172 lines
48 KiB
HTML
172 lines
48 KiB
HTML
|
<!DOCTYPE html>
|
|||
|
<html lang="" xml:lang="" xmlns="http://www.w3.org/1999/xhtml"><head>
|
|||
|
<meta charset="utf-8"/>
|
|||
|
<meta content="pandoc" name="generator"/>
|
|||
|
<meta content="width=device-width, initial-scale=1.0, user-scalable=yes" name="viewport"/>
|
|||
|
<title>24 November, 2023</title>
|
|||
|
<style>
|
|||
|
code{white-space: pre-wrap;}
|
|||
|
span.smallcaps{font-variant: small-caps;}
|
|||
|
span.underline{text-decoration: underline;}
|
|||
|
div.column{display: inline-block; vertical-align: top; width: 50%;}
|
|||
|
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
|
|||
|
ul.task-list{list-style: none;}
|
|||
|
</style>
|
|||
|
<title>Covid-19 Sentry</title><meta content="width=device-width, initial-scale=1.0" name="viewport"/><link href="styles/simple.css" rel="stylesheet"/><link href="../styles/simple.css" rel="stylesheet"/><link href="https://unpkg.com/aos@2.3.1/dist/aos.css" rel="stylesheet"/><script src="https://unpkg.com/aos@2.3.1/dist/aos.js"></script></head>
|
|||
|
<body>
|
|||
|
<h1 data-aos="fade-down" id="covid-19-sentry">Covid-19 Sentry</h1>
|
|||
|
<h1 data-aos="fade-right" data-aos-anchor-placement="top-bottom" id="contents">Contents</h1>
|
|||
|
<ul>
|
|||
|
<li><a href="#from-preprints">From Preprints</a></li>
|
|||
|
<li><a href="#from-clinical-trials">From Clinical Trials</a></li>
|
|||
|
<li><a href="#from-pubmed">From PubMed</a></li>
|
|||
|
<li><a href="#from-patent-search">From Patent Search</a></li>
|
|||
|
</ul>
|
|||
|
<h1 data-aos="fade-right" id="from-preprints">From Preprints</h1>
|
|||
|
<ul>
|
|||
|
<li><strong>REPORT : Study on ‘Institutionalizing Science Advice to Governments</strong> -
|
|||
|
<div>
|
|||
|
The provision of appropriate science advice to governments is of national, regional, and global importance. However, many countries, especially in the developing world, lack effective framework to provide science advice to governments, which was laid bare during the COVID-19 pandemic. Hence, there is an urgent need to describe and analyse the structures and processes providing science advice to governments with a view to strengthening science advice. Science advice requires synthesizing and brokering valid, relevant, and reliable scientific evidence in respect of different policies. The National Academy of Sciences of Sri Lanka conducted a study on the status and processes of institutionalizing Science Advice to Governments in the Australasian region. The aims of the study were to a) propose and facilitate the development and strengthening of systematic science advice in member countries and its institutionalization b) Improve awareness among partners on a range of laws and regulations that exist legitimizing institutions and the processes used for government science advice c) develop capacities of participating academies in providing science advice d) enable academies to play a role and be part of the science advice process The methodology included administration of a structured questionnaire to gather data for the Situation Analysis with respect to science advice in partner countries. The questionnaire responses were categorized under several headings identified as the ‘Colombo Framework’: Selection of advisors, organizational structures to provide advice, the process followed to collate and synthesize advice, the process of communication, and evaluation of the process and impact of advice. The results showed a diversity of responses indicating a range of structures and processes: • The structures and types of advisors included, chief science advisor or advisors, a science advisory office or agency, science advisory boards, science advisory councils and ad-hoc arrangements during emergencies or crises, such as task forces. • Selection of advisors varied from appointments by an executive authority to nominations by science organizations or selection processes based on academic credentials. • The initial framing of questions requiring science advice were by policymakers, parliament committee or the President and advisory council. • Collation and synthesizing evidence: The methods used included systematic reviews, meta-analyses, through surveys, consultative meetings, expert opinion, foresight tools and workshops and/meetings of the experts where the evidence was reviewed. • The process of communicating science advice included reports issued by the science advisors, or advice directed to the Presidential Office, to Cabinet office, or submitted through Secretary of the Ministry of Science and Technology to the Head of State, or reports to the relevant minister and presidential secretariat. • The impact of science advice on policy was rarely evaluated. • Case Studies for individual countries supplemented the situation analysis for that country. • A SWOT analyses was compiled based on each country responses to reflect the totality of responses and for guidance in drafting a framework for Roadmaps for each country. As part of the project a three-day workshop was held in Colombo, Sri Lanka on ‘Institutionalizing Science Advice to Governments’ 6-8 July 2023. A descriptive ‘Colombo Declaration’ was released calling on governments to partner with scientists and demonstrate stronger commitment in strengthening action to institutionalize science advice to governments. The concluding session described future actions of developing Roadmaps and Case Studies by each partner country. The contextualized roadmaps will be developed through an iterative process and ‘work in progress’ submitted by most partner agencies were included in the report. The key outcomes of the Project were the following: 1. Documentation of Science Advice Systems in countries with situation analysis, reinforced with case studies an
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://osf.io/preprints/socarxiv/ygp84/" target="_blank">REPORT : Study on ‘Institutionalizing Science Advice to Governments</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>DEFEN-CE: Social Dialogue in Defence of Vulnerable Groups in Post-COVID-19 Labour Markets. Report on Serbia</strong> -
|
|||
|
<div>
|
|||
|
The aim of this country report is to provide answers to the following DEFEN-CE research questions: 1. What public policy and social dialogue measures targeting the selected vulnerable groups were implemented to employment and social protection during the COVID-19 pandemic 2020-2022? 2. To what extent and how did social dialogue play a role in the implementation of social and employment rights of selected vulnerable groups in the COVID-19 pandemic between 2020 and 2022? 3. What lessons and opportunities does the COVID-19 pandemic yield for strengthening social dialogue in the studied countries? In order to answer these questions we used a mixed-method approach, combining qualitative and quantitative techniques. We started with the collection of the most relevant labour market data, especially regarding vulnerable groups. Then, by using the desk research we were able to synthesize the existing knowledge on public policies and social dialogue in the COVID-19 crisis. Finally, we conducted 10 semi-structured interviews to explore in-depth the role of social partners in the defence of the vulnerable groups.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://osf.io/preprints/socarxiv/gh9mn/" target="_blank">DEFEN-CE: Social Dialogue in Defence of Vulnerable Groups in Post-COVID-19 Labour Markets. Report on Serbia</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Gaining Biological Insights through Supervised Data Visualization</strong> -
|
|||
|
<div>
|
|||
|
Dimensionality reduction-based data visualization is pivotal in comprehending complex biological data. The most common methods, such as PHATE, t-SNE, and UMAP, are unsupervised and therefore reflect the dominant structure in the data, which may be independent of expert-provided labels. Here we introduce a supervised data visualization method called RF-PHATE, which integrates expert knowledge for further exploration of the data. RF-PHATE leverages random forests to capture intricate feature-label relationships. Extracting information from the forest, RF-PHATE generates low-dimensional visualizations that highlight relevant data relationships while disregarding extraneous features. This approach scales to large datasets and applies to classification and regression. We illustrate RF-PHATE's prowess through three case studies. In a multiple sclerosis study using longitudinal clinical and imaging data, RF-PHATE unveils a sub-group of patients with non-benign relapsing-remitting Multiple Sclerosis, demonstrating its aptitude for time-series data. In the context of Raman spectral data, RF-PHATE effectively showcases the impact of antioxidants on diesel exhaust-exposed lung cells, highlighting its proficiency in noisy environments. Furthermore, RF-PHATE aligns established geometric structures with COVID-19 patient outcomes, enriching interpretability in a hierarchical manner.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2023.11.22.568384v1" target="_blank">Gaining Biological Insights through Supervised Data Visualization</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>scSniper: Single-cell Deep Neural Network-based Identification of Prominent Biomarkers</strong> -
|
|||
|
<div>
|
|||
|
Discovering disease biomarkers at the single-cell level is crucial for advancing our understanding of diseases and improving diagnostic accuracy. However, current computational methods often have limitations, such as a reliance on prior knowledge, constraints to unimodal data, and the use of conventional statistical tests for feature selection. To address these issues, we introduce scSniper, a novel approach that employs a specialized deep neural network framework tailored for robust single-cell multi-omic biomarker detection. A standout feature of scSniper is the mimetic attention block, enhancing alignment across multi-modal data types. Moreover, scSniper utilizes sensitivity analysis based on a deep neural network for feature selection and uncovers intricate gene regulatory networks without requiring prior knowledge. Comprehensive evaluations on real-world datasets, including COVID-19 CITE-Seq and LUAD scRNA-Seq, demonstrate scSniper's exceptional ability to identify critical biomarkers consistently outperforming traditional methods like MAST, Wilcox, and DESeq2.The scSniper tool and related experimental codes are publicly accessible at https://github.com/mcgilldinglab/scSniper.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2023.11.22.568389v1" target="_blank">scSniper: Single-cell Deep Neural Network-based Identification of Prominent Biomarkers</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Enhanced surface accessibility of SARS-CoV-2 Omicron spike protein due to an altered glycosylation profile</strong> -
|
|||
|
<div>
|
|||
|
SARS-CoV-2 spike (S) proteins undergo extensive glycosylation, aiding proper folding, enhancing stability, and evading host immune surveillance. In this study, we used mass spectrometric analysis to elucidate the N-glycosylation characteristics and disulfide bonding of recombinant spike proteins derived from the SARS-CoV-2 Omicron variant (B.1.1.529) in comparison with the D614G spike variant. Furthermore, we conducted microsecond-long molecular dynamics simulations on spike proteins to resolve how the different N-glycans impact spike conformational sampling in the two variants. Our findings reveal that the Omicron spike protein maintains an overall resemblance to the D614G spike variant in terms of site-specific glycan processing and disulfide bond formation. Nonetheless, alterations in glycans were observed at certain N-glycosylation sites. These changes, in synergy with mutations within the Omicron spike protein, result in increased surface accessibility of the macromolecule, including ectodomain, receptor-binding domain, and N-terminal domain. These insights contribute to our understanding of the interplay between structure and function, thereby advancing effective vaccination and therapeutic strategies.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2023.11.22.568381v1" target="_blank">Enhanced surface accessibility of SARS-CoV-2 Omicron spike protein due to an altered glycosylation profile</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Assembly reactions of SARS-CoV-2 nucleocapsid protein with nucleic acid</strong> -
|
|||
|
<div>
|
|||
|
The viral genome of SARS-CoV-2 is packaged by the nucleocapsid (N-)protein into ribonucleoprotein particles (RNPs), 38+/-10 of which are contained in each virion. Their architecture has remained unclear due to the pleomorphism of RNPs, the high flexibility of N-protein intrinsically disordered regions, and highly multivalent interactions between viral RNA and N-protein binding sites in both N-terminal (NTD) and C-terminal domain (CTD). Here we explore critical interaction motifs of RNPs by applying a combination of biophysical techniques to mutant proteins binding different nucleic acids in an in vitro assay for RNP formation, and by examining mutant proteins in a viral assembly assay. We find that nucleic acid-bound N-protein dimers oligomerize via a recently described protein-protein interface presented by a transient helix in its long disordered linker region between NTD and CTD. The resulting hexameric complexes are stabilized by multi-valent protein-nucleic acid interactions that establish crosslinks between dimeric subunits. Assemblies are stabilized by the dimeric CTD of N-protein offering more than one binding site for stem-loop RNA. Our study suggests a model for RNP assembly where N-protein scaffolding at high density on viral RNA is followed by cooperative multimerization through protein-protein interactions in the disordered linker.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2023.11.22.568361v1" target="_blank">Assembly reactions of SARS-CoV-2 nucleocapsid protein with nucleic acid</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Predicting Antibody and ACE2 Affinity forSARS-CoV-2 BA.2.86 with In Silico ProteinModeling and Docking</strong> -
|
|||
|
<div>
|
|||
|
The emergence of the Omicron sublineage of SARS-CoV-2 virus BA.2.86 (nicknamed "Pirola") has raised concerns about its potential impact on public health and personal health as it has many mutations with respect to previous variants. We conducted an in silico analysis of neutralizing antibody binding to BA.2.86. Selected antibodies came from patients who were vaccinated and/or infected. We predicted binding affinity between BA.2.86 and antibodies. We also predicted the binding affinity between the same antibodies and several previous SARS-CoV2 variants (Wuhan and Omicron descendants BA.1, BA.2, and XBB.1.5). Additionally, we examined binding affinity between BA.2.86 and human angiotensin converting enzyme 2 (ACE2) receptor, a cell surface protein crucial for viral entry. We found no statistically significant difference in binding affinity between BA.2.86 and other variants, indicating a similar immune response. These findings contradict media reports of BA.2.86's high immune evasion potential based on its mutations. We discuss the implications of our findings and highlight the need for modeling and docking studies to go above and beyond mutation and basic serological neutralization analysis. Future research in this area will benefit from increased structural analyses of memory B-cell derived antibodies and should emphasize the importance of choosing appropriate samples for in silico studies to assess protection provided by vaccination and infection. This research contributes to understanding the BA.2.86 variant's potential impact on public health. Moreover, we introduce new methodologies for predictive medicine in ongoing efforts to combat the evolving SARS-CoV-2 pandemic and prepare for other hazards.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2023.11.22.568364v1" target="_blank">Predicting Antibody and ACE2 Affinity forSARS-CoV-2 BA.2.86 with In Silico ProteinModeling and Docking</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Development of attenuated coxsackievirus B3 vectored intranasal pre-emptive pan-coronavirus vaccine</strong> -
|
|||
|
<div>
|
|||
|
SARS-CoV-2 has the ability to evade immunity, resulting in breakthrough infections even after vaccination. Similarly, zoonotic coronaviruses pose a risk of spillover to humans. There is an urgent need to develop a pre-emptive pan-coronavirus vaccine that can induce systemic and mucosal immunity. Here, we employed a combination of immune-informatics approaches to identify shared immunodominant linear B- and T-cell epitopes from SARS-CoV-2 variants of concern (VOCs) and variants of interest (VOIs), as well as zoonotic coronaviruses. Epitope-guided vaccine were designed and the attenuated coxsackievirus B3 vectored intranasal vaccines rCVB3-EPI and rCVB3-RBD-trimer were constructed. The immunogenicity of these candidate vaccines was evaluated using Balb/c mice. The results demonstrated effective immune responses, including the production of SARS-CoV-2-specific IgG and sIgA antibodies, as well as T cell-mediated responses. However, further verification is required to assess cross-reactivity with various variants. Our intranasal pre-emptive pan-coronavirus vaccine design framework offers an appealing candidate for future vaccine development.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2023.11.22.568225v1" target="_blank">Development of attenuated coxsackievirus B3 vectored intranasal pre-emptive pan-coronavirus vaccine</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Building energy use in COVID-19 lockdowns: did much change?</strong> -
|
|||
|
<div>
|
|||
|
The UK national lockdowns introduced to prevent the spread of COVID-19 had huge impacts on daily lives, as people were largely confined to their homes. It could be expected that residential energy use would drastically increase while non-residential decreased, however the picture is not so clear. In this paper three complementary datasets on different scales are used to explore changes in building energy use during two national lockdowns (spring 2020 and winter 2021): the complete building stock of Great Britain, a sample of ~1000 residential buildings, and a sample of ~24,000 residential boilers. Energy signature analysis was used for the building data to estimate the changes in energy consumption for space heating and otherwise, with the boiler data able to separate space and water heating and explore changes in these. In the 2020 lockdown residential energy consumption for water heating and appliances increased, with decreased use for heating, resulting in a reduction in total energy use during the heating season. In the 2021 lockdown total energy consumption changed little, however a decrease in the use of gas space heating was observed. These residential changes counteracted any non-domestic changes, resulting in little difference in national energy consumption.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://osf.io/cu2na/" target="_blank">Building energy use in COVID-19 lockdowns: did much change?</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Tertiary folds of the SL5 RNA from the 5’ proximal region of SARS-CoV-2 and related coronaviruses</strong> -
|
|||
|
<div>
|
|||
|
Coronavirus genomes sequester their start codons within stem-loop 5 (SL5), a structured, 5' genomic RNA element. In most alpha- and betacoronaviruses, the secondary structure of SL5 is predicted to contain a four-way junction of helical stems, some of which are capped with UUYYGU hexaloops. Here, using cryogenic electron microscopy (cryo-EM) and computational modeling with biochemically-determined secondary structures, we present three-dimensional structures of SL5 from six coronaviruses. The SL5 domain of betacoronavirus SARS-CoV-2, resolved at 4.7 [A] resolution, exhibits a T-shaped structure, with its UUYYGU hexaloops at opposing ends of a coaxial stack, the T's "bar." Further analysis of SL5 domains from SARS-CoV-1 and MERS (7.1 and 6.4-6.9 [A] resolution, respectively) indicate that the junction geometry and inter-hexaloop distances are conserved features across the studied human-infecting betacoronaviruses. The MERS SL5 domain displays an additional tertiary interaction, which is also observed in the non-human-infecting betacoronavirus BtCoV-HKU5 (5.9-8.0 [A] resolution). SL5s from human-infecting alphacoronaviruses, HCoV-229E and HCoV-NL63 (6.5 and 8.4-9.0 [A] resolution, respectively), exhibit the same coaxial stacks, including the UUYYGU-capped bar, but with a phylogenetically distinct crossing angle, an X-shape. As such, all herein studied SL5 domains fold into stable tertiary structures with cross-genus similarities, with implications for potential protein-binding modes and future therapeutic targets.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2023.11.22.567964v1" target="_blank">Tertiary folds of the SL5 RNA from the 5’ proximal region of SARS-CoV-2 and related coronaviruses</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Transmission dynamics of MERS-CoV in a transgenic human DPP4 mouse model</strong> -
|
|||
|
<div>
|
|||
|
Since 2002, three novel coronavirus outbreaks have occurred: severe acute respiratory syndrome coronavirus (SARS-CoV-1), Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2. A better understanding of the transmission potential of coronaviruses will result in adequate infection control precautions and an early halt of transmission within the human population. Experiments on the stability of coronaviruses in the environment, as well as transmission models, are thus pertinent. Here, we show that transgenic mice expressing human DPP4 can be infected with MERS-CoV via the aerosol route. Exposure to 5x106 TCID50 and 5x104 TCID50 MERS-CoV per cage via fomites resulted in transmission in 15 out of 20 and 11 out of 18 animals, respectively. Exposure of sentinel mice to donor mice one day post inoculation with 105 TCID50 MERS-CoV resulted in transmission in 1 out of 38 mice via direct contact and 4 out of 54 mice via airborne contact. Exposure to donor mice inoculated with 104 TCID50 MERS-CoV resulted in transmission in 0 out of 20 pairs via direct contact and 0 out of 5 pairs via the airborne route. Our model shows limited transmission of MERS-CoV via the fomite, direct contact, and airborne routes. The hDPP4 mouse model will allow assessment of the ongoing evolution of MERS-CoV in the context of acquiring enhanced human-to-human transmission kinetics and will inform the development of other transmission models.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2023.11.22.568286v1" target="_blank">Transmission dynamics of MERS-CoV in a transgenic human DPP4 mouse model</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>SARS-CoV-2 monoclonal antibody treatment followed by vaccination shifts human memory B cell epitope recognition suggesting antibody feedback</strong> -
|
|||
|
<div>
|
|||
|
Therapeutic anti-SARS-CoV-2 monoclonal antibodies (mAbs) have been extensively studied in humans, but the impact on immune memory of mAb treatment during an ongoing immune response has remained unclear. Here, we evaluated the effect of infusion of the anti-SARS-CoV-2 spike receptor binding domain (RBD) mAb bamlanivimab on memory B cells (MBCs) in SARS-CoV-2-infected individuals. Bamlanivimab treatment skewed the repertoire of memory B cells targeting Spike towards non-RBD epitopes. Furthermore, the relative affinity of RBD memory B cells was weaker in mAb-treated individuals compared to placebo-treated individuals over time. Subsequently, after mRNA COVID-19 vaccination, memory B cell differences persisted and mapped to a specific defect in recognition of the class II RBD site, the same RBD epitope recognized by bamlanivimab. These findings indicate a substantial role of antibody feedback in regulating human memory B cell responses, both to infection and vaccination. These data indicate that mAb administration can promote alterations in the epitopes recognized by the B cell repertoire, and the single administration of mAb can continue to determine the fate of B cells in response to additional antigen exposures months later.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2023.11.21.567575v1" target="_blank">SARS-CoV-2 monoclonal antibody treatment followed by vaccination shifts human memory B cell epitope recognition suggesting antibody feedback</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Durable immunity to SARS-CoV-2 in both lower and upper airways achieved with a gorilla adenovirus (GRAd) S-2P vaccine in non-human primates</strong> -
|
|||
|
<div>
|
|||
|
SARS-CoV-2 continues to pose a global threat, and current vaccines, while effective against severe illness, fall short in preventing transmission. To address this challenge, there's a need for vaccines that induce mucosal immunity and can rapidly control the virus. In this study, we demonstrate that a single immunization with a novel gorilla adenovirus-based vaccine (GRAd) carrying the pre-fusion stabilized Spike protein (S-2P) in non-human primates provided protective immunity for over one year against the BA.5 variant of SARS-CoV-2. A prime-boost regimen using GRAd followed by adjuvanted S-2P (GRAd+S-2P) accelerated viral clearance in both the lower and upper airways. GRAd delivered via aerosol (GRAd(AE)+S-2P) modestly improved protection compared to its matched intramuscular regimen, but showed dramatically superior boosting by mRNA and, importantly, total virus clearance in the upper airway by day 4 post infection. GrAd vaccination regimens elicited robust and durable systemic and mucosal antibody responses to multiple SARS-CoV-2 variants, but only GRAd(AE)+S-2P generated long-lasting T cell responses in the lung. This research underscores the flexibility of the GRAd vaccine platform to provide durable immunity against SARS-CoV-2 in both the lower and upper airways.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2023.11.22.567930v1" target="_blank">Durable immunity to SARS-CoV-2 in both lower and upper airways achieved with a gorilla adenovirus (GRAd) S-2P vaccine in non-human primates</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Modulation of Biophysical Properties of Nucleocapsid Protein in the Mutant Spectrum of SARS-CoV-2</strong> -
|
|||
|
<div>
|
|||
|
Genetic diversity is a hallmark of RNA viruses and the basis for their evolutionary success. Taking advantage of the uniquely large genomic database of SARS-CoV-2, we examine the impact of mutations across the spectrum of viable amino acid sequences on the biophysical phenotypes of the highly expressed and multifunctional nucleocapsid protein. We find variation in the physicochemical parameters of its extended intrinsically disordered regions (IDRs) sufficient to allow local plasticity, but also exhibiting functional constraints that similarly occur in related coronaviruses. In biophysical experiments with several N-protein species carrying mutations associated with major variants, we find that point mutations in the IDRs can have nonlocal impact and modulate thermodynamic stability, secondary structure, protein oligomeric state, particle formation, and liquid-liquid phase separation. In the Omicron variant, distant mutations in different IDRs have compensatory effects in shifting a delicate balance of interactions controlling protein assembly properties, and include the creation of a new protein-protein interaction interface in the N-terminal IDR through the defining P13L mutation. A picture emerges where genetic diversity is accompanied by significant variation in biophysical characteristics of functional N-protein species, in particular in the IDRs.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2023.11.21.568093v1" target="_blank">Modulation of Biophysical Properties of Nucleocapsid Protein in the Mutant Spectrum of SARS-CoV-2</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>SARS-CoV-2 infects neurons, astrocytes, choroid plexus epithelial cells and pericytes of the human central nervous system</strong> -
|
|||
|
<div>
|
|||
|
SARS-CoV-2, the coronavirus responsible for the COVID-19 pandemic, is associated with a range of neurological manifestations including haemorrhage, thrombosis and ischaemic necrosis and encephalitits. However, the mechanism by which this occurs is unclear. Neurological disease associated with SARS-CoV-2 infection has been proposed to occur following direct infection of the central nervous system and/or indirect sequelae as a result of peripheral inflammation. We profiled ACE2 and TMPRSS2 in brain tissue from five healthy human donors, and observed expression of these proteins in astrocytes, neurons and choroid plexus epithelium within frontal cortex and medulla. Primary human astrocytes, neurons and choroid plexus epithelial cells supported productive SARS-CoV-2 infection in an ACE2-dependent manner. Infected cells supported the full viral lifecycle, releasing infectious virus particles. In contrast, primary brain microvascular endothelial cells, pericytes and microglia were refractory to SARS-CoV-2 infection. These data support a model whereby SARS-CoV-2 is neurotropic, and this may in part explain the neurological sequelae of infection.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2023.11.21.568132v1" target="_blank">SARS-CoV-2 infects neurons, astrocytes, choroid plexus epithelial cells and pericytes of the human central nervous system</a>
|
|||
|
</div></li>
|
|||
|
</ul>
|
|||
|
<h1 data-aos="fade-right" id="from-clinical-trials">From Clinical Trials</h1>
|
|||
|
<ul>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Collection of Additional Biological Samples From Potentially COVID-19 Patients for Monitoring of Biological Parameters Carried Out as Part of the Routine</strong> - <b>Conditions</b>: SARS CoV 2 Infection <br/><b>Interventions</b>: Diagnostic Test: RIPH2 <br/><b>Sponsors</b>: CerbaXpert <br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Mitigating Mental and Social Health Outcomes of COVID-19: A Counseling Approach</strong> - <b>Conditions</b>: Social Determinants of Health; Mental Health Issue; COVID-19 <br/><b>Interventions</b>: Behavioral: Individual counseling; Behavioral: Group counseling; Other: Resources <br/><b>Sponsors</b>: Idaho State University <br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Promoting Engagement and COVID-19 Testing for Health</strong> - <b>Conditions</b>: COVID-19 <br/><b>Interventions</b>: Behavioral: COVID-19 Test Reporting; Behavioral: Personalized Nudges via Text Messaging; Behavioral: Non-personalized Nudges via Text Messaging <br/><b>Sponsors</b>: Emory University; National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK); Morehouse School of Medicine; Georgia Institute of Technology <br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Development and Qualification of Methods for Analyzing the Mucosal Immune Response to COVID-19</strong> - <b>Conditions</b>: Certain Disorders Involving the Immune Mechanism <br/><b>Interventions</b>: Biological: Sampling; Biological: PCR (polymerase chain reaction) SARS-CoV-2 <br/><b>Sponsors</b>: University Hospital, Tours <br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Water-based Activity to Enhance Recovery in Long COVID</strong> - <b>Conditions</b>: Long COVID <br/><b>Interventions</b>: Behavioral: WATER+CT; Behavioral: Usual Care <br/><b>Sponsors</b>: VA Office of Research and Development <br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Performance Evaluation of the Lucira COVID-19 & Flu Test</strong> - <b>Conditions</b>: COVID-19; Influenza <br/><b>Interventions</b>: Device: Lucira COVID-19 & Flu Test <br/><b>Sponsors</b>: Lucira Health Inc <br/><b>Completed</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Efficacy of Two Therapeutic Exercise Modalities for Patients With Persistent COVID</strong> - <b>Conditions</b>: Persistent COVID-19 <br/><b>Interventions</b>: Other: exercise programe <br/><b>Sponsors</b>: Facultat de ciencies de la Salut Universitat Ramon Llull <br/><b>Recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Robotic Assisted Hand Rehabilitation Outcomes in Adults After COVID-19</strong> - <b>Conditions</b>: Robotic Exoskeleton; Post-acute Covid-19 Syndrome; Rehabilitation Outcome; Physical And Rehabilitation Medicine <br/><b>Interventions</b>: Device: Training with a Robotic Hand Exoskeleton <br/><b>Sponsors</b>: University of Valladolid; Centro Hospitalario Padre Benito Menni <br/><b>Completed</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Cognitive Rehabilitation in Post-COVID-19 Syndrome</strong> - <b>Conditions</b>: Post-COVID-19 Syndrome <br/><b>Interventions</b>: Behavioral: CO-OP Procedures; Behavioral: Inactive Control Group <br/><b>Sponsors</b>: University of Missouri-Columbia; Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) <br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Safety and Immunogenicity of BNT162b2 Coadministered With SIIV in Adults 18 Through 64 Years of Age</strong> - <b>Conditions</b>: SARS-CoV-2 Infection; COVID-19 <br/><b>Interventions</b>: Biological: BNT162b2; Other: Placebo; Biological: Seasonal Inactivated Influenza Vaccine <br/><b>Sponsors</b>: Pfizer <br/><b>Completed</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Clinical Evaluation of the Panbio™ COVID-19/Flu A&B Panel</strong> - <b>Conditions</b>: COVID-19; Influenza A; Influenza B <br/><b>Interventions</b>: Diagnostic Test: Panbio™ <br/><b>Sponsors</b>: Abbott Rapid Dx <br/><b>Recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A Multicenter, Adaptive, Randomized, doublE-blinded, Placebo-controlled Study in Participants With Long COVID-19: The REVIVE Trial</strong> - <b>Conditions</b>: Long COVID-19 Syndrome; Chronic Fatigue Syndrome <br/><b>Interventions</b>: Drug: Fluvoxamine Maleate 100 MG; Drug: Placebo; Drug: Metformin Extended Release Oral Tablet <br/><b>Sponsors</b>: Cardresearch <br/><b>Recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Connecting Friends and Health Workers to Boost COVID-19 Vaccination in Latino Communities</strong> - <b>Conditions</b>: COVID-19; Vaccine <br/><b>Interventions</b>: Behavioral: REDES; Behavioral: Control <br/><b>Sponsors</b>: Johns Hopkins University; National Institute on Minority Health and Health Disparities (NIMHD); Rutgers University <br/><b>Recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Influence of Hypoxic, Normobaric and Hypobaric Training on the Immunometabolism of Post-covid-19 Athletes</strong> - <b>Conditions</b>: Normobaric Hypoxia; Hypoventilation; Normoxia <br/><b>Interventions</b>: Other: Repeated sprint <br/><b>Sponsors</b>: Faculdade de Motricidade Humana; University of Sao Paulo; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior. <br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>The Safety and Tolerability of A8G6 COVID-19 Neutralization Antibody Combined With Nasal Spray</strong> - <b>Conditions</b>: SARS-CoV-2; Prevention <br/><b>Interventions</b>: Biological: A8G6 SARS-CoV-2 Neutralization Antibody combination nasal spray; Other: A8G6 SARS-CoV-2 Neutralization Antibody nasal excipient <br/><b>Sponsors</b>: The Second Affiliated Hospital of Chongqing Medical University <br/><b>Recruiting</b></p></li>
|
|||
|
</ul>
|
|||
|
<h1 data-aos="fade-right" id="from-pubmed">From PubMed</h1>
|
|||
|
<ul>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Applications of peptide-functionalized or unfunctionalized selenium nanoparticles for the passivation of SARS-CoV-2 variants and the respiratory syncytial virus (RSV)</strong> - The SARS-CoV-2 Omicron subvariants BA.4, BA. 5 and XBB are currently causing a COVID resurgence due to their increased spreading and infectivity. These latest subvariants have been shown to be somewhat resistant to the most common vaccines even with the third dose. Moreover, it has been well documented that when patients stop taking some commercial therapies (such as Paxlovid), COVID from these variants may return and may even be more contagious. Herein, we tested unfunctionalized and…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Cellular mechanisms associated with sub-optimal immune responses to SARS-CoV-2 bivalent booster vaccination in patients with Multiple Myeloma</strong> - BACKGROUND: The real-world impact of bivalent vaccines for wild type (WA.1) and Omicron variant (BA.5) is largely unknown in immunocompromised patients with Multiple Myeloma (MM). We characterize the humoral and cellular immune responses in patients with MM before and after receiving the bivalent booster, including neutralizing assays to identify patterns associated with continuing vulnerability to current variants (XBB1.16, EG5) in the current post-pandemic era.</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>The Role of Olive Tree Polyphenols In The Prevention of COVID-19: A Scoping Review Part 2</strong> - The recent COVID-19 pandemic caused by SARS-CoV-2 affected hundreds of millions of people and caused millions of deaths. There are few effective medications against SARS-CoV-2, and several stud-ies attempted to make drugs based on natural components, such as olive leaves. Olive leaves are rich in polyphenolic compounds, which were proposed as a viable co-therapy supplement to treat and improve clinical symptoms in COVID-19 patients. Polyphenols have renown anti-inflammatory and multitarget…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Drug-drug interaction between paxlovid and tacrolimus in a patient with myasthenia gravis and SARS-CoV-2 infection</strong> - Patients with both myasthenia gravis (MG) and SARS-CoV-2 infection face treatment challenges due to potential drug interactions. One common immunosuppressant for MG, Tacrolimus, is primarily metabolized by the cytochrome P450. However, Paxlovid, an antiviral medication, inhibits cytochrome P450 activity, which can lead to increased Tacrolimus levels and potential toxicity when the two drugs are combined. In this case report, we present the case of a 39-year-old woman with early-onset MG who was…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Discovery of pyrimidoindol and benzylpyrrolyl inhibitors targeting SARS-CoV-2 main protease (M<sup>pro</sup>) through pharmacophore modelling, covalent docking, and biological evaluation</strong> - The main protease (M^(pro)) enzyme has an imperative function in disease progression and the life cycle of the SARS-CoV-2 virus. Although the orally active drug nirmatrelvir (co-administered with ritonavir as paxlovid) has been approved for emergency use as the frontline antiviral agent, there are a number of limitations that necessitate the discovery of new drug scaffolds, such as poor pharmacokinetics and susceptibility to proteolytic degradation due to its peptidomimetic nature. This study…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Exploring the Fatty Acid Binding Pocket in the SARS-CoV-2 Spike Protein - Confirmed and Potential Ligands</strong> - Severe Acute Respiratory syndrome 2 (SARS-CoV-2) is a respiratory virus responsible for coronavirus disease 19 (COVID-19) and the still ongoing and unprecedented global pandemic. The key viral protein for cell infection is the spike glycoprotein, a surface-exposed fusion protein that both recognizes and mediates entry into host cells. Within the spike glycoprotein, a fatty acid binding pocket (FABP) was confirmed, with the crystallization of linoleic acid (LA) occupying a well-defined site….</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Synthesis, characterization, biological activity and computation-based efficacy of cobalt(II) complexes of biphenyl-2-ol against SARS-CoV-2 virus</strong> - Cobalt(II) complexes of biphenyl-2-ol of composition, CoCl(2-n)(OC(6)H(4)C(6)H(5)-2)(n)(H(2)O)(4) (where n = 1 or 2), were prepared by reacting cobaltous(II) chloride with equi- and bimolar ratios of sodium salt of biphenyl-2-ol. The structural characterization of the synthesized complexes was accomplished by NMR, FTIR, thermogravimetry (TGA), high resolution mass spectroscopy (HRMS), electronic spectroscopic techniques coupled with density functional theory (DFT). The stability of the complexes…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Structure-based discovery of dual pathway inhibitors for SARS-CoV-2 entry</strong> - Since 2019, SARS-CoV-2 has evolved rapidly and gained resistance to multiple therapeutics targeting the virus. Development of host-directed antivirals offers broad-spectrum intervention against different variants of concern. Host proteases, TMPRSS2 and CTSL/CTSB cleave the SARS-CoV-2 spike to play a crucial role in the two alternative pathways of viral entry and are characterized as promising pharmacological targets. Here, we identify compounds that show potent inhibition of these proteases and…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Chemical Composition of Rosemary (<em>Rosmarinus officinalis</em> L.) Extract and Its Inhibitory Effects on SARS-CoV-2 Spike Protein-ACE2 Interaction and ACE2 Activity and Free Radical Scavenging Capacities</strong> - This study evaluated the chemical composition of rosemary water extract (RWE) and its influence on mechanisms by which the SARS-CoV-2 virus enters into cells as a potential route for reducing the risk of COVID-19 disease. Compounds in RWE were identified using UHPLC-MS/MS. The inhibitory effect of RWE was then evaluated on binding between the SARS-CoV-2 spike protein (S-protein) and ACE2 and separately on ACE2 activity/availability. Additionally, total phenolic content (TPC) and free radical…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Minimal impact of IL-17 and IL-12/23 inhibition on SARS-CoV-2/COVID-19 antibody response in psoriasis patients</strong> - No abstract</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Remdesivir-Loaded Nanoliposomes Stabilized by Chitosan/Hyaluronic Acid Film with a Potential Application in the Treatment of Coronavirus Infection</strong> - An object of the present study was the development of liposomes loaded with the medicine Veklury^(®) (remdesivir) stabilized by electrostatic adsorption of polysaccharide film formed from chitosans with different physicochemical characteristics and hyaluronic acid. The functionalization of the structures was achieved through the inclusion of an aptamer (oligonucleotide sequence) with specific affinity to the spike protein of the human coronavirus HCoV-OC43. The hydrodynamic size, electrokinetic…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Molecular Docking and ADME-TOX Profiling of <em>Moringa oleifera</em> Constituents against SARS-CoV-2</strong> - The SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2019) etiological agent, which has a high contagiousness and is to blame for the outbreak of acute viral pneumonia, is the cause of the respiratory disease COVID-19. The use of natural products grew as an alternative treatment for various diseases due to the abundance of organic molecules with pharmacological properties. Many pharmaceutical studies have focused on investigating compounds with therapeutic potential. Therefore, this…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>SARS-CoV-2 infection as a model to study the effect of cinnamaldehyde as adjuvant therapy for viral pneumonia</strong> - CONCLUSION: The obtained results suggest the possible use of cinnamaldehyde as a co-adjuvant preventive treatment for COVID-19 disease together with vaccination, but also as a promising dietary supplement to reduce, more broadly, viral induced inflammation.</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>An exploratory study of drug concentration and inhibitory effect of cetylpyridinium chloride buccal tablets on SARS-CoV-2 infection among 10 Chinese subjects</strong> - CONCLUSIONS: The comparison between the salivary CPC concentration and EC50/CC50 values from in vitro antiviral experiments suggests that CPC buccal tablets may inhibit SARS-CoV-2 activity, and the inhibition may last for approximately 30 min without cytotoxicity.</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Drug repurposing screen identifies vidofludimus calcium and pyrazofurin as novel chemical entities for the development of hepatitis E interventions</strong> - Hepatitis E virus (HEV) infection can cause severe complications and high mortality, particularly in pregnant women, organ transplant recipients, individuals with pre-existing liver disease and immunosuppressed patients. However, there are still unmet needs for treating chronic HEV infections. Herein, we screened a best-in-class drug repurposing library consisting of 262 drugs/compounds. Upon screening, we identified vidofludimus calcium and pyrazofurin as novel anti-HEV entities. Vidofludimus…</p></li>
|
|||
|
</ul>
|
|||
|
<h1 data-aos="fade-right" id="from-patent-search">From Patent Search</h1>
|
|||
|
|
|||
|
|
|||
|
<script>AOS.init();</script></body></html>
|