakistan. The research methodology is based on a descriptive approach and a quantitative data analysis technique will be used to analyze the data. Other than human tragedy, the COVID – 19 has been an unpredicted shock for world economy Global Output estimated by IMF fallen by 3.5% in 2020 and all developed, undeveloped and under developing countries are hit by this wave hardly.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://osf.io/5d7ue/" target="_blank">The Impact of COVID – 19 on Pakistan’s Export Oriented Economic Growth</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Excess deaths in Spain during the first year of the COVID-19 pandemic outbreak from age/sex-adjusted death rates</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
Objectives: Assess the impact of the illness designated COVID-19 during the first year of pandemic outbreak in Spain through age/sex-specific death rates. Study design: Age/sex-specific weeekly deaths in Spain were retrieved from Eurostat. Spanish resident population was obtained from the National Statistics Office. Methods: Generalized linear Poisson regressions were used to compute the contrafactual expected rates after one year (52 weeks or 364 days) of the pandemic onset. From this one-year age/sex-specific and age/sex-adjusted mortality excess rates were deduced. Results: For the past continued 13 years one-year age/sex-adjusted death rates had not been as high as the rate observed on February 28th, 2021. The excess death rate was estimated as 1.790<em>10<sup>-3</sup> (95% confidence interval, 1.773</em>10<sup>-3</sup> to 1.808<em>10<sup>-3</sup>; P-score=20.2% and z-score=11.4) with an unbiased standard deviation of the residuals equal to 157</em>10<sup>-6</sup> . This made 84 849 excess deaths (84 008 to 85 690). Sex disaggregation resulted in 44 887 (44 470 to 45 303) male excess deaths and 39 947 (39 524 to 40 371) female excess deaths. Conclusion: With 73 571 COVID-19 deaths and 9772 COVID-19 suspected deaths that occurred in nursing homes during the spring of 2020 it is only 1496 excess deaths (1.8%, a z-score of 0.2) that remains unattributed. The infection rate during the first year of the pandemic is estimated in 16% of population after comparing the ENE-COVID seroprevalence, the excess deaths at the end of the spring 2020 and the excess deaths at the end of the first year of the pandemic.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2020.07.22.20159707v7" target="_blank">Excess deaths in Spain during the first year of the COVID-19 pandemic outbreak from age/sex-adjusted death rates</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>DECREASED BREADTH OF THE ANTIBODY RESPONSE TO THE SPIKE PROTEIN OF SARS-CoV-2 AFTER VACCINATION</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
The rapid development of vaccines to prevent infection by SARS-CoV-2 virus causing COVID-19 makes necessary to compare the capacity of the different vaccines in terms of development of a protective humoral response. Here, we have used a highly sensitive and reliable flow cytometry method to measure the titers of antibodies of the IgG1 isotype in blood of volunteers after receiving one or two doses of the vaccines being administered in Spain. We took advantage of the multiplexed capacity of the method to measure simultaneously the reactivity of antibodies with the S protein of the original strain Wuhan-1 and the variant B.1.1.7 (Alpha). We found significant differences in the titer of anti-S antibodies produced after a first dose of the vaccines ChAdOx1 nCov-19/AstraZeneca, mRNA-1273/Moderna, BNT162b2/Pfizer- BioNTech and Ad26.COV.S/Janssen. Most important, we found a relative reduction in the reactivity of the sera with the B.1.1.7 versus the Wuhan-1 variant after the second boosting immunization. These data allow to make a comparison of different vaccines in terms of anti-S antibody generation and cast doubts about the convenience of repeatedly immunizing with the same S protein sequence.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.08.12.21261952v1" target="_blank">DECREASED BREADTH OF THE ANTIBODY RESPONSE TO THE SPIKE PROTEIN OF SARS-CoV-2 AFTER VACCINATION</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>The relationship between fear of COVID-19 and anxiety in Honduran population</strong> -
|
|||
|
<div>
|
|||
|
The purpose of this research was to determine the relationship between fear of COVID-19 and anxiety in the Honduran population. This was made through a quantitative methodology, using the Fear of COVID-19 Scale (FCV-19S) and the Generalized Anxiety Disorder-7 (GAD-7). The sample consisted of 595 Honduran respondents, with a mean age of 25.10 years. The results suggest that female participants reported significantly higher scores in fear of COVID-19 and anxiety than men. A linear regression model determined that fear of COVID-19, sex and age were significant predictors of anxiety scores. The overall model had an r2 of 0.325, with fear of COVID-19 accounting for 29.9% of the variance in GAD-7 scores. The resulting model has a large effect size, f 2= 0.48. The results are discussed considering prior research and their psychosocial implications.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://psyarxiv.com/zyw6c/" target="_blank">The relationship between fear of COVID-19 and anxiety in Honduran population</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Beneficial Effects of novel Aureobasidium Pullulans strains produced Beta-1,3-1,6 Glucans on Interleukin-6 and D-Dimer levels in COVID-19 patients; results of a randomized multiple-arm pilot clinical study</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
Objective: Cytokine storm and Coagulopathy have been implicated as major causes of morbidity and mortality in COVID-19 patients. A black yeast Aureobasidium pullulans AFO 202 strain produced beta 1,3 1,6 glucan has been reported to offer potential immune enhancement and metabolism balancing, as well as mitigation of coagulopathy risks. The N 163 strain produced beta glucan is an efficient anti-inflammatory immune modulator. In this pilot clinical study, we report the beneficial effects of these two beta glucans on the biomarkers for cytokine storm and coagulopathy in COVID-19 patients. Methods: A total of 24 RT PCR positive COVID 19 patients were recruited (Age range: 18~62; 17 males and 7 females). Patients were randomly divided into three groups (Gr): Gr. 1 control (n=8); Gr. 2: AFO-202 beta glucan (n=8); and Gr. 3, a combination of AFO-202 and N-163 beta glucans (n=8). All three groups received the standard care while groups 2 and 3 received additional supplementation of beta glucans for 30 days. In addition to basic clinical parameters, we periodically evaluated D Dimer, IL6, erythrocyte sedimentation rate (ESR), C reactive protein (CRP), the neutrophil to lymphocyte ratio (NLR), the lymphocyte to CRP ratio (LCR) and the leukocyte CRP ratio (LeCR). Results: The duration of hospital stay for all three groups was nearly equivalent. There was no mortality of the subjects in any of the groups. Intermittent oxygen was administered from day of admission for up to four to five days with mask (two to four Lpm) to two subjects in Gr. 2 and one subject in Gr. 3. None of the subjects required ventilation. The D Dimer values in Gr. 1, which was on average 751 ng/ml at baseline, decreased to 143.89 ng/ml on day 15, but increased to 202.5 ng/ml on day 30, which in groups 2 and 3 decreased on day 15 and continued to remain at normal levels until day 30. IL6 levels decreased on day 15 from an average of 7.395 pg/ml to 3.16 pg/ml in the control, 26.18 pg/ml to 6.94 pg/ml in Gr. 2 and 6.25 pg/ml to 5.22 pg/ml in Gr. 3. However, when measured on day 30, in Gr. 1, the IL-6 increased to 55.37 pg/ml while there was only slight marginal increase in Gr. 2 but within normal range, and the levels further decreased to less than 0.5 pg/ml in Gr. 3. The same trend was observed with ESR. LCR and LeCR increased significantly in Gr. 3. NLR decreased significantly in groups 2 and 3. There was no difference in CRP within the groups. Conclusion: In this exploratory study, consumption of Aureobasidium pullulans produced beta glucans for thirty days, results in a significant control of IL6, D Dimer and NLR, a significant increase in LCR, LeCR and marginal control of ESR in COVID 19 patients. As these beta glucans are well known food supplements with decades of a track record for safety, based on these results, we recommend larger multi-centric clinical studies to validate their use as an adjunct in the management of COVID-19 and the ensuing long COVID-19 syndrome.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.08.09.21261738v1" target="_blank">Beneficial Effects of novel Aureobasidium Pullulans strains produced Beta-1,3-1,6 Glucans on Interleukin-6 and D-Dimer levels in COVID-19 patients; results of a randomized multiple-arm pilot clinical study</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>The impact of seasonal factors on the COVID-19 pandemic waves</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
The daily number of new COVID-19 cases per capita is an important characteristic of the pandemic dynamics indicating the appearance of new waves (e.g., caused by new coronavirus strains) and indicate the effectiveness of quarantine, testing and vaccination. Since this characteristic is very random and demonstrates some weekly period, we will use the 7-days smoothing. The second year of the pandemic allows us to compare its dynamics in the spring and the summer of 2020 with the same period in 2021 and investigate the influence of seasonal factors. We have chosen some northern countries and regions: Ukraine, EU, the UK, USA and some countries located in tropical zone and south semi- sphere: India, Brazil, South Africa and Argentina. The dynamics in these regions was compared with COVID-19 pandemic dynamics in the whole world. Some seasonal similarities are visible only for EU and South Africa. In 2021, the southern countries demonstrated the exponential growth, but northern regions showed some stabilization trends.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.08.06.21261665v1" target="_blank">The impact of seasonal factors on the COVID-19 pandemic waves</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>A Third Dose of SARS-CoV-2 Vaccine Increases Neutralizing Antibodies Against Variants of Concern in Solid Organ Transplant Recipients</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
Immunocompromised populations are at high risk for severe COVID-19. Vaccine-induced SARS-CoV-2 antibody responses are attenuated in solid organ transplant recipients (SOTRs), and breakthrough infections are more common. Additional SARS-CoV-2 vaccine doses may increase anti-spike antibody titers in some SOTRs, but whether this results in enhanced neutralizing capability, especially versus novel variants of concern (VOCs) that exhibit immune escape and higher infectivity (e.g., the Delta variant), is unclear. Here, we report that a third dose of a SARS-CoV-2 vaccine increases anti-SARS-CoV-2 spike and RBD IgG levels as well as plasma neutralizing capability versus VOCs, including Delta, in some SOTRs. However, anti-spike IgG and neutralizing capability remained significantly reduced compared to fully vaccinated healthy controls. These findings highlight the need for continued study of strategies to improve protection from COVID-19 in immunosuppressed populations as more SARS-CoV-2 VOCs emerge.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article- link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.08.11.21261914v1" target="_blank">A Third Dose of SARS-CoV-2 Vaccine Increases Neutralizing Antibodies Against Variants of Concern in Solid Organ Transplant Recipients</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Associations between COVID-19 Risk Perceptions and Mental Health, Wellbeing, and Risk Behaviours</strong> -
|
|||
|
<div>
|
|||
|
Background: Mental health has worsened, and substance use has increased for some individuals during the coronavirus (COVID-19) pandemic. Cross-sectional studies suggest that COVID-19 risk perceptions are related to mental health and risk behaviours (potentially including substance use). However, longitudinal and genetic data are needed to support stronger inferences regarding whether these associations reflect causal pathways. Methods: Using cross-sectional, longitudinal, and polygenic risk score (PRS) data from the UK Avon Longitudinal Study of Parents and Children (ALSPAC), we examined cross-sectional and prospective associations between COVID-19 risk perceptions and mental health, wellbeing, and risk behaviours. Participants (85% female) were aged between 27-72 years. We used pandemic (April-July 2020) and pre-pandemic (2003-2017) data (ns = 233-5,115). Results: COVID-19 risk perceptions were positively associated with anxiety (OR 2.78, 95% confidence interval [CI] 2.20 to 3.52), depression (OR 1.65, 95% CI 1.24 to 2.18), low wellbeing (OR 1.76, 95% CI 1.45 to 2.13), increased alcohol use (OR 1.46, 95% CI 1.24 to 1.72), and COVID-19 prevention behaviours (ps < .05). Pre-pandemic anxiety (OR 1.64, 95% CI 1.29 to 2.09) and low wellbeing (OR 1.41, 95% CI 1.15 to 1.74) were positively associated with COVID-19 risk perceptions. The depression (b 0.21, 95% CI 0.02 to 0.40) and wellbeing (b -0.29, 95% CI -0.48 to -0.09) PRS were associated with higher and lower COVID-19 risk perceptions, respectively. Conclusions: Poorer mental health and wellbeing are associated with higher COVID-19 risk perceptions, and longitudinal and genetic data suggest that they may play a casual role in COVID-19 risk perceptions.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://psyarxiv.com/zup86/" target="_blank">Associations between COVID-19 Risk Perceptions and Mental Health, Wellbeing, and Risk Behaviours</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Scientists, speak up! Source impacts trust in and intentions to comply with health advice cross-culturally</strong> -
|
|||
|
<div>
|
|||
|
We examined how different types of communication influence people’s responses to health advice. Specifically, we tested whether presenting Covid-19 prevention advice (i.e., washing hands) as either originating from the government or a scientific source would affect people’s trust and intentions to comply with the advice. We also tested the effects of uncertainty framing: We presented the advice as being either certainly or potentially effective in reducing virus spread. To achieve this, we conducted an experiment using largely representative samples (N = 4,561) from the UK, US, Canada, Malaysia, and Taiwan. Overall, across countries, participants found messages more trustworthy when the purported source was science as opposed to government. This effect was stronger for left-wing/liberal participants. Phrasing the advice as certain versus uncertain had little impact on trust and intentions. Together, our findings suggest that health advice should be communicated by scientists rather than governments.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://psyarxiv.com/279yg/" target="_blank">Scientists, speak up! Source impacts trust in and intentions to comply with health advice cross-culturally</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Religious Identity Cues Increase Vaccination Intentions and Trust in Medical Experts among American Christians</strong> -
|
|||
|
<div>
|
|||
|
Containing the COVID-19 pandemic in the U.S. requires mobilizing a large majority of the mass public to vaccinate, but many Americans are hesitant or opposed to vaccination. A significant predictor of vaccine attitudes in the U.S. is religiosity, with more religious individuals expressing more distrust in science and being less likely to get vaccinated. Here, we test whether explicit cues of common religious identity can help medical experts build trust and increase vaccination intentions. In a pre-registered survey experiment conducted with a sample of unvaccinated American Christians (N=1,765), we presented participants with a vaccine endorsement from a prominent medical expert (NIH Director, Francis Collins) and a short essay about doctors’ and scientists’ endorsement of the vaccines. In the common religious identity condition, these materials also highlighted the religious identity of Collins and many medical experts. Unvaccinated Christians in the common identity condition expressed higher trust in medical experts, greater intentions to vaccinate, and greater intentions to promote vaccination to friends and family than those who did not see the common identity cue. These effects were moderated by religiosity, with the strongest effects observed among the most religious participants, and statistically mediated by heightened perceptions of shared values with the medical expert endorsing the vaccine. These findings demonstrate the efficacy of common identity cues for promoting vaccination in a vaccine-hesitant subpopulation. More generally, the results illustrate how trust in science can be built through the invocation of common group identities, even identities often assumed to be in tension with science.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://osf.io/preprints/socarxiv/7hrf2/" target="_blank">Religious Identity Cues Increase Vaccination Intentions and Trust in Medical Experts among American Christians</a>
|
|||
|
</div></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>COVID-19 in hospitalized patients in 4 hospitals in San Isidro, Buenos Aires, Argentina</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
In December 2019, a novel illness called coronavirus disease 2019 (COVID 19) was described in China and became pandemic in a few months. The first case was detected in Argentina on March 3, 2020. A multicentre prospective observational cohort study on hospitalized patients with COVID 19 was conducted in 4 hospitals in San Isidro district from March 1, 2020 to October 31. Data was obtained by the attendant physician. 668 patients were included, the median age was 54 years, and 42.7% were female. Male sex and older age were associated with COVID 19 disease and more strongly with severity. Most frequent symptoms were fever and cough followed by dyspnoea, myalgia, odynophagia, headache, anosmia, and diarrhoea. Nonsevere patients had more upper respiratory symptoms while severe patients had mainly lower respiratory symptoms on admission. Most common comorbidities were arterial hypertension, diabetes, and cardiovascular disease. A great proportion of patients had normal thorax X ray and ground-glass opacity in tomography. In severe patients, radiography and tomography had a predominant ground glass pattern, but normal radiography and tomography on presentation were present in 22% and 5.9%, respectively. The absence of fever and normal radiology on admission neither excluded the disease nor further severity. PCR elevation was related with COVID 19 disease and with severity, while lymphopenia was more related with the disease and leukocytosis and thrombocytopenia with severity. 8, 4% of patients were health care workers. The mortality rate was 12.4%, 32.7% in severe patients and 61.2% in ventilated patients. Mortality was higher in the public hospital, probably associated with patients with older age and more comorbidities. All these observations can contribute to the knowledge of this disease in terms of diagnosis and prognosis.
|
|||
|
</p>
|
|||
|
</div></li>
|
|||
|
</ul>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.07.30.21261220v2" target="_blank">COVID-19 in hospitalized patients in 4 hospitals in San Isidro, Buenos Aires, Argentina</a>
|
|||
|
</div>
|
|||
|
<ul>
|
|||
|
<li><strong>MALDI-ToF Protein Profiling as Potential Rapid Diagnostic Platform for COVID-19</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
More than a year after the COVID-19 pandemic has been declared, the need still exists for accurate, rapid, inexpensive and non-invasive diagnostic methods that yield high specificity and sensitivity towards the current and newly emerging SARS-CoV-2 strains. Several studies have since established saliva as a more amenable specimen type for early detection of SARS-CoV-2 as compared to nasopharyngeal swabs. Considering the limitations and high demand for COVID-19 testing, we employed MALDI-ToF mass spectrometry for the analysis of 60 gargle samples from human donors and compared the spectra with their COVID-19 status. Several standards including isolated human serum immunoglobulins and controls such as pre-COVID-19 saliva and heat inactivated SARS-CoV-2 virus were simultaneously analyzed to provide a relative view of the saliva and viral proteome as they would appear in this works methodology. Five potential biomarker peaks were established that demonstrated high concordance with COVID-19 positive individuals. Overall, the agreement of these results with RT-qPCR testing on NP swabs was no less than 90% for the studied cohort, which consisted of young and largely asymptomatic student athletes. From a clinical standpoint, the results from this pilot study are promising and suggest that MALDI-ToF can be used to develop a relatively rapid and inexpensive COVID-19 assay.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.05.26.21257798v2" target="_blank">MALDI-ToF Protein Profiling as Potential Rapid Diagnostic Platform for COVID-19</a>
|
|||
|
</div></li>
|
|||
|
</ul>
|
|||
|
<h1 data-aos="fade-right" id="from-clinical-trials">From Clinical Trials</h1>
|
|||
|
<ul>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Pulmonary Rehabilitation Post-COVID-19</strong> - <b>Condition</b>: COVID-19<br/><b>Intervention</b>: Other: Exercise program (virtual/remote)<br/><b>Sponsors</b>: University of Manitoba; Health Sciences Centre Foundation, Manitoba; Health Sciences Centre, Winnipeg, Manitoba<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Study of Allogeneic Adipose-Derived Mesenchymal Stem Cells to Treat Post COVID-19 “Long Haul” Pulmonary Compromise</strong> - <b>Condition</b>: Covid19<br/><b>Interventions</b>: Biological: COVI-MSC; Biological: Placebo<br/><b>Sponsor</b>: Sorrento Therapeutics, Inc.<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Mix and Match Heterologous Prime-Boost Study Using Approved COVID-19 Vaccines in Mozambique</strong> - <b>Condition</b>: Covid19<br/><b>Interventions</b>: Biological: BBIBP-CorV - Inactivated SARS-CoV-2 vaccine (Vero cell); Biological: AZD1222 (replication-deficient Ad type 5 vector expressing full-length spike protein)<br/><b>Sponsors</b>: International Vaccine Institute; The Coalition for Epidemic Preparedness Innovations (CEPI); Instituto Nacional de Saúde (INS), Mozambique; University of Antananarivo; International Centre for Diarrhoeal Disease Research, Bangladesh; Harvard University; Heidelberg University<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Double Blind Randomized Clinical Trial of Use of Colchicine Added to Standard Treatment in Hospitalized With Covid-19</strong> - <b>Condition</b>: COVID-19 Infection<br/><b>Intervention</b>: Drug: Colchcine<br/><b>Sponsor</b>: <br/>
|
|||
|
Asociacion Instituto Biodonostia<br/><b>Active, not recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>ACTIV-5 / Big Effect Trial (BET-C) for the Treatment of COVID-19</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Drug: Danicopan; Other: Placebo; Drug: Remdesivir<br/><b>Sponsor</b>: National Institute of Allergy and Infectious Diseases (NIAID)<br/><b>Recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>COVID-19 Methylene Blue Antiviral Treatment</strong> - <b>Condition</b>: Covid19<br/><b>Interventions</b>: Drug: Methylene Blue; Drug: Saline nasal spray<br/><b>Sponsors</b>: Irkutsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences; Irkutsk State Medical University<br/><b>Recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Project FLUx COntact-CoVID-19 Faculty of Medicine Paris-Saclay</strong> - <b>Condition</b>: Covid19<br/><b>Interventions</b>: Other: Antigenic tests (on saliva samples); Other: Individual electronic sensor port; Other: Atmospheric measurements of CO2<br/><b>Sponsor</b>: <br/>
|
|||
|
Assistance Publique - Hôpitaux de Paris<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Phase I/II Study of COVID-19 DNA Vaccine (AG0302-COVID19 High-dose)</strong> - <b>Condition</b>: COVID-19 Lower Respiratory Infection<br/><b>Interventions</b>: Biological: AG0302-COVID19 for Intramuscular Injection; Biological: AG0302-COVID19 for Intradermal Injection<br/><b>Sponsors</b>: AnGes, Inc.; Japan Agency for Medical Research and Development<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>COVID-19 Administration of Single-Dose Subcutaneous or Intramuscular Anti- Spike(s) SARS-CoV-2 Monoclonal Antibodies Casirivimab and Imdevimab in High-Risk Pediatric Participants Under 12 Years of Age</strong> - <b>Condition</b>: COVID-19<br/><b>Intervention</b>: Drug: casirivimab and imdevimab<br/><b>Sponsor</b>: <br/>
|
|||
|
Regeneron Pharmaceuticals<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Reactogenicity, Safety, and Immunogenicity of Covid-19 Vaccine Booster</strong> - <b>Condition</b>: Covid19<br/><b>Interventions</b>: Biological: Placebo; Biological: Inactivated vaccine booster; Biological: mRNA vaccine booster; Drug: Viral vector vaccine booster<br/><b>Sponsors</b>: Universidad del Desarrollo; Ministry of Health, Chile; University of Chile; Pontificia Universidad Catolica de Chile<br/><b>Active, not recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Relaxation Exercise in Patients With COVID-19</strong> - <b>Condition</b>: Covid19<br/><b>Intervention</b>: Other: Relaxation technique<br/><b>Sponsor</b>: Beni- Suef University<br/><b>Completed</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Trial of Recombinant Novel Coronavirus Vaccine (Adenovirus Type 5 Vector, Ad5-nCoV) in Adults Living With HIV</strong> - <b>Condition</b>: Covid19<br/><b>Intervention</b>: Biological: Recombinant Novel Coronavirus Vaccine (Adenovirus Type 5 Vector) (Ad5-nCoV)<br/><b>Sponsors</b>: Fundación Huésped; Canadian Center for Vaccinology; CanSino Biologics Inc.; Hospital Fernandez<br/><b>Recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Clinical Trial to Assess the Efficacy and Safety of Inhaled AQ001S in the Management of Acute COVID-19 Symptoms</strong> - <b>Condition</b>: Covid19<br/><b>Intervention</b>: Drug: Drug, inhalation<br/><b>Sponsor</b>: <br/>
|
|||
|
Aquilon Pharmaceuticals S.A.<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A Study to Evaluate the Safety and Efficacy of Artemisinin- a Herbal Supplement on COVID-19 Subjects</strong> - <b>Condition</b>: Covid19<br/><b>Interventions</b>: Dietary Supplement: Artemisinin; Drug: Dexamethasone<br/><b>Sponsors</b>: Mateon Therapeutics; Windlas Biotech Private Limited<br/><b>Completed</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Efficacy, Immunogenicity and Safety of COVID-19 Vaccine , Inactivated in Children and Adolescents</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Biological: Inactivated COVID-19 Vaccine; Biological: Controlled vaccine<br/><b>Sponsor</b>: Sinovac Research and Development Co., Ltd.<br/><b>Recruiting</b></p></li>
|
|||
|
</ul>
|
|||
|
<h1 data-aos="fade-right" id="from-pubmed">From PubMed</h1>
|
|||
|
<ul>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Zinc thiotropolone combinations as inhibitors of the SARS-CoV-2 main protease</strong> - Numerous organic molecules are known to inhibit the main protease of SARS-CoV-2, (SC2Mpro), a key component in viral replication of the 2019 novel coronavirus. We explore the hypothesis that zinc ions, long used as a medicinal supplement and known to support immune function, bind to the SC2Mpro enzyme in combination with lipophilic tropolone and thiotropolone ligands, L, block substrate docking, and inhibit function. This study combines synthetic inorganic chemistry, in vitro protease activity…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>SARS-CoV-2 Spike Protein Extrapolation for COVID Diagnosis and Vaccine Development</strong> - Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) led to coronavirus disease 2019 (COVID-19) pandemic affecting nearly 71.2 million humans in more than 191 countries, with more than 1.6 million mortalities as of 12 December, 2020. The spike glycoprotein (S-protein), anchored onto the virus envelope, is the trimer of S-protein comprised of S1 and S2 domains which interacts with host cell receptors and facilitates virus-cell membrane fusion. The S1 domain comprises of a receptor binding…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Combination Treatment With Remdesivir and Ivermectin Exerts Highly Synergistic and Potent Antiviral Activity Against Murine Coronavirus Infection</strong> - The recent COVID-19 pandemic has highlighted the urgency to develop effective antiviral therapies against the disease. Murine hepatitis virus (MHV) is a coronavirus that infects mice and shares some sequence identity to SARS-CoV-2. Both viruses belong to the Betacoronavirus genus, and MHV thus serves as a useful and safe surrogate model for SARS-CoV-2 infections. Clinical trials have indicated that remdesivir is a potentially promising antiviral drug against COVID-19. Using an in vitro model of…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Identification of lead compounds from large natural product library targeting 3C-like protease of SARS-CoV-2 using E-pharmacophore modelling, QSAR and molecular dynamics simulation</strong> - COVID-19 is a novel disease caused by SARS-CoV-2 and has made a catastrophic impact on the global economy. As it is, there is no officially FDA approved drug to alleviate the negative impact of SARS-CoV-2 on human health. Numerous drug targets for neutralizing coronavirus infection have been identified, among them is 3-chymotrypsin-like-protease (3CL^(pro)), a viral protease responsible for the viral replication is chosen for this study. This study aimed at finding novel inhibitors of SARS-CoV-2…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Discovery of Small Molecule Entry Inhibitors Targeting the Fusion Peptide of SARS-CoV-2 Spike Protein</strong> - SARS-CoV-2 entry into host cells relies on the spike (S) protein binding to the human ACE2 receptor. In this study, we investigated the structural dynamics of the viral S protein at the fusion peptide (FP) domain and small molecule binding for therapeutics development. Following comparative modeling analysis and docking studies of our previously identified fusion inhibitor chlorcyclizine, we performed a pharmacophore-based virtual screen and identified two novel chemotypes of entry inhibitors…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Combination of a Sindbis-SARS-CoV-2 Spike Vaccine and alphaOX40 Antibody Elicits Protective Immunity Against SARS- CoV-2 Induced Disease and Potentiates Long-Term SARS-CoV-2-Specific Humoral and T-Cell Immunity</strong> - The COVID-19 pandemic caused by the coronavirus SARS-CoV-2 is a major global public threat. Currently, a worldwide effort has been mounted to generate billions of effective SARS-CoV-2 vaccine doses to immunize the world’s population at record speeds. However, there is still a demand for alternative effective vaccines that rapidly confer long-term protection and rely upon cost-effective, easily scaled-up manufacturing. Here, we present a Sindbis alphavirus vector (SV), transiently expressing the…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Diverse Effects of Exosomes on COVID-19: A Perspective of Progress From Transmission to Therapeutic Developments</strong> - Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new strain of coronavirus and the causative agent of the current global pandemic of coronavirus disease 2019 (COVID-19). There are currently no FDA-approved antiviral drugs for COVID-19 and there is an urgent need to develop treatment strategies that can effectively suppress SARS-CoV-2 infection. Numerous approaches have been researched so far, with one of them being the emerging exosome-based therapies. Exosomes are nano-sized,…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Drug Design Strategies for the Treatment of Viral Disease. Plant Phenolic Compounds and Their Derivatives</strong> - The coronavirus pandemic (SARS CoV-2) that has existed for over a year, constantly forces scientists to search for drugs against this virus. In silico research and selected experimental data have shown that compounds of natural origin such as phenolic acids and flavonoids have promising antiviral potential. Phenolic compounds inhibit multiplication of viruses at various stages of the viral life cycle, e.g., attachment (disturbance of the interaction between cellular and viral receptors),…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>How SARS-CoV-2 might affect potassium balance via impairing epithelial sodium channels?</strong> - Severe acute respiratory syndrome coronaviruses 2 (SARS-CoV-2) is the causative agent of current coronavirus disease 2019 (COVID-19) pandemic. Electrolyte disorders particularly potassium abnormalities have been repeatedly reported as common clinical manifestations of COVID-19. Here, we discuss how SARS-CoV-2 may affect potassium balance by impairing the activity of epithelial sodium channels (ENaC). The first hypothesis could justify the incidence of hypokalemia. SARS-CoV-2 cell entry through…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Safety, reactogenicity, and immunogenicity of homologous and heterologous prime-boost immunisation with ChAdOx1 nCoV-19 and BNT162b2: a prospective cohort study</strong> - BACKGROUND: Heterologous vaccine regimens have been widely discussed as a way to mitigate intermittent supply shortages and to improve immunogenicity and safety of COVID-19 vaccines. We aimed to assess the reactogenicity and immunogenicity of heterologous immunisations with ChAdOx1 nCov-19 (AstraZeneca, Cambridge, UK) and BNT162b2 (Pfizer-BioNtech, Mainz, Germany) compared with homologous BNT162b2 and ChAdOx1 nCov-19 immunisation.</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Endoplasmic reticulum stress and NF-kB activation in SARS-CoV-2 infected cells and their response to antiviral therapy</strong> - Unfolded protein response (UPR) and endoplasmic reticulum (ER) stress are aspects of SARS-CoV-2-host cell interaction with proposed role in the cytopathic and inflammatory pathogenesis of this viral infection. The role of the NF-kB pathway in these cellular processes remains poorly characterized. When investigated in VERO-E6 cells, SARS-CoV-2 infection was found to markedly stimulate NF-kB protein expression and activity. NF-kB activation occurs early in the infection process (6 hpi) and it is…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Cardiovascular ACE2 receptor expression in patients undergoing heart transplantation</strong> - CONCLUSIONS: These data provide a comprehensive characterization of membrane-bound cardiac ACE2 expression in patients with heart failure with no demonstrable effect exerted by ACE inhibitors.</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>In-vivo protection from SARS-CoV-2 infection by ATN-161 in k18-hACE2 transgenic mice</strong> - Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an infectious disease that has spread worldwide. Current treatments are limited in both availability and efficacy, such that improving our understanding of the factors that facilitate infection is urgently needed to more effectively treat infected individuals and to curb the pandemic. We and others have previously demonstrated the significance of interactions between the SARS-CoV-2 spike protein, integrin α5β1, and human ACE2 to…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>EGCG as an anti-SARS-CoV-2 agent: Preventive versus therapeutic potential against original and mutant virus</strong> - In the search for anti-SARS-CoV-2 drugs, much attention is given to safe and widely available native compounds. The green tea component epigallocatechin 3 gallate (EGCG) is particularly promising because it reportedly inhibits viral replication and viral entry in vitro. However, conclusive evidence for its predominant activity is needed. We tested EGCG effects on the native virus isolated from COVID-19 patients in two independent series of experiments using VERO cells and two different treatment…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Involvement of Inflammation in Venous Thromboembolic Disease: An Update in the Age of COVID-19</strong> - The inflammatory process is strongly involved in the pathophysiology of venous thromboembolism (VTE) and has a significant role in disease prediction. Inflammation most probably represents a common denominator through which classical and nonclassical risk factors stimulate thrombotic process. Inflammation of the venous wall promotes the release of tissue factor, inhibits the release of anticoagulant factors, and hampers endogenous fibrinolysis. Systemic inflammatory response also inhibits…</p></li>
|
|||
|
</ul>
|
|||
|
<h1 data-aos="fade-right" id="from-patent-search">From Patent Search</h1>
|
|||
|
<ul>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>자외선살균등</strong> - 본 발명은 사람의 의복이나 사용한 마스크 등에 부착하여 있다 호흡기로 유입되어 감염을 유발할 수 있는 COVID-19와 같은 유해균류를 간편하게 살균하기 위한 휴대용 자와선살균등에 관한 것이다. 반감기가 길고 인체에 유해한 오존을 발생하지 않으면서 탁월한 살균능력이 있는 250~265nm(최적은 253.7nm) 파장의 자외선을 발광하는 자외선램프를 본 발명의 막대형의 자외선살균등 광원으로 사용하고 비광원부를 손으로 잡고 의복이나 사용한 마스크 등 유해균류가 부착되었을 것으로 의심되는 곳에 자외선을 조사하여 간편하게 유해균류를 살균하므로써 감염을 예방하기 위한 휴대용 자외선살균등에 관함 것이다. - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=KR332958765">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Cabina de desinfección de doble carga exterior</strong> - - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=ES331945699">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Camellia nitidissima C.W.Chi Caffeine and Chlorogenic acid composition for anti-SARS-CoV-2 and preparation method and application thereof</strong> - - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=AU331907401">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A Novel Method COVID -19 infection using Deep Learning Based System</strong> - - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=AU331907400">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>EMPUNADURA DE RAQUETA O PALA PARA JUEGO DE PELOTA CON DISPENSADOR LIQUIDO POR CAPILARIDAD INSERTADO</strong> - - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=ES331563132">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A SYSTEM AND METHOD FOR COVID- 19 DIAGNOSIS USING DETECTION RESULTS FROM CHEST X- RAY IMAGES</strong> - - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=AU330927328">link</a></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>System zum computergestützten Nachverfolgen einer von einer Person durchzuführenden Prozedur</strong> -
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
Ein System (2000) zum computergestützten Nachverfolgen einer von einer Person (1) durchzuführenden Testprozedur, insbesondere für einen Virusnachweistest, bevorzugt zur Durchführung eines SARS-CoV-2 Tests, wobei das System (2000) umfasst:</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">eine Identifizierungseinheit eines Endgeräts (30), die eingerichtet ist zum Identifizieren (201) der Person</li>
|
|||
|
</ul>
|
|||
|
<ol type="1">
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">unmittelbar vor einem Durchführen der Testprozedur durch die Person (1);</li>
|
|||
|
</ol>
|
|||
|
<ul>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">wobei die Identifizierungseinheit des Endgeräts (30) weiter eingerichtet ist zum Identifizieren (202) zumindest eines Testobjekts (20), bevorzugt einer Testkassette, insbesondere für einen SARS-CoV-2 Test, mehr bevorzugt eines Teststreifens, weiter bevorzugt ein Reagenz in einem Behälter, weiter bevorzugt eines Testsensors, unmittelbar vor der Durchführung der Testprozedur, die Identifizierungseinheit aufweisend:</li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">eine Kamera (31) des Endgeräts (30), eingerichtet zum Erfassen (2021) eines Objektidentifizierungsdatensatzes (21) als maschinenlesbaren Datensatz; und</li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">eine Auswerteeinheit (33) des Endgeräts (30), eingerichtet zum Vergleichen (2022) des erfassten Objektidentifizierungsdatensatzes (21) mit einem Objektdatensatz</li>
|
|||
|
</ul>
|
|||
|
<ol start="420" type="1">
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">eines Hintergrundsystems (40);</li>
|
|||
|
</ol>
|
|||
|
<ul>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">eine Nachverfolgungseinheit des Endgeräts (30), die eingerichtet ist zum Nachverfolgen (203) einer oder mehrerer Positionen der Person (1) während der Durchführung der Testprozedur mittels Methoden computergestützter Gesten- und/oder Muster- und/oder Bilderkennung mittels eines Prüfens, ob beide Hände (12) der Person (1) während der gesamten Durchführung der Testprozedur in einem vordefinierten Bereich oder einem von der Kamera (31a) des Endgeräts (30) erfassbaren Bereich sind;</li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">die Nachverfolgungseinheit des Endgeräts (30), zudem eingerichtet zum Nachverfolgen (203) von einer oder mehreren Positionen des zumindest einen Testobjekts (20) anhand der Form des Objekts während der Durchführung der Testprozedur mittels Methoden computergestützter Gesten- und/oder Muster- und/oder Bilderkennung; und</li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">einer Anzeigeeinheit (34) des Endgeräts, eingerichtet zum Anleiten (204) der Person (1) zum Durchführen der Testprozedur während der Durchführung der Testprozedur.</li>
|
|||
|
</ul>
|
|||
|
<img alt="embedded image" id="EMI-D00000"/>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"></p>
|
|||
|
<ul>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=DE333370869">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Mascarilla impermeable</strong> - - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=ES329916792">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>基于细胞膜展示冠状病毒免疫原以诱导中和抗体的方法</strong> - 本申请公开了一种基于细胞膜展示冠状病毒免疫原以诱导中和抗体的方法。具体而言,本公开中提供了一种在其细胞膜表面展示新型冠状病毒SARS‑CoV‑2刺突蛋白S的细胞,包含所述细胞的针对新型冠状病毒SARS‑CoV‑2的疫苗或疫苗组合,所述细胞在制备用于预防或治疗新型冠状病毒SARS‑CoV‑2的疫苗中的应用及其制备方法。本公开的细胞和疫苗能够在体内高效活化B细胞,诱导中和抗体应答,在预防和降低新冠病毒感染中有广泛的应用前景。 - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=CN332882580">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>硫代咪唑烷酮药物在治疗COVID-19疾病中的用途</strong> - 本发明属于医药技术领域,具体涉及一种硫代咪唑烷酮药物或其药学上可接受的盐在制备用于治疗ACE2和TMPRSS2蛋白失调相关疾病的药物中的用途,尤其是在制备用于治疗COVID‑19疾病的药物中的用途。 - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=CN332882591">link</a></p></li>
|
|||
|
</ul>
|
|||
|
|
|||
|
|
|||
|
<script>AOS.init();</script></body></html>
|