194 lines
48 KiB
HTML
194 lines
48 KiB
HTML
|
<!DOCTYPE html>
|
|||
|
<html lang="" xml:lang="" xmlns="http://www.w3.org/1999/xhtml"><head>
|
|||
|
<meta charset="utf-8"/>
|
|||
|
<meta content="pandoc" name="generator"/>
|
|||
|
<meta content="width=device-width, initial-scale=1.0, user-scalable=yes" name="viewport"/>
|
|||
|
<title>22 June, 2022</title>
|
|||
|
<style type="text/css">
|
|||
|
code{white-space: pre-wrap;}
|
|||
|
span.smallcaps{font-variant: small-caps;}
|
|||
|
span.underline{text-decoration: underline;}
|
|||
|
div.column{display: inline-block; vertical-align: top; width: 50%;}
|
|||
|
</style>
|
|||
|
<title>Covid-19 Sentry</title><meta content="width=device-width, initial-scale=1.0" name="viewport"/><link href="styles/simple.css" rel="stylesheet"/><link href="../styles/simple.css" rel="stylesheet"/><link href="https://unpkg.com/aos@2.3.1/dist/aos.css" rel="stylesheet"/><script src="https://unpkg.com/aos@2.3.1/dist/aos.js"></script></head>
|
|||
|
<body>
|
|||
|
<h1 data-aos="fade-down" id="covid-19-sentry">Covid-19 Sentry</h1>
|
|||
|
<h1 data-aos="fade-right" data-aos-anchor-placement="top-bottom" id="contents">Contents</h1>
|
|||
|
<ul>
|
|||
|
<li><a href="#from-preprints">From Preprints</a></li>
|
|||
|
<li><a href="#from-clinical-trials">From Clinical Trials</a></li>
|
|||
|
<li><a href="#from-pubmed">From PubMed</a></li>
|
|||
|
<li><a href="#from-patent-search">From Patent Search</a></li>
|
|||
|
</ul>
|
|||
|
<h1 data-aos="fade-right" id="from-preprints">From Preprints</h1>
|
|||
|
<ul>
|
|||
|
<li><strong>Transmission potential of human monkeypox in mass gatherings</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
Since May 2022, a large number of monkeypox cases has been reported in non-endemic settings. Taking into account the strict measures implemented due to the COVID-19 pandemic and the desire of people to reclaim what is perceived as lost time, it is anticipated that mass gatherings this summer will be highly attended. Based on data for the secondary attack rate among unvaccinated contacts from endemic countries, we estimate that, on average, more than one secondary case is anticipated per infectious person if he/she has a high number of group contacts (>30) or more than eight close contacts. Although the role of group contacts in mass gatherings is uncertain (less likely to involve physical contact, shorter duration), close contacts associated with the event (e.g. intimate/sexual contact with other attendees) might be the amplifying event. Enforcing awareness, early recognition and engaging affected populations in the monkeypox response are important to control transmission.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2022.06.21.22276684v1" target="_blank">Transmission potential of human monkeypox in mass gatherings</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Demographic and Clinical Characteristics of Pediatric COVID-19 in Arkansas: March-December 2020</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
The COVID-19 pandemic reached the United States in early 2020 and spread rapidly across the country. This retrospective study describes the demographic and clinical characteristics of 308 children presenting to an Arkansas Childrens emergency department or admitted to an Arkansas Childrens hospital with COVID-19 in the first ten months of the COVID-19 pandemic, prior to the emergence of clinically significant variants and available vaccinations. Adolescents aged 13 and older represented the largest proportion of this population. The most common presenting symptoms were fever, gastrointestinal symptoms, and upper respiratory symptoms. Patients with multisystem inflammatory syndrome in children (MIS-C) had a longer length of stay than patients with acute COVID-19. Children from urban zip codes had lower odds of admission but were more likely to be readmitted after discharge. Nearly twenty percent of the study population incidentally tested positive for COVID-19. Despite lower mortality in children with COVID than in adults, morbidity and resource utilization are significant. With many Arkansas children living in rural areas and therefore far from pediatric hospitals, community hospitals should be prepared to evaluate children presenting with COVID-19 and to determine which children warrant transport to pediatric-specific facilities.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2022.06.18.22276587v1" target="_blank">Demographic and Clinical Characteristics of Pediatric COVID-19 in Arkansas: March-December 2020</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Kinetics of neutralising antibodies against Omicron variant in Vietnamese healthcare workers after primary immunisation with ChAdOx1-S and booster with BNT162b2</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
We studied the development and persistence of neutralising antibodies against SARS-CoV-2 ancestral strain, and Delta and Omicron (BA.1 and BA.2) variants in Vietnamese healthcare workers (HCWs) up to 15 weeks after booster vaccination. We included 47 HCWs with different pre-existing immune statuses (group 1 (G1): n=21, and group 2 (G2): n=26 without and with prior breakthrough Delta variant infection, respectively). The study participants had completed primary immunisation with ChAdOx1-S and booster vaccination with BNT162b2. Neutralising antibodies were measured using a surrogate virus neutralisation assay. Of the 21 study participants in G1, neutralising antibodies against ancestral strain, Delta variant, BA.1 and BA.2 were (almost) abolished at month 8 after the second dose, but all had detectable neutralising antibodies to the study viruses at week two post booster dose. Of the 26 study participants in G2, neutralising antibody levels to BA.1 and BA.2 were significantly higher than those to the corresponding viruses measured at week 2 post breakthrough infection and before the booster dose. At week 15 post booster vaccination, neutralising antibodies to BA.1 and BA.2 dropped significantly, with more profound changes observed in those without breakthrough Delta variant infection. Booster vaccination enhanced neutralising activities against ancestral strain and Delta variant, as compared to those induced by primary vaccination. These responses were maintained at high levels for at least 15 weeks. Our findings emphasise the importance of the first booster dose in producing cross-neutralising antibodies against Omicron variant. A second booster dose might be needed to maintain long-term protection against Omicron variant.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2022.06.20.22276596v1" target="_blank">Kinetics of neutralising antibodies against Omicron variant in Vietnamese healthcare workers after primary immunisation with ChAdOx1-S and booster with BNT162b2</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Attitudes of the US general public towards Monkeypox</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
While the Monkeypox outbreak is growing, little is known about the general public9s levels of knowledge, their trusted sources of information and attitudes towards a Monkeypox vaccine. In our representative survey of the US general public, we find that almost half the respondents (47%) feel that their knowledge level about Monkeypox is poor or very poor. The most trusted sources of information about the outbreak are healthcare professional and officials, but also known doctors and researchers with a large online following. Being vaccinated against COVID-19 was a strong predictor of willingness to receive a Monkeypox if recommended (adjusted Odds Ratio 32.1, 95% Confidence Interval 16.7-61.7). Our findings point to the urgent need for clear communication.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2022.06.20.22276527v1" target="_blank">Attitudes of the US general public towards Monkeypox</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Ventilation Requirements and Recommendations for Controlling SARS-CoV-2 and Variants Outbreaks in Indoor Gathering Places with Close Contact</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
Unexpected rapid infection involving SARS-CoV-2 variant Omicron known as the fifth wave of outbreak occurred since early January 2022 in Hong Kong. Almost 1.2 million citizens were infected in three months. Ventilation provisions in some gathering places with close contact such as restaurants were found to be lower than requirements, believed to be one of the main causes of transmission in these indoor spaces. At the end of the fifth outbreak in mid-May 2022, group infections were still found in several such gathering places including restaurants and pubs due to inadequate ventilation provisions. There are worries about triggering the sixth wave of outbreak. Key points related to ventilation requirements in such gathering places are discussed in this paper. Adequate ventilation of 6 air changes per hour minimum must be provided to avoid direct air transmission of virus. Indoor aerodynamics induced by ventilation system must be considered too. However, it is difficult to measure ventilation rate quickly and accurately. A control scheme on virus outbreaks is proposed on installing mechanical ventilation energy use meters and carbon dioxide sensors for checking ventilation provisions adequacy quickly.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2022.06.15.22276447v1" target="_blank">Ventilation Requirements and Recommendations for Controlling SARS-CoV-2 and Variants Outbreaks in Indoor Gathering Places with Close Contact</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Impact of healthcare capacity disparities on the COVID-19 vaccination coverage in the United States: A cross-sectional study</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
Background The impact of the COVID-19 vaccination campaign in the US has been hampered by a substantial geographical heterogeneity of the vaccination coverage. Several studies have proposed vaccination hesitancy as a key driver of the vaccination uptake disparities. However, the impact of other important structural determinants such as local disparities in healthcare capacity is virtually unknown. Methods In this cross-sectional study, we conducted causal inference and geospatial analyses to estimate the impact of healthcare capacity on the vaccination coverage disparity in the US. We evaluated the causal relationship between the healthcare system capacity of 2,417 US counties and their COVID-19 vaccination rate. We also conducted geospatial analyses using spatial scan statistics to identify areas with low vaccination rates. Findings We found a positive association between the healthcare capacity of a county and vaccination uptake. We estimated that a 1% increase in the Resource-Constrained Health System Index of a county increases by 0.37% the occurrence of that county in the set of counties classified as low-vaccinated (≤50% vaccination rate). We also found that COVID-19 vaccinations in the US exhibit a distinct spatial structure with defined vaccination coldspots. Interpretation We found that the healthcare capacity of a county is an important determinant of low vaccine uptake. Our study highlights that even in high-income nations, internal disparities in healthcare capacity play an important role in the health outcomes of the nation. Therefore, strengthening the funding and infrastructure of the healthcare system, particularly in rural underserved areas, should be intensified to help vulnerable communities.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2022.06.19.22276612v1" target="_blank">Impact of healthcare capacity disparities on the COVID-19 vaccination coverage in the United States: A cross-sectional study</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Association between Bisphosphonate use and COVID-19 related outcomes: a retrospective cohort study</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
<b>Background:</b> Although there are several efficacious vaccines against COVID-19, vaccination rates in many regions around the world remain insufficient to prevent continued high disease burden and emergence of viral variants. Repurposing of existing therapeutics that prevent or mitigate severe COVID-19 could help to address these challenges. The objective of this study was to determine whether prior use of bisphosphonates is associated with reduced incidence and/or severity of COVID-19.<br /><b>Methods:</b> A retrospective cohort study utilizing payer-complete health insurance claims data from 8,239,790 patients with continuous medical and prescription insurance from 1-1-2019 to 6-30-2020 was performed. The primary exposure of interest was use of any bisphosphonate from 1-1-2019 to 2-29-2020. Outcomes of interest included: (a) testing for SARS-CoV-2 infection; (b) COVID-19 diagnosis; and (c) hospitalization with COVID-19 diagnosis between 3-1-2020 and 6-30-2020.<br /><b>Results: </b>7,906,603 patients for whom continuous medical and prescription insurance information was available were selected. 450,366 bisphosphonate users were identified and 1:1 propensity score-matched to bisphosphonate non-users by age, gender, insurance type, primary-careprovider visit in 2019, and comorbidity burden. Bisphosphonate users had lower odds ratios (OR) of testing for SARS-CoV-2 infection (OR=0.22; 95%CI:0.21-0.23; p<0.001), COVID-19 diagnosis (OR=0.23; 95%CI:0.22-0.24; p<0.001), and COVID-19-related hospitalization (OR=0.26; 95%CI:0.24-0.29; p<0.001). Sensitivity analyses yielded results consistent with the primary analysis. Bisphosphonate-use was also associated with decreased odds of acute bronchitis (OR=0.23; 95%CI:0.22-0.23; p<0.001) or pneumonia (OR=0.32; 95%CI:0.31-0.34; p<0.001) in 2019, suggesting that bisphosphonates may protect against respiratory infections by a variety of pathogens, including but not limited to SARS-CoV-2.<br /><b>Conclusions:</b> Prior bisphosphonate-use was associated with dramatically reduced odds of SARS-CoV-2 testing, COVID-19 diagnosis, and COVID-19-related hospitalizations. Prospective clinical trials will be required to establish a causal role for bisphosphonate-use in COVID-19-related outcomes.<br /><b>Funding:</b> This study was supported by NIH grants, AR068383 and AI155865, a grant from MassCPR (to U.H.v.A.) and a CRI Irvington postdoctoral fellowship, CRI2453 (to P.H.).
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2022.06.14.22276397v1" target="_blank">Association between Bisphosphonate use and COVID-19 related outcomes: a retrospective cohort study</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Trends in telehealth use by Medicare fee-for-service beneficiaries and its impact on overall volume of healthcare services</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
Introduction: At the start of the COVID-19 public health emergency, the federal government made temporary Medicare policy changes to expand telehealth coverage, resulting in a surge in telehealth use. As federal and state policymakers currently consider permanent telehealth policy options, it is important to understand the trends in telehealth use during 2021 and whether telehealth has led to an increase in the overall volume of healthcare services. Methods: Our analysis was conducted using Part B claims for 100% of Medicare fee-for-service beneficiaries. We identified all outpatient evaluation and management (E&M) services received by beneficiaries from January 1, 2019 through December 31, 2021. We then calculated the monthly proportion of outpatient E&M services that were performed in-person and through telehealth. Results: The total number of all outpatient E&M services was 289.0 million in 2019, 255.2 million in 2020 (11.7% lower than 2019), and 260.7 million in 2021 (9.8% lower than 2019). Monthly telehealth services peaked at 7.2 million (or 50.7% of monthly E&M services) in April 2020, followed by a slow decline through the end of 2021. During the second half of 2021, telehealth services made up 8.5-9.5% of monthly E&M services. Conclusion: From April 2020 through December 2021, the monthly volume of telehealth services slowly declined and has plateaued between 8.5-9.5% of all outpatient E&M services received by Medicare fee-for-service beneficiaries. Importantly, the total volume of outpatient E&M services was lower in 2020 and 2021, suggesting that the COVID-19 telehealth flexibilities have not increased the overall volume of outpatient E&M services received by Medicare beneficiaries. These findings should mitigate some concerns about the impact of telehealth on overall healthcare utilization.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2022.06.15.22276468v1" target="_blank">Trends in telehealth use by Medicare fee-for-service beneficiaries and its impact on overall volume of healthcare services</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Genomic epidemiology of circulating SARS-CoV-2 variants during first two years of the pandemic in Colombia</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
The emergence of highly transmissible SARS-CoV-2 variants has led to surges in cases and the need for global genomic surveillance. While some variants rapidly spread worldwide, other variants only persist nationally. There is a need for more fine-scale analysis to understand transmission dynamics at a country scale. For instance, the Mu variant of interest, also known as lineage B.1.621, was first detected in Colombia and was responsible for a large local wave but only a few sporadic cases elsewhere. To provide a better understanding of the epidemiology of SARS-Cov-2 variants in Colombia, we used 14,049 complete SARS-CoV-2 genomes from the 32 states of Colombia, and performed Bayesian phylodynamic analyses to estimate the time of variants introduction, their respective effective reproductive number, and effective population size, and the impact of disease control measures. We detected a total of 188 SARS-CoV-2 Pango lineages circulating in Colombia since the start of the pandemic. We showed that the effective reproduction number oscillated drastically throughout the first two years of the pandemic, with Mu showing the highest transmissibility (Re and growth rate estimation). Our results reinforce that genomic surveillance programs are essential for countries to make evidence-driven interventions towards the emergence and circulation of novel SARS-CoV-2 variants.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2022.06.20.22275744v1" target="_blank">Genomic epidemiology of circulating SARS-CoV-2 variants during first two years of the pandemic in Colombia</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>An ensemble n-sub-epidemic modeling framework for short-term forecasting epidemic trajectories: Application to the COVID-19 pandemic in the USA</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
We analyze an ensemble of n-sub-epidemic modeling for forecasting the trajectory of epidemics and pandemics. These ensemble modeling approaches, and models that integrate sub-epidemics to capture complex temporal dynamics, have demonstrated powerful forecasting capability. This modeling framework can characterize complex epidemic patterns, including plateaus, epidemic resurgences, and epidemic waves characterized by multiple peaks of different sizes. We systematically assess their calibration and short-term forecasting performance in short-term forecasts for the COVID-19 pandemic in the USA from late April 2020 to late February 2022. We compare their performance with two commonly used statistical ARIMA models. The best fit sub-epidemic model and three ensemble models constructed using the top-ranking sub-epidemic models consistently outperformed the ARIMA models in terms of the weighted interval score (WIS) and the coverage of the 95% prediction interval across the 10-, 20-, and 30-day short-term forecasts. In the 30-day forecasts, the average WIS ranged from 377.6 to 421.3 for the sub-epidemic models, whereas it ranged from 439.29 to 767.05 for the ARIMA models. Across 98 short-term forecasts, the ensemble model incorporating the top four ranking sub-epidemic models (Ensemble(4)) outperformed the (log) ARIMA model 66.3% of the time, and the ARIMA model 69.4% of the time in 30-day ahead forecasts in terms of the WIS. Ensemble(4) consistently yielded the best performance in terms of the metrics that account for the uncertainty of the predictions. This framework could be readily applied to investigate the spread of epidemics and pandemics beyond COVID-19, as well as other dynamic growth processes found in nature and society that would benefit from short-term predictions.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2022.06.19.22276608v1" target="_blank">An ensemble n-sub-epidemic modeling framework for short-term forecasting epidemic trajectories: Application to the COVID-19 pandemic in the USA</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Emotions in the time of COVID-19: A sentiment analysis of tweets during the nationwide lockdown in India</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
Background: COVID-19 pandemic is unprecedented in terms of burden, nature and quantum of control measures and public reactions. We report trends in public emotions and sentiments before and during the nation-wide lockdown implemented since 25th March 2020 in India. Methods: We collected a sample of tweets containing the keywords 9coronavirus9 or 9COVID-199 published between 12th March and 14th April in India. After pre-processing, the tweets were subjected to sentiment analysis using natural language processing algorithms. Results: Our analysis of 226170 tweets revealed a positive public sentiment (mean sentiment score=0.25). Tweets expressing a given sentiment showed significant (p<0.001) waning of negativity; negative tweets decreased (39.3% to 35.9%) and positive tweets increased (49.8% to 51.8%). Trust (0.85 words/tweet/day) and fear (0.66 words/tweet/day) were the dominant positive and negative emotions, respectively. Conclusions: Positive sentiments dominated during the COVID-19 lockdown in India. A surveillance system monitoring public sentiments on public health interventions for COVID-19 should be established.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2022.06.19.22276620v1" target="_blank">Emotions in the time of COVID-19: A sentiment analysis of tweets during the nationwide lockdown in India</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Vaccination and testing as a means of ending the COVID-19 pandemic: comparative and statistical analysis</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
Background. Record numbers of new cases and deaths registered in Japan and European countries in early 2022 once again proved that existing vaccines cannot stop the new infections and deaths caused by SARS-CoV-2 and aroused new questions about methods of overcoming the pandemic. Aim of the study. to compare the pandemic waves in Japan, Ukraine, USA, Hong Kong, mainland China, European and African countries in 2020, 2021, 2022 and to investigate the influence of testing and vaccination levels. Methods The smoothed daily numbers of new cases and deaths per capita, the ratio of these characteristics and the non-linear correlation with the tests per case ratio were used. Results. As in other countries, the deaths per case ratio in Japan decreases with the increase of the vaccination level. Non-linear correlation revealed, that the daily number of new cases drastically decreases with the increase of the tests per case ratio. Conclusions. Increasing the level of testing (especially for people who may have contact with infected persons) and adhering to quarantine restrictions for the entire population, including vaccinated people, may be recommended to end the pandemic.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2022.06.16.22276531v1" target="_blank">Vaccination and testing as a means of ending the COVID-19 pandemic: comparative and statistical analysis</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>scPheno: A deep generative model to integrate scRNA-seq with disease phenotypes and its application on prediction of COVID-19 pneumonia and severe assessment</strong> -
|
|||
|
<div>
|
|||
|
Cell-to-cell variability is orchestrated by transcriptional variations participating in different biological processes. However, the dissection of transcriptional variability in specific biological process at single-cell level remains unavailable. Here, we present a deep generative model scPheno to integrate scRNA-seq with disease phenotypes to unravel the invisible phenotype-related transcriptional variations. We applied scPheno on COVID-19 blood scRNA-seq to separate transcriptional variations in regulating COVID-19 host immunity and transcriptional variations in maintaining cell-type identity. In silico, we found CLU+IFI27+S100A9+ monocyte as the efficient cellular marker for the prediction of COVID-19 diagnosis. Inspiringly, using only 4 genes upregulated in CLU+IFI27+S100A9+ monocytes can predict the COVID-19 diagnosis of individuals from different country with an accuracy up to 81.3%. We also found C1+CD163+ monocyte and 8 C1+CD163+ monocyte-upregulated genes as the efficient biomarkers for the prediction of severity assessment. Overall, scPheno is an effective method in dissecting the transcriptional basis of phenotype variations at single-cell level.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2022.06.20.496916v1" target="_blank">scPheno: A deep generative model to integrate scRNA-seq with disease phenotypes and its application on prediction of COVID-19 pneumonia and severe assessment</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Identification of a guanine-specific pocket in the protein N of SARS-CoV-2</strong> -
|
|||
|
<div>
|
|||
|
The SARS-CoV-2 nucleocapsid protein (N) is responsible for RNA binding. Here we report the crystal structure of the C-terminal domain (NCTD) in open and closed conformations and in complex with guanine triphosphate, GTP. The crystal structure and biochemical studies reveals a specific interaction between the guanine, a nucleotide enriched in the packaging signals regions of coronaviruses, and a highly conserved tryptophan residue (W330). In addition, EMSA assays with SARS-CoV-2 derived RNA hairpin loops from a putative viral packaging sequence showed the preference interaction of the N-CTD to RNA oligonucleotides containing G and the loss of the specificity in the mutant W330A. Here we propose that this interaction may facilitate the viral assembly process. In summary we have identified a specific guanine-binding pocket in the N protein that may be used to design viral assembly inhibitors.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2022.06.21.496991v1" target="_blank">Identification of a guanine-specific pocket in the protein N of SARS-CoV-2</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>ct2vl: Converting Ct Values to Viral Loads for SARS-CoV-2 RT-qPCR Test Results</strong> -
|
|||
|
<div>
|
|||
|
RT-qPCR is the de facto reference method for detecting the presence of SARS-CoV-2 genomic material in infected individuals. Although RT-qPCR is inherently quantitative and despite SARS-CoV-2 viral loads varying by 10 orders of magnitude and therefore being potentially highly clinically informative, in practice SARS-CoV-2 RT-qPCR results are usually reported qualitatively as simply positive or negative. This is both because of the mathematical complexity of converting from Ct values to viral loads and because the same Ct value can correspond to orders-of-magnitude differences in viral load depending on the testing platform. To address this problem, here we present ct2vl, a Python package designed to help individual clinical laboratories, investigators, and test developers convert from Ct values to viral loads on their own platforms, using only the data generated during validation of those platforms. It allows any user to convert Ct values to viral loads and is readily applicable to other RT-qPCR tests. ct2vl is open source, has 100% code coverage, and is freely available via the Python Package Index (PyPI).
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2022.06.20.496929v1" target="_blank">ct2vl: Converting Ct Values to Viral Loads for SARS-CoV-2 RT-qPCR Test Results</a>
|
|||
|
</div></li>
|
|||
|
</ul>
|
|||
|
<h1 data-aos="fade-right" id="from-clinical-trials">From Clinical Trials</h1>
|
|||
|
<ul>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>COVID-19 Algorithm Treatment at Home</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Drug: Recommended treatment schedule; Drug: Usual care<br/><b>Sponsor</b>: Mario Negri Institute for Pharmacological Research<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Immunosuppression and COVID-19 Boosters</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Biological: diphtheria and tetanus toxoids (adsorbed) vaccine; Biological: COVID-19 vaccine<br/><b>Sponsors</b>: Kirby Institute; Seqirus Pty Ltd, Australia; Medical Research Future Fund (MRFF)<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Discussing COVID-19 Vaccines in Private Facebook Groups</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Behavioral: Gist messages on COVID-19 vaccination; Behavioral: COVID-19 vaccine information<br/><b>Sponsor</b>: George Washington University<br/><b>Completed</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Epidemiological Monitoring of COVID-19 Patients Hospitalized on Reunion Island</strong> - <b>Condition</b>: COVID-19<br/><b>Intervention</b>: Other: telephone interview 24 months after hospitalization for Covid-19<br/><b>Sponsor</b>: Centre Hospitalier Universitaire de la Réunion<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Home-Based Exercise Tele-Rehabilitation After COVID-19</strong> - <b>Condition</b>: Post SARS-CoV2 (COVID-19)<br/><b>Intervention</b>: Other: Tele-exercise<br/><b>Sponsors</b>: VA Office of Research and Development; Baltimore Veterans Affairs Medical Center; Salem Veterans Affairs Medical Center<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Immunogenicity and Safety Study of Booster Vaccine With the COVID-19 Vaccine (Vero Cell), Inactivated, Omicron Strain</strong> - <b>Condition</b>: COVID-19<br/><b>Intervention</b>: Biological: COVID-19 Vaccine (Vero Cell), Inactivated, Omicron Strain<br/><b>Sponsor</b>: Sinovac Biotech (Hong Kong) Limited<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Plerixafor in Acute Respiratory Distress Syndrome Related to COVID-19 (Phase IIb)</strong> - <b>Conditions</b>: COVID-19 Acute Respiratory Distress Syndrome; COVID-19<br/><b>Interventions</b>: Drug: Plerixafor 20 MG/ML [Mozobil]; Other: Placebo<br/><b>Sponsor</b>: 4Living Biotech<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Effect of COVID-19 on Platelet Mitochondrial Bioenergetic, Antioxidants and Oxidative Stress in Infertile Men.</strong> - <b>Condition</b>: Men Infertility, Post-COVID-19<br/><b>Intervention</b>: Other: diagnostic test and sperm analysis<br/><b>Sponsors</b>: Comenius University; GYN-FIV<br/><b>Active, not recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Calcitriol Supplementation in COVID-19 Patients</strong> - <b>Conditions</b>: COVID-19; Vitamin D Deficiency<br/><b>Intervention</b>: Drug: Calcitriol<br/><b>Sponsor</b>: RenJi Hospital<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Olfactory Training in COVID-19 Associated Loss of Smell</strong> - <b>Conditions</b>: COVID-19; Hyposmia<br/><b>Intervention</b>: Device: Sniffin’ sticks Duftquartett<br/><b>Sponsor</b>: Medical University Innsbruck<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Psychological Impact of Medical Evacuations on Families of Patients Admitted to Intensive Care Unit for Severe COVID-19</strong> - <b>Conditions</b>: COVID-19; Stress Disorders, Post-Traumatic<br/><b>Interventions</b>: Other: Revised Impact of Event Scale; Other: Hospital Anxiety and Depression scale; Other: 36-Item Short Form Survey; Other: satisfaction survey; Other: semi-directed interview with trusted person on the general experience of the patient’s medical evacuation; Other: semi-directed interview with trusted person on the general experience of hospitalization in intensive care<br/><b>Sponsor</b>: Centre Hospitalier Metropole Savoie<br/><b>Completed</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Effects of Telerehabilitative Aerobic and Relaxation Exercises Patients With Type 2 Diabetes With and Without COVID-19</strong> - <b>Conditions</b>: COVID-19; Type 2 Diabetes Mellitus<br/><b>Intervention</b>: Other: Aerobic and Relaxation Exercises<br/><b>Sponsor</b>: Bozyaka Training and Research Hospital<br/><b>Active, not recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>COVID-19 Vaccine Uptake Trial</strong> - <b>Conditions</b>: Vaccination Refusal; COVID-19<br/><b>Interventions</b>: Other: Short Message Service (SMS) + Website Link Strategy; Other: Phone Call with Peer Strategy<br/><b>Sponsor</b>: Washington University School of Medicine<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Cardiovascular Autonomic and Immune Mechanism of Post COVID-19 Tachycardia Syndrome</strong> - <b>Conditions</b>: Post-acute COVID-19 Syndrome; Postural Tachycardia Syndrome (POTS); Long COVID; SARS CoV 2 Infection<br/><b>Interventions</b>: Diagnostic Test: Determine the inflammatory and immune profile of post-COVID-19 POTS patients; Diagnostic Test: Measurement of PNS activity by HRV (Heart rate Variation); Diagnostic Test: Autonomic Symptoms assessment<br/><b>Sponsors</b>: Vanderbilt University Medical Center; American Heart Association<br/><b>Recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Evaluation of the Immunogenicity and Safety of Sputnik V and BBIBP-CorV Vaccines for COVID-19 in Adult in Guinea</strong> - <b>Conditions</b>: COVID-19; Vaccine Adverse Reaction; Sars-CoV-2 Infection; Healthy Volunteer<br/><b>Interventions</b>: Biological: BBIBP-CorV; Biological: Sputnik V<br/><b>Sponsors</b>: ANRS, Emerging Infectious Diseases; CEPI; Alliance for International Medical Action; Centre National de Formation et de Recherche en Sante Rurale; Institut National de la Santé Et de la Recherche Médicale, France; APHP; Agence Nationale de Sécurité Sanitaire de la Guinée (ANSS Guinée); Innovative clinical research network in vaccinology (IREIVAC)<br/><b>Recruiting</b></p></li>
|
|||
|
</ul>
|
|||
|
<h1 data-aos="fade-right" id="from-pubmed">From PubMed</h1>
|
|||
|
<ul>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>The effect of various compounds on the COVID mechanisms, from chemical to molecular aspects</strong> - The novel coronavirus that caused COVID-19 pandemic is SARS-CoV-2. Although various vaccines are currently being used to prevent the disease’s severe consequences, there is still a need for medications for those who become infected. The SARS-CoV-2 has a variety of proteins that have been studied extensively since the virus’s advent. In this review article, we looked at chemical to molecular aspects of the various structures studied that have pharmaceutical activity and attempted to find a link…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Computational repurposing approach for targeting the critical spike mutations in B.1.617.2 (delta), AY.1 (delta plus) and C.37 (lambda) SARS-CoV-2 variants using exhaustive structure-based virtual screening, molecular dynamic simulations and MM-PBSA methods</strong> - Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the contagious coronavirus disease 2019 (COVID-19) which was first identified in Wuhan, China, in December 2019. Around the world, many researchers focused their research on identifying inhibitors against the druggable SARS-CoV-2 targets. The reported genomic mutations have a direct effect on the receptor-binding domain (RBD), which interacts with host angiotensin-converting enzyme 2 (ACE-2) for viral cell…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Nucleocapsid mutations in SARS-CoV-2 augment replication and pathogenesis</strong> - While SARS-CoV-2 continues to adapt for human infection and transmission, genetic variation outside of the spike gene remains largely unexplored. This study investigates a highly variable region at residues 203-205 in the SARS-CoV-2 nucleocapsid protein. Recreating a mutation found in the alpha and omicron variants in an early pandemic (WA-1) background, we find that the R203K+G204R mutation is sufficient to enhance replication, fitness, and pathogenesis of SARS-CoV-2. The R203K+G204R mutant…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>The Bioactivities of Phycocyanobilin from Spirulina</strong> - Phycocyanobilin (PCB) is a linear open-chain tetrapyrrole chromophore that captures and senses light and a variety of biological activities, such as anti-oxidation, anti-cancer, and anti-inflammatory. In this paper, the biological activities of PCB are reviewed, and the related mechanism of PCB and its latest application in disease treatment are introduced. PCB can resist oxidation by scavenging free radicals, inhibiting the activity of nicotinamide adenine dinucleotide phosphate (NADPH)…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Ivermectin for preventing and treating COVID-19</strong> - BACKGROUND: Ivermectin, an antiparasitic agent, inhibits the replication of viruses in vitro. The molecular hypothesis of ivermectin’s antiviral mode of action suggests an inhibitory effect on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication in early stages of infection. Currently, evidence on ivermectin for prevention of SARS-CoV-2 infection and COVID-19 treatment is conflicting.</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Establishment of well-differentiated camelid airway cultures to study Middle East respiratory syndrome coronavirus</strong> - In 2012, Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in Saudi Arabia and was mostly associated with severe respiratory illness in humans. Dromedary camels are the zoonotic reservoir for MERS-CoV. To investigate the biology of MERS-CoV in camelids, we developed a well-differentiated airway epithelial cell (AEC) culture model for Llama glama and Camelus bactrianus. Histological characterization revealed progressive epithelial cellular differentiation with well-resemblance to…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Severe case of refractory immune thrombocytopenic purpura requiring splenectomy after the COVID-19 vaccine</strong> - Immune thrombocytopenic purpura (ITP) is an autoimmune disorder caused by autoantibodies against platelet antigens resulting in platelet destruction and inhibition of platelet production. Occasionally, an inciting event such as a virus or vaccination can precipitate ITP. Several cases of ITP have been reported after the BTN162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) SARS-CoV-2 (COVID-19) vaccines. All reported cases of post-vaccination ITP have resolved with medical therapy until this case.A…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>ROS-responsive polymer nanoparticles with enhanced loading of dexamethasone effectively modulate the lung injury microenvironment</strong> - The acute lung injury (ALI) is an inflammatory disorder associated with cytokine storm, which activates various reactive oxygen species (ROS) signaling pathways and causes severe complications in patients as currently seen in coronavirus disease 2019 (COVID-19). There is an urgent need for medication of the inflammatory lung environment and effective delivery of drugs to lung to reduce the burden of high doses of medications and attenuate inflammatory cells and pathways. Herein, we prepared…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>The pharmacokinetic property and pharmacological activity of acteoside: A review</strong> - Acteoside (AC), a phenylpropanoid glycoside isolated from many dicotyledonous plants, has been demonstrated various pharmacological activities, including anti-oxidation, anti-inflammation, anti-cancer, neuroprotection, cardiovascular protection, anti-diabetes, bone and cartilage protection, hepatoprotection, and anti-microorganism. However, AC has a poor bioavailability, which can be potentially improved by different strategies. The health-promoting characteristics of AC can be attributed to its…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Specificity and Confirmation of SARS-CoV-2 Serological Test Methods in Emergency Department Populations Across the United States in 2019 and Early 2020</strong> - CONCLUSIONS: The specificity of the serological assays evaluated in a large diverse emergency department population was >99% and did not vary by geographical site. A confirmatory algorithm with an automated pseudo-neutralization assay allowed testing on the same specimen while reducing the false positivity rate and increasing the value of serology screening methods.</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Host Kinase CSNK2 is a Target for Inhibition of Pathogenic SARS-like β-Coronaviruses</strong> - Inhibition of the protein kinase CSNK2 with any of 30 specific and selective inhibitors representing different chemotypes, blocked replication of pathogenic human, bat, and murine β-coronaviruses. The potency of in-cell CSNK2A target engagement across the set of inhibitors correlated with antiviral activity and genetic knockdown confirmed the essential role of the CSNK2 holoenzyme in β-coronavirus replication. Spike protein endocytosis was blocked by CSNK2A inhibition, indicating that antiviral…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Transcription of the Envelope Protein by 1-L Protein-RNA Recognition Code Leads to Genes/Proteins That Are Relevant to the SARS-CoV-2 Life Cycle and Pathogenesis</strong> - The theoretical protein-RNA recognition code was used in this study to research the compatibility of the SARS-CoV-2 envelope protein (E) with mRNAs in the human transcriptome. According to a review of the literature, the spectrum of identified genes showed that the virus post-transcriptionally promotes or represses the genes involved in the SARS-CoV-2 life cycle. The identified genes/proteins are also involved in adaptive immunity, in the function of the cilia and wound healing (EMT and MET) in…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Humoral and Cellular Responses to BNT162b2 as a Booster Following Two Doses of ChAdOx1 nCov-19 Determined Using Three SARS-CoV-2 Antibody Assays and an Interferon-Gamma Release Assay: A Prospective Longitudinal Study in Healthcare Workers</strong> - Data on humoral and cellular responses to BNT162b2 as a booster dose, following two doses of ChAdOx1 nCov-19 vaccine, have seldom been reported. The aim of this study was to assess the positivity rates of three representative antibody assays targeting total, IgG, and neutralizing antibodies, and an interferon-γ release assay (IGRA), and to determine the longitudinal changes in quantitative antibody titers after each vaccination. A total of 1027 samples were collected from healthcare workers. The…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Mechanism of CK2 Inhibition by a Ruthenium-Based Polyoxometalate</strong> - CK2 is a Ser/Thr protein kinase involved in many cellular processes such as gene expression, cell cycle progression, cell growth and differentiation, embryogenesis, and apoptosis. Aberrantly high CK2 activity is widely documented in cancer, but the enzyme is also involved in several other pathologies, such as diabetes, inflammation, neurodegeneration, and viral infections, including COVID-19. Over the last years, a large number of small-molecules able to inhibit the CK2 activity have been…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Calcium bicarbonate as an antimicrobial, antiviral, and prion-inhibiting agent (Review)</strong> - Calcium bicarbonate does not act as a disinfectant at neutral pH; however, it exerts strong antimicrobial activity after it is placed in a high-voltage electric field, whereby it assumes an alkaline pH (12.4). Moreover, the microbicidal activity of the resulting solution (named CAC-717) is not influenced by the presence of organic material or resistance of the agent to inactivation. When sprayed on the skin surface, the pH of CAC-717 decreases rapidly to 8.84. CAC-717 comprises fine particles of…</p></li>
|
|||
|
</ul>
|
|||
|
<h1 data-aos="fade-right" id="from-patent-search">From Patent Search</h1>
|
|||
|
|
|||
|
|
|||
|
<script>AOS.init();</script></body></html>
|