227 lines
54 KiB
HTML
227 lines
54 KiB
HTML
|
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
|
|||
|
<html xmlns="http://www.w3.org/1999/xhtml"><head>
|
|||
|
<meta content="text/html; charset=utf-8" http-equiv="Content-Type"/>
|
|||
|
<meta content="text/css" http-equiv="Content-Style-Type"/>
|
|||
|
<meta content="pandoc" name="generator"/>
|
|||
|
<title></title>
|
|||
|
<style type="text/css">code{white-space: pre;}</style>
|
|||
|
<title>Covid-19 Sentry</title><meta content="width=device-width, initial-scale=1.0" name="viewport"/><link href="styles/simple.css" rel="stylesheet"/><link href="../styles/simple.css" rel="stylesheet"/><link href="https://unpkg.com/aos@2.3.1/dist/aos.css" rel="stylesheet"/><script src="https://unpkg.com/aos@2.3.1/dist/aos.js"></script></head>
|
|||
|
<body>
|
|||
|
<h1 data-aos="fade-down" id="covid-19-sentry">Covid-19 Sentry</h1>
|
|||
|
<h1 data-aos="fade-right" data-aos-anchor-placement="top-bottom" id="contents">Contents</h1>
|
|||
|
<ul>
|
|||
|
<li><a href="#from-preprints">From Preprints</a></li>
|
|||
|
<li><a href="#from-clinical-trials">From Clinical Trials</a></li>
|
|||
|
<li><a href="#from-pubmed">From PubMed</a></li>
|
|||
|
<li><a href="#from-patent-search">From Patent Search</a></li>
|
|||
|
</ul>
|
|||
|
<h1 data-aos="fade-right" id="from-preprints">From Preprints</h1>
|
|||
|
<ul>
|
|||
|
<li><strong>A psychological network approach to attitudes and preventive behaviors during pandemics: A COVID-19 study in the United Kingdom and the Netherlands</strong> -
|
|||
|
<div>
|
|||
|
Preventive behaviors are crucial to prevent spread of the coronavirus causing COVID-19. We adopted a complex psychological systems approach to obtain a descriptive account of the network of attitudes and behaviors related to COVID-19. A survey study (N = 1022) was conducted with subsamples from the United Kingdom (n = 502) and the Netherlands (n = 520). The results highlight the importance of people’s support for, and perceived efficacy of, the measures and preventive behaviors. This also applies to the perceived norm of family and friends adopting these behaviors. The networks in both countries were largely similar but also showed notable differences. The interplay of psychological factors in the networks is also highlighted, resulting in our appeal to policymakers to take complexity and mutual dependence of psychological factors into account. Future research should study effects of interventions aimed at these factors, including effects on the network, to make causal inferences.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://psyarxiv.com/es45v/" target="_blank">A psychological network approach to attitudes and preventive behaviors during pandemics: A COVID-19 study in the United Kingdom and the Netherlands</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Perceived stress as mediator for longitudinal effects of the COVID-19 lockdown on wellbeing of parents and children</strong> -
|
|||
|
<div>
|
|||
|
Dealing with COVID-19 lockdown may have negative effects on children, but at the same time might facilitate parent-child bonding. Perceived stress may influence the direction of these effects. Using a longitudinal twin design, we investigated how perceived stress influenced lockdown induced changes in wellbeing of parents and children. A total of 106 parents and 151 children (10-13-year-old) filled in questionnaires during lockdown and data were combined with data of previous years. We report a significant increase in parental negative feelings (anxiety, depression, hostility and interpersonal sensitivity). Longitudinal child measures showed a gradual decrease in internalizing and externalizing behavior, which seemed decelerated by the COVID-19 lockdown. Changes in parental negative feelings and children’s externalizing behavior were mediated by perceived stress: higher scores prior to the lockdown were related to more stress during the lockdown, which in turn was associated with an increase in parental negative feelings and children’s’ externalizing behavior. Perceived stress in parents and children was associated with negative coping strategies. Additionally, children’s stress levels were influenced by prior and current parental overreactivity. These results suggest that children in families with negative coping strategies and (a history of) parental overreactivity might be at risk for negative consequences of the lockdown.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://psyarxiv.com/pj3sg/" target="_blank">Perceived stress as mediator for longitudinal effects of the COVID-19 lockdown on wellbeing of parents and children</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Surveillance-to-Diagnostic Testing Program for Asymptomatic SARS-CoV-2 Infections on a Large, Urban Campus - Georgia Institute of Technology, Fall 2020</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
A SARS-CoV-2 testing program combining pooled saliva sample surveillance leading to diagnosis and intervention surveyed over 112,000 samples from 18,029 students, staff and faculty, as part of integrative efforts to mitigate transmission at the Georgia Institute of Technology in Fall 2020. Cumulatively, 1,508 individuals were confirmed diagnostically. The surveillance strategy, including focused intensification of testing given case clusters, was effective in disrupting transmission following rapid case increases upon entry in August 2020, and again in November 2020. Owing to broad adoption by the campus community, the program protected higher risk staff while allowing some normalization of research activities.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.01.28.21250700v1" target="_blank">Surveillance-to-Diagnostic Testing Program for Asymptomatic SARS-CoV-2 Infections on a Large, Urban Campus - Georgia Institute of Technology, Fall 2020</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Association of COVID19-induced Anosmia and Ageusia with Depression and Suicidal Ideation</strong> -
|
|||
|
<div>
|
|||
|
Background. Clinical reports from patients suffering from the novel coronavirus (COVID-19) reflect a high prevalence of sensory deprivation or loss pertaining to smell (dysosmia/anosmia) and/or taste (dysgeusia/ageusia). Given the importance of the senses to daily functioning and personal experience, the mental health consequences of these symptoms warrant further attention. Methods. A cohort of Reddit users posting within the /r/covid19positive subforum (N=15,821) was leveraged to analyze instantaneous risk of transition to a state of suicidal ideation or depression using Cox proportional-hazards models. Risk transition was defined by posts made in suicide- or depression-related forums, or mentions of relevant phrases with and without mention of anosmia/ageusia in /r/covid19positive. Self-diagnosis of COVID-19 was also modeled as a separate and simultaneous predictor of mental health risk. Results. Mention of anosmia/ageusia was significantly associated with transition to a risk state. Users with a history of anosmia/ageusia-related posts and who self-identified as COVID-19 positive had 30% higher instantaneous risk relative to others. The highest increase in instantaneous risk of suicidal ideation or depression occurred more than 100 days after first posting in /r/covid19positive. Limitations. Use of self-diagnosed disease as well as a broad array of anosmia/ageusia-related terminology may entail both information bias and overestimates of symptom incidence. Conclusions. The specific effects of COVID-19 on the senses may have long-term implications for patient mental health well-being beyond the primary recovery period. Future work is needed to investigate the longitudinal mental health burden of residual COVID-19 symptom presentation.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://psyarxiv.com/qy2vu/" target="_blank">Association of COVID19-induced Anosmia and Ageusia with Depression and Suicidal Ideation</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Racial and Ethnic Disparities in Years of Potential Life Lost Attributable to COVID-19 in the United States: An Analysis of 45 States and the District of Columbia</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
The coronavirus disease 2019 (COVID-19) epidemic in the United States has disproportionately impacted communities of color across the country. Focusing on COVID-19-attributable mortality, we expand upon a national comparative analysis of years of potential life lost (YPLL) attributable to COVID-19 by race/ethnicity (Bassett et al., 2020), estimating percentages of total YPLL for non-Hispanic Whites, non-Hispanic Blacks, Hispanics, non-Hispanic Asians, and non-Hispanic American Indian or Alaska Natives, contrasting them with their respective percent population shares, as well as age-adjusted YPLL rate ratios - anchoring comparisons to non-Hispanic Whites - in each of 45 states and the District of Columbia using data from the National Center for Health Statistics as of December 30, 2020. Using a novel Monte Carlo simulation procedure to quantify estimation uncertainty, our results reveal substantial racial/ethnic disparities in COVID-19-attributable YPLL across states, with a prevailing pattern of non-Hispanic Blacks and Hispanics experiencing disproportionately high and non-Hispanic Whites experiencing disproportionately low COVID-19-attributable YPLL. Furthermore, observed disparities are generally more pronounced when measuring mortality in terms of YPLL compared to death counts, reflecting the greater intensity of the disparities at younger ages. We also find substantial state-to-state variability in the magnitudes of the estimated racial/ethnic disparities, suggesting that they are driven in large part by social determinants of health whose degree of association with race/ethnicity varies by state.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.01.28.21249411v1" target="_blank">Racial and Ethnic Disparities in Years of Potential Life Lost Attributable to COVID-19 in the United States: An Analysis of 45 States and the District of Columbia</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Assessment of the similarities and differences of the COVID-19 second surges in Europe and the Northeast United States</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
We estimated the aggregate prevalence over time for Europe and the Northeast United States to characterize the COVID-19 second surge in these regions. We find a starting date as early as July 3 for Europe and August 19 for the Northeast; subsequent infectious populations that, as of January 07, 2021, have always increased or remained stagnant; and the resurgences being the collective effect of each overall region with no location dominating the dynamics by itself.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.01.02.21249125v2" target="_blank">Assessment of the similarities and differences of the COVID-19 second surges in Europe and the Northeast United States</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Effect of park use and landscape structure on COVID-19 transmission rates</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
The COVID-19 pandemic has had severe impacts on global public health. In England, social distancing measures and a nationwide lockdown were introduced to reduce the spread of the virus. Green space accessibility may have been particularly important during this lockdown, as it could have provided benefits for physical and mental wellbeing. However, the effects of public green space use on the rate of COVID-19 transmission are yet to be quantified, and as the size and accessibility of green spaces vary within England9s local authorities, the risks and benefits to the public of using green space may well be context-dependent. To evaluate how green space affected COVID-19 transmission across 98 local authorities in England, we first split case rates into two periods, the pre-peak rise and the post-peak decline in cases, and assessed how baseline health and mobility variables influenced these rates. Next, looking at the residual case rates, we investigated how landscape structure (e.g. area and patchiness of green space) and park use influenced transmission. We first show that pre- and post-peak case rates were significantly reduced when overall mobility was low, especially in areas with high population clustering, and high population density during the post-peak period only. After accounting for known mechanisms behind transmission rates, we found that park use (showing a preference for park mobility) decreased residual pre-peak case rates, especially when green space was low and contiguous (not patchy). Whilst in the post-peak period, park use and green landscape structure had no effect on residual case rates. Our results suggest that a reduction in overall mobility is a good strategy for reducing case rates, endorsing the success of lockdown measures. However, if mobility is necessary, outdoor park use is safer than indoor aggregated activities (e.g. shopping or office-based working), especially during an exponential phase of transmission.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2020.10.20.20215731v2" target="_blank">Effect of park use and landscape structure on COVID-19 transmission rates</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>“It is the only constant in what feels like a completely upside down and scary world”: Living with an Eating Disorder during COVID-19 and the importance of perceived control for recovery and relapse.</strong> -
|
|||
|
<div>
|
|||
|
Background: The COVID-19 pandemic has had a profound, negative impact on the lives and wellbeing of the population, and it can raise additional challenges for individuals with eating disorders. During early stages of the UK lockdown, individuals reported disruptions to many aspects of their lives, including reduced feelings of control and serious concerns over the impact of the pandemic on eating disorder symptoms and/or recovery. This study compares data from two time points to explore the ongoing impacts of the pandemic on this population. Method: A mixed-methods online survey was developed for the purpose of this study. Data was collected at the two key time points: First, soon after the start of the first UK lockdown (April 2020) and second, as the first lockdown restrictions began to be lifted (June 2020). The sample consisted of 58 individuals currently experiencing, or in recovery from, an eating disorder. Participants were aged between 16-65 years; 57 identified as female, and 1 male. Results: Higher perceptions of general, external control were associated with recovery between the time points. Individuals who experienced less perceived control reported a tendency to rely upon eating disorder behaviours as an auxiliary coping mechanism, i.e., diminished external control was directed inwards and replaced with controlling their own behaviour. Conclusions: Perceived control is a significant factor in eating disorder recovery. As a result of the pandemic’s negative impact upon peoples’ sense of control, individuals with eating disorders are at significant risk of detrimental impacts on their recovery and wellbeing. The results have implications for future treatments based on strengthening individuals’ perceptions of control to promote recovery.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://psyarxiv.com/tqfsz/" target="_blank">“It is the only constant in what feels like a completely upside down and scary world”: Living with an Eating Disorder during COVID-19 and the importance of perceived control for recovery and relapse.</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>How Does The COVID-19 Pandemic Impact on Population Mental Health? A Network Analysis of COVID Influences On Depression, Anxiety and Traumatic Stress in the UK Population</strong> -
|
|||
|
<div>
|
|||
|
Background. The COVID-19 emergency has led to numerous attempts to assess the impact of the pandemic on population mental health. Findings indicate an increase in depression and anxiety but have been limited by the lack of specificity about which aspects of the pandemic (e.g. viral exposure or economic threats) have led to adverse mental health outcomes. Methods. Network analyses were conducted on data from wave 1 (N = 2025 recruited March 23rd – March 28th 2020) and wave 2 (N = 1406 recontacts, 22 April – 1 May 2020) of the COVID-19 Psychological Research Consortium Study, an online longitudinal survey of a representative sample of the UK adult population. Our models included depression (PHQ-9), generalised anxiety (GAD-7) and trauma symptoms (ITQ) and also measures of Covid-specific anxiety, exposure to the virus in self and close others as well as economic loss due to the pandemic. Results. A mixed graphical model at wave 1 indicated that economic adversity impacted on anxiety symptoms via specific anxiety about the pandemic. There was no association between viral exposure and symptoms. Ising network models using clinical cut-offs for symptom scores at each wave yielded similar findings with the exception of a modest effect of viral exposure on trauma symptoms at wave 1 only. Anxiety and depression symptoms formed separate clusters at wave 1 but not wave 2. Conclusions. The psychological impact of the pandemic evolved in the early phase of lockdown. Adverse psychiatric outcomes were particularly associated with exposure to the economic consequences of the pandemic.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://psyarxiv.com/8xtdr/" target="_blank">How Does The COVID-19 Pandemic Impact on Population Mental Health? A Network Analysis of COVID Influences On Depression, Anxiety and Traumatic Stress in the UK Population</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>REACT-1 round 8 final report: high average prevalence with regional heterogeneity of trends in SARS-CoV-2 infection in the community in England during January 2021</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
In early January 2021, England entered its third national lockdown of the COVID-19 pandemic to reduce numbers of deaths and pressure on healthcare services, while rapidly rolling out vaccination to healthcare workers and those most at risk of severe disease and death. REACT-1 is a survey of SARS-CoV-2 prevalence in the community in England, based on repeated cross-sectional samples of the population. Between 6th and 22nd January 2021, out of 167,642 results, 2,282 were positive giving a weighted national prevalence of infection of 1.57% (95% CI, 1.49%, 1.66%). The R number nationally over this period was estimated at 0.98 (0.92, 1.04). Prevalence remained high throughout, but with suggestion of a decline at the end of the study period. The average national trend masked regional heterogeneity, with robustly decreasing prevalence in one region (South West) and increasing prevalence in another (East Midlands). Overall prevalence at regional level was highest in London at 2.83% (2.53%, 3.16%). Although prevalence nationally was highest in the low-risk 18 to 24 year old group at 2.44% (1.96%, 3.03%), it was also high in those over 65 years who are most at risk, at 0.93% (0.82%, 1.05%). Large household size, living in a deprived neighbourhood, and Black and Asian ethnicity were all associated with higher levels of infections compared to smaller households, less deprived neighbourhoods and other ethnicities. Healthcare and care home workers, and other key workers, were more likely to test positive compared to other workers. If sustained lower prevalence is not achieved rapidly in England, pressure on healthcare services and numbers of COVID-19 deaths will remain unacceptably high.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.01.28.21250606v1" target="_blank">REACT-1 round 8 final report: high average prevalence with regional heterogeneity of trends in SARS-CoV-2 infection in the community in England during January 2021</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Evidence for SARS-CoV-2 Spike Protein in the Urine of COVID-19 patients</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
SARS-CoV-2 infection has so far affected over 42 million people worldwide, causing over 1.1 million deaths. With the large majority of SARS-CoV-2 infected individuals being asymptomatic, major concerns have been raised about possible long-term consequences of the infection. We developed an antigen capture assay to detect SARS-CoV-2 spike protein in urine samples from COVID-19 patients whose diagnosis was confirmed by PCR from nasopharyngeal swabs (NP-PCR+). The study used a collection of 233 urine samples from 132 participants from Yale New Haven Hospital and the Childrens Hospital of Philadelphia obtained during the pandemic (106 NP-PCR+ and 26 NP-PCR-) as well as a collection of 20 urine samples from 20 individuals collected before the pandemic. Our analysis identified 23 out of 91 (25%) NP-PCR+ adult participants with SARS-CoV-2 spike S1 protein in urine (Ur-S+). Interestingly, although all NP-PCR+ children were Ur-S-, 1 NP-PCR- child was found to be positive for spike protein in urine. Of the 23 Ur-S+ adults, only 1 individual showed detectable viral RNA in urine. Our analysis further showed that 24% and 21% of NP-PCR+ adults have high levels of albumin and cystatin C in urine, respectively. Among individuals with albuminuria (>0.3 mg/mg of creatinine) statistical correlation could be found between albumin and spike protein in urine. Together, our data showed that 1 of 4 of SARS-CoV-2 infected individuals develop renal abnormalities such as albuminuria. Awareness about the long-term impact of these findings is warranted.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.01.27.21250637v1" target="_blank">Evidence for SARS-CoV-2 Spike Protein in the Urine of COVID-19 patients</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Structural basis of fitness of emerging SARS-COV-2 variants and considerations for screening, testing and surveillance strategy to contain their threat.</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
While emergence of new SAS-COV-2 variants is posing grave challenge to efforts to deal with the COVID-19 pandemic, the structural and molecular basis of their fitness remain poorly understood. We performed in silico analysis of structures of two most frequent SARS-COV-2 mutations, namely, N501Y and E484K, to identify plausible basis of their fitness over the original strain. The analysis suggested that the N501Y mutation is associated with strengthening of intra- as well as intermolecular H-bond in the hACE2 receptor-spike protein complex, which could result in increased affinity and, therefore, higher infectivity. While E484K mutation did not seem to directly affect the binding with hACE2 receptor, it disrupted H-bonding and salt-bridge interaction associated with binding with neutralizing antibody, which could affect chance of re-infection, disease outcome. Survey of several other mutations showing reduction in antibody-mediated neutralization also revealed that similar disruption of H-bonding or salt-bridge or Van der Waals interaction might explain their phenotype. Analysis of GESS database indicated that N501Y, EK484 as well as these other mutations existed since March-April, 2020, might have evolved independently across the world and may keep accumulating, which could affect efficacy of vaccination and antibody-based therapies. Our analysis also indicated that these may spread in spite of current travel restrictions focused on few countries and evolve indigenously warranting intensification of surveillance for emerging mutations among all travellers as well as people in their dwelling zones. Meta-analysis of existing literature showed that repeat testing of travellers, contacts and others under scrutiny 7-11 days after the initial RT-PCR test may significantly help to contain the spread of emerging variants by catching false negative results. In addition, existing evidence calls for development of strain-specific tests, escalated sequencing and broadening the scope of surveillance including in hospitals and animal farms to contain the threat of emerging variants.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.01.28.21250666v1" target="_blank">Structural basis of fitness of emerging SARS-COV-2 variants and considerations for screening, testing and surveillance strategy to contain their threat.</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Point-of-Care CRISPR-Cas-Assisted SARS-CoV-2 Detection in an Automated and Mobile Droplet Magnetofluidic Device</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
In the fight against COVID-19, there remains unmet needs in developing point-of-care (POC) diagnostic testing tools that can rapidly and sensitively detect the causative SARS-CoV-2 virus to control disease transmission and improve patient management. Although recent CRISPR-Cas-assisted SARS-CoV-2 detection assays (such as DETECTR and SHERLOCK) are viewed as transformative solutions for POC diagnostic testing, their lack of simple sample processing and full integration within an automated and portable device hamper their potential for POC use. We report herein POC-CRISPR - a new single-step CRISPR-Cas-assisted assay that is coupled to droplet magnetofluidics (DM) - that leverages simple magnetic concentration and transport of nucleic acid-binding magnetic beads to accomplish sample preparation and assay automation. By further adapting the assay into a fully integrated thermoplastic cartridge within a palm-sized mobile device, POC-CRISPR was able to detect 1 genome equivalent (GE)/μL SARS-CoV-2 RNA from a sample volume of 100 μL in 30 min. Moreover, when evaluated with unprocessed clinical nasopharyngeal (NP) swab eluates, POC-CRISPR identified SARS-CoV-2 positive samples in as short as 20 min and achieved full concordance with standard RT-qPCR.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.01.27.21250564v1" target="_blank">Point-of-Care CRISPR-Cas-Assisted SARS-CoV-2 Detection in an Automated and Mobile Droplet Magnetofluidic Device</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Nationwide Seroprevalence of SARS-CoV-2 in Saudi Arabia</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
Background: Estimated seroprevalence of Coronavirus Infectious Disease 2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) is a critical evidence for a better evaluation of the virus spread and monitoring the progress of the COVID-19 pandemic in a population. In the Kingdom of Saudi Arabia (KSA), SARS-CoV-2 seroprevalence has been reported in specific regions, but an extensive nationwide study has not been reported. Here, we report a nationwide study to determine the prevalence of SARS-CoV-2 in the population of KSA during the pandemic, using serum samples from healthy blood donors, non-COVID patients and healthcare workers (HCWs) in six different regions of the kingdom, with addition samples from COVID-19 patients. Methods: A total of 11703 serum samples were collected from different regions of the KSA including; 5395 samples from residual healthy blood donors (D); 5877 samples from non-COVID patients collected through residual sera at clinical biochemistry labs from non-COVID patients (P); and 400 samples from consented HCWs. To determine the seroprevalence of SARS-CoV-2, all serum samples, in addition to positive control sera from RT-PCR confirmed COVID-19 patients, were subjected to in-house ELISA with a sample pooling strategy, which was further validated by testing individual samples that make up some of the pools, with a statistical estimation method to report seroprevalence estimates Results: Overall (combining D and P groups) seroprevalence estimate was around 11% in Saudi Arabia; and was 5.1% (Riyadh), 1.5% (Jazan), 18.4% (Qassim), 20.8% (Hail), 14.7% (ER; Alahsa), and 18.8% in Makkah. Makkah samples were only D group and had a rate of 24.4% and 12.8% in the cities of Makkah and Jeddah, respectively. The seroprevalence in Saudi Arabia across the sampled areas would be 12 times the COVID-19 infection rate. Among HCWs, 7.5% (4.95-10.16 CI 95%) had reactive antibodies to SARS-CoV-2 without reporting any previously confirmed infection. This was higher in HCWs with hypertension. The study also presents the demographics and prevalence of co-morbidities in HCWs and subset of non-COVID-19 population. Interpretation: Our study estimates the overall national serological prevalence of COVID-19 in Saudi Arabia to be 11%, with an apparent disparity between regions.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.01.28.21250598v1" target="_blank">Nationwide Seroprevalence of SARS-CoV-2 in Saudi Arabia</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Mapping a Pandemic: SARS-CoV-2 Seropositivity in the United States</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
Asymptomatic SARS-CoV-2 infection and delayed implementation of diagnostics have led to poorly defined viral prevalence rates. To address this, we analyzed seropositivity in US adults who have not previously been diagnosed with COVID-19. Individuals with characteristics that reflect the US population (n = 11,382) and who had not previously been diagnosed with COVID-19 were selected by quota sampling from 241,424 volunteers (ClinicalTrials.gov NCT04334954). Enrolled participants provided medical, geographic, demographic, and socioeconomic information and 9,028 blood samples. The majority (88.7%) of samples were collected between May 10th and July 31st, 2020. Samples were analyzed via ELISA for anti-Spike and anti-RBD antibodies. Estimation of seroprevalence was performed by using a weighted analysis to reflect the US population. We detected an undiagnosed seropositivity rate of 4.6% (95% CI: 2.6 - 6.5%). There was distinct regional variability, with heightened seropositivity in locations of early outbreaks. Subgroup analysis demonstrated that the highest estimated undiagnosed seropositivity within groups was detected in younger participants (ages 18-45, 5.9%), females (5.5%), Black/African American (14.2%), Hispanic (6.1%), and Urban residents (5.3%), and lower undiagnosed seropositivity in those with chronic diseases. During the first wave of infection over the spring/summer of 2020 an estimate of 4.6% of adults had a prior undiagnosed SARS-CoV-2 infection. These data indicate that there were 4.8 (95% CI: 2.8-6.8) undiagnosed cases for every diagnosed case of COVID-19 during this same time period in the United States, and an estimated 16.8 million undiagnosed cases by mid-July 2020.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.01.27.21250570v1" target="_blank">Mapping a Pandemic: SARS-CoV-2 Seropositivity in the United States</a>
|
|||
|
</div></li>
|
|||
|
</ul>
|
|||
|
<h1 data-aos="fade-right" id="from-clinical-trials">From Clinical Trials</h1>
|
|||
|
<ul>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Phase III Study of AZD7442 for Treatment of COVID-19 in Outpatient Adults</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Drug: AZD7442; Drug: Placebo<br/><b>Sponsor</b>: AstraZeneca<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Fluvoxamine Administration in Moderate SARS-CoV-2 (COVID-19) Infected Patients</strong> - <b>Condition</b>: Covid19<br/><b>Interventions</b>: Drug: Placebo; Drug: Fluvoxamine<br/><b>Sponsor</b>: SigmaDrugs Research Ltd.<br/><b>Recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>TOCILIZUMAB - An Option for Patients With COVID-19 Associated Cytokine Release Syndrome; A Single Center Experience</strong> - <b>Condition</b>: Covid19<br/><b>Intervention</b>: Drug: Tocilizumab<br/><b>Sponsor</b>: FMH College of Medicine and Dentistry<br/><b>Completed</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>APT™ T3X on the COVID-19 Contamination Rate</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Drug: Tetracycline hydrochloride 3%; Drug: Placebo<br/><b>Sponsors</b>: University of Nove de Julho; Santa Casa de Misericórdia de Porto Alegre<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>COVID-19 Immunologic Antiviral Therapy With Omalizumab</strong> - <b>Condition</b>: Covid19<br/><b>Interventions</b>: Biological: Omalizumab; Other: Placebo<br/><b>Sponsor</b>: McGill University Health Centre/Research Institute of the McGill University Health Centre<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>An Outpatient Clinical Trial Using Ivermectin and Doxycycline in COVID-19 Positive Patients at High Risk to Prevent COVID-19 Related Hospitalization</strong> - <b>Condition</b>: Covid19<br/><b>Interventions</b>: Drug: Ivermectin Tablets; Drug: Doxycycline Tablets; Drug: Placebo<br/><b>Sponsor</b>: Max Health, Subsero Health<br/><b>Recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Safety and Efficacy of Doxycycline and Rivaroxaban in COVID-19</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Drug: Doxycycline Tablets; Drug: Rivaroxaban 15Mg Tab; Combination Product: Hydroxychloroquine and Azithromycin<br/><b>Sponsor</b>: Yaounde Central Hospital<br/><b>Recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Phase IIb Clinical Trial of Recombinant Novel Coronavirus Pneumonia (COVID-19) Vaccine (Sf9 Cells)</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Biological: Recombinant COVID-19 vaccine (Sf9 cells); Biological: Placebo<br/><b>Sponsors</b>: Jiangsu Province Centers for Disease Control and Prevention; West China Hospital<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Famotidine vs Placebo for the Treatment of Non-Hospitalized Adults With COVID-19</strong> - <b>Condition</b>: Covid-19<br/><b>Interventions</b>: Drug: Famotidine; Drug: Placebo<br/><b>Sponsors</b>: Northwell Health; Cold Spring Harbor Laboratory<br/><b>Recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>COVID-19 and Pregnancy: Placental and Immunological Impacts</strong> - <b>Condition</b>: Covid19<br/><b>Intervention</b>: Other: Specimens specific for the study<br/><b>Sponsor</b>: Hopital Foch<br/><b>Recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Study to Assess Efficacy and Safety of Inhaled Interferon-β Therapy for COVID-19</strong> - <b>Conditions</b>: Severe Acute Respiratory Syndrome Coronavirus 2; COVID-19<br/><b>Interventions</b>: Drug: SNG001; Drug: Placebo<br/><b>Sponsor</b>: Synairgen Research Ltd.<br/><b>Recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Convalescent Plasma in the Treatment of Covid-19</strong> - <b>Condition</b>: Covid19<br/><b>Interventions</b>: Biological: Convalescent plasma from COVID-19 donors; Biological: Placebo<br/><b>Sponsors</b>: Helsinki University Central Hospital; Finnish Red Cross<br/><b>Recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Early Use of Hyperimmune Plasma in COVID-19</strong> - <b>Condition</b>: Covid19<br/><b>Intervention</b>: Other: hyperimmune plasma<br/><b>Sponsors</b>: Catherine Klersy; Policlinico San Matteo Pavia Fondazione IRCCS<br/><b>Recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Efficacy of Nano-Ivermectin Impregnated Masks in Prevention of Covid-19 Among Healthy Contacts and Medical Staff</strong> - <b>Condition</b>: Covid-19<br/><b>Intervention</b>: Other: ivermectin impregnated mask<br/><b>Sponsor</b>: South Valley University<br/><b>Recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Restoration of Endothelial Integrity in Patients With COVID-19 (RELIC)</strong> - <b>Condition</b>: COVID-19<br/><b>Intervention</b>: Biological: Thawed plasma<br/><b>Sponsor</b>: University of Alabama at Birmingham<br/><b>Not yet recruiting</b></p></li>
|
|||
|
</ul>
|
|||
|
<h1 data-aos="fade-right" id="from-pubmed">From PubMed</h1>
|
|||
|
<ul>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Structural basis of SARS-CoV-2 polymerase inhibition by Favipiravir</strong> - The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has developed into an unprecedented global pandemic. Nucleoside analogues, such as Remdesivir and Favipiravir, can serve as the first-line broad-spectrum antiviral drugs by targeting the viral polymerases. However, the underlying mechanisms for the antiviral efficacies of these drugs are far from well understood. Here we reveal that Favipiravir, as a pyrazine derivative, could be incorporated into the viral RNA products...</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Genetic IL-6R variants and therapeutic inhibition of IL-6 receptor signalling in COVID-19 - Authors' reply</strong> - No abstract</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Genetic IL-6R variants and therapeutic inhibition of IL-6 receptor signalling in COVID-19</strong> - No abstract</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Efficacy matters: broadening complement inhibition in COVID-19</strong> - No abstract</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Efficacy matters: broadening complement inhibition in COVID-19 - Authors' reply</strong> - No abstract</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Antiviral activity of sulfated polysaccharides from marine algae and its application in combating COVID-19: Mini review</strong> - Marine-derived sulfated polysaccharides possess various antiviral activities against a broad range of enveloped and non-enveloped viruses. It has become the potential source of antiviral drugs for pharmaceutical development. In this review, we will discuss the different types of sulfated polysaccharides and their structural classification. Some of the major sulfated polysaccharides with potent antiviral activity, including carrageenan, agar, ulvan, fucoidan, and alginates, are considered in this...</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Hypoxia-inducible factor (HIF): The link between obesity and COVID-19</strong> - The COVID-19 death toll has involved to date more than 1 million confirmed deaths. The death rate is even higher in the obese COVID-19 patients, as a result of hypoxia, due to the interplay between adipose tissue hypoxia and obstructive sleep apnea. The discrepancy of manifestations seen in COVID-19 seems to be mediated by a differential immune response rather than a differential viral load. One of the key players of the immune response is HIF. HIF-1β is a stable constitutively expressed protein...</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Manipulated bio antimicrobial peptides from probiotic bacteria as proposed drugs for COVID-19 disease</strong> - Coronavirus disease 19 (COVID-19) is the latest pandemic resulted from the coronavirus family. Due to the high prevalence of this disease, its high mortality rate, and the lack of effective treatment, the need for affordable and accessible drugs is one of the main challenges in this regard. It has been proved that RdRp, 3CL, Spike, and Nucleocapsid are the most important viral proteins playing vital roles in the processes of proliferation and infection. Therefore, we started studying a wide...</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Mushroom-derived bioactive compounds potentially serve as the inhibitors of SARS-CoV-2 main protease: An in silico approach</strong> - CONCLUSION: Our study highlights the potential of existing mushroom-derived natural compounds for further investigation and possibly can be used to fight against SARS-CoV-2 infection.</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Anti-COVID-19 drug candidates: A review on potential biological activities of natural products in the management of new coronavirus infection</strong> - BACKGROUND AND AIM: The novel coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is now become a worldwide pandemic bringing over 71 million confirmed cases, while the specific drugs and vaccines approved for this disease are still limited regarding their effectiveness and adverse events. Since virus incidences are still on rise, infectivity and mortality may also rise in the near future, natural products are highly considered to be valuable...</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Molecular docking analysis of rutin reveals possible inhibition of SARS-CoV-2 vital proteins</strong> - BACKGROUND AND AIM: COVID-19 emerged by the end of 2019 in Wuhan, China. It spreaded and became a public health emergency all over the world by mid of April 2020. Flavonoids are specialized metabolites that have antimicrobial properties including anti-viral activity. Rutin, a medicinally important flavonoid belongs to one of the best natural antioxidant classes. It has antiprotozoal, antibacterial, and antiviral properties. Keeping the antimicrobial potential of rutin in mind, we studied its...</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>FDA Recommended Potent Drugs against Covid-19: Insight through Molecular Docking</strong> - Human Coronavirus (COVID-19) is a worldwide pandemic of 2019-20 that was emerged in China in December, 2019. More than 37,000deaths with7, 84, 440confirmed cases has been reported from around 200 different countries has been reported till now and the number is increasing every second. The spread is said to be throughhuman to human transmission via close contact or respiratory droplets produced when people cough or sneeze. No treatment for the illness has been approved yet. The urgent need is to...</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Random forest regression analysis on combined role of meteorological indicators in disease dissemination in an Indian city: A case study of New Delhi</strong> - Meteorological parameters show a strong influence on disease transmission in urban localities. The combined influence of factors such as daily mean temperature, absolute humidity and average wind speed on the attack rate and mortality rate of COVID-19 rise in Delhi, India has been investigated in this case study. A Random forest regression algorithm has been utilized to compare the epidemiological and meteorological parameters. The performance of the model has been evaluated using statistical...</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Therapeutic potential of medicinal plants against COVID-19: The role of antiviral medicinal metabolites</strong> - There are numerous trials underway to find treatment for the COVID-19 through testing vaccines as well as existing drugs. Apart from the many synthetic chemical compounds, plant-based compounds could provide an array of candidates for testing against the virus. Studies have confirmed the role of many plants against respiratory viruses when employed either as crude extracts or their active ingredients in pure form. The purpose of this review article is to highlight the importance of...</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Two Pronged Approach for Prevention and Therapy of Covid-19 (Sars-CoV-2) by a Multi-targeted herbal Drug, a component of Ayurvedic decoction</strong> - CONCLUSION: : The resultant compound could act as a repurposed drug or like other methoxyphenols, could be a good lead molecule for a potent drug for Covid-19.</p></li>
|
|||
|
</ul>
|
|||
|
<h1 data-aos="fade-right" id="from-patent-search">From Patent Search</h1>
|
|||
|
<ul>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>METHOD AND APPARATUS FOR ACQUIRING POWER CONSUMPTION IMPACT BASED ON IMPACT OF COVID-19 EPIDEMIC</strong> - - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=AU314745621">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A PHARMACEUTICAL COMPOSITION OF ARTESUNATE AND MEFLOQUINE AND METHOD THEREOF</strong> - A pharmaceutical composition for treating Covid-19 virus comprising a therapeutically effective amount of an artesunate or its pharmaceutically acceptable salts thereof and a mefloquine or its pharmaceutically acceptable salts thereof is disclosed. The pharmaceutical composition comprises the artesunate in the ratio of 0.25% to 66% w/v and mefloquine in the ratio of 0.25% to 90% w/v. The composition is found to be effective for the treatment of COVID -19 (SARS-CoV2). The pharmaceutical composition of Artesunate and Mefloquine has been found to be effective and is unexpectedly well tolerated with a low rate of side-effects, and equally high cure-rates than in comparable treatments. The present invention also discloses a method to preparing the pharmaceutical composition comprising of Artesunate and Mefloquine. - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=IN315303355">link</a></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Zahnbürstenaufsatz, elektrische Versorgungseinheit einer elektrischen Zahnbürste, elektrische Zahnbürste mit einem Zahnbürstenaufsatz, Zahnbürste sowie Testaufsatz für eine elektrische Zahnbürste</strong> -
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
</p><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">Zahnbürstenaufsatz für eine elektrische Zahnbürste (20) umfassend einen Koppelabschnitt (2), über den der Zahnbürstenaufsatz (1) mit einer elektrischen Versorgungseinheit (10) der elektrischen Zahnbürste (20) verbindbar ist und einen Bürstenabschnitt (3), der zur Reinigung der Zähne ausgebildete Reinigungsmittel (3.1) aufweist, dadurch gekennzeichnet, dass an dem Zahnbürstenaufsatz (1) eine Sensoreinheit (4) vorgesehen ist, die dazu ausgebildet ist, selektiv das Vorhandensein eines Virus oder eines Antigen im Speichel eines Nutzers des Zahnbürstenaufsatzes (1) durch Messen zumindest eines virusspezifischen Parameters zu bestimmen.</p></li>
|
|||
|
</ul>
|
|||
|
<img alt="embedded image" id="EMI-D00000"/>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"></p>
|
|||
|
<ul>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=DE315274678">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>COVID-19 CLASSIFICATION RECOGNITION METHOD BASED ON CT IMAGES OF LUNGS</strong> - - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=AU314054415">link</a></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Vorrichtung umfassend einen Schutzschirm und einen Filter zum Herausfiltern von Viren aus einem Schall erzeugenden Luftstrom</strong> -
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
</p><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">Vorrichtung (10) umfassend einen Schutzschirm (12) und einen Filter (14) zum Herausfiltern von Viren (16) aus einem Schall erzeugenden Luftstrom (18), der von einem Musiker (20) beim Musizieren mit einem Musikinstrument oder beim Singen erzeugt wird, wobei der Schutzschirm (12) zur Verringerung des Risikos einer Infektion mit den Viren (16) dafür vorgesehen ist, wenigstens einen Teil der mit dem Luftstrom transportierten Viren (16) aufzufangen, der Schutzschirm (12) eine erste Seite (22) und eine zweite Seite (24) aufweist, die voneinander abgewandt sind, und der Schutzschirm (12) wenigstens einen sich von der ersten (22) bis zu der zweiten Seite (24) erstreckenden Durchlass (26) aufweist, wobei dieser Durchlass (26) zum Durchströmen mit wenigstens einem Teil des beim Musizieren erzeugten Luftstroms (18) vorgesehen ist und der Filter (14) zum Herausfiltern von Viren (16) aus dem Luftstrom (18) in dem Durchlass (26) des Schutzschirms (12) angeordnet ist.</p></li>
|
|||
|
</ul>
|
|||
|
<img alt="embedded image" id="EMI-D00000"/>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"></p>
|
|||
|
<ul>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=DE315274597">link</a></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Seil-Haltevorrichtung</strong> -
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
Seil-Haltevorrichtung (1)</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">mit einem Träger (2), und</li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">mit einer Seil-Klemmeinrichtung (3), die auf dem Träger (2) angeordnet ist.</p></li>
|
|||
|
</ul>
|
|||
|
<img alt="embedded image" id="EMI-D00000"/>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"></p>
|
|||
|
<ul>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=DE314460193">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A traditional Chinese medicine composition for COVID-19 and/or influenza and preparation method thereof</strong> - - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=AU313300659">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Covid 19 - Chewing Gum</strong> - - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=AU313269181">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>STOCHASTIC MODEL METHOD TO DETERMINE THE PROBABILITY OF TRANSMISSION OF NOVEL COVID-19</strong> - The present invention is directed to a stochastic model method to assess the risk of spreading the disease and determine the probability of transmission of severe acute respiratory syndrome corona virus 2 (SARS-CoV-2). - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=IN313339294">link</a></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Fahrzeuglüftungssystem und Verfahren zum Betreiben eines solchen Fahrzeuglüftungssystems</strong> -
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
</p><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">Die Erfindung betrifft ein Fahrzeuglüftungssystem (1) zum Belüften einer Fahrgastzelle (2) eines Fahrzeugs (3), mit einem Umluftpfad (5). Die Erfindung ist gekennzeichnet durch eine wenigstens abschnittsweise in einen Umluftansaugbereich (4) des Umluftpads (5) hineinreichende Sterilisationseinrichtung (6), wobei die Sterilisationseinrichtung (6) dazu eingerichtet ist von einem aus der Fahrgastzelle (2) entnommenen Luftstrom getragene Schadstoffe zu inaktivieren und/oder abzutöten.</p></li>
|
|||
|
</ul>
|
|||
|
<img alt="embedded image" id="EMI-D00000"/>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"></p>
|
|||
|
<ul>
|
|||
|
<li><a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=DE313868337">link</a></li>
|
|||
|
</ul>
|
|||
|
|
|||
|
|
|||
|
<script>AOS.init();</script></body></html>
|