208 lines
57 KiB
HTML
208 lines
57 KiB
HTML
|
<!DOCTYPE html>
|
|||
|
<html lang="" xml:lang="" xmlns="http://www.w3.org/1999/xhtml"><head>
|
|||
|
<meta charset="utf-8"/>
|
|||
|
<meta content="pandoc" name="generator"/>
|
|||
|
<meta content="width=device-width, initial-scale=1.0, user-scalable=yes" name="viewport"/>
|
|||
|
<title>24 November, 2021</title>
|
|||
|
<style type="text/css">
|
|||
|
code{white-space: pre-wrap;}
|
|||
|
span.smallcaps{font-variant: small-caps;}
|
|||
|
span.underline{text-decoration: underline;}
|
|||
|
div.column{display: inline-block; vertical-align: top; width: 50%;}
|
|||
|
</style>
|
|||
|
<title>Covid-19 Sentry</title><meta content="width=device-width, initial-scale=1.0" name="viewport"/><link href="styles/simple.css" rel="stylesheet"/><link href="../styles/simple.css" rel="stylesheet"/><link href="https://unpkg.com/aos@2.3.1/dist/aos.css" rel="stylesheet"/><script src="https://unpkg.com/aos@2.3.1/dist/aos.js"></script></head>
|
|||
|
<body>
|
|||
|
<h1 data-aos="fade-down" id="covid-19-sentry">Covid-19 Sentry</h1>
|
|||
|
<h1 data-aos="fade-right" data-aos-anchor-placement="top-bottom" id="contents">Contents</h1>
|
|||
|
<ul>
|
|||
|
<li><a href="#from-preprints">From Preprints</a></li>
|
|||
|
<li><a href="#from-clinical-trials">From Clinical Trials</a></li>
|
|||
|
<li><a href="#from-pubmed">From PubMed</a></li>
|
|||
|
<li><a href="#from-patent-search">From Patent Search</a></li>
|
|||
|
</ul>
|
|||
|
<h1 data-aos="fade-right" id="from-preprints">From Preprints</h1>
|
|||
|
<ul>
|
|||
|
<li><strong>Identification of a promiscuous conserved CTL epitope within the SARS-CoV-2 spike protein</strong> -
|
|||
|
<div>
|
|||
|
The COVID-19 disease caused by infection with SARS-CoV-2 and its variants is devastating to the global public health and economy. To date, over a hundred COVID-19 vaccines are known to be under development and the few that have been approved to fight the disease are using the spike protein as the primary target antigen. Although virus neutralizing epitopes are mainly located within the RBD of the spike protein, the presence of T cell epitopes, particularly the CTL epitopes that are likely to be needed for killing infected cells, has received comparatively little attention. In this study, we predicted several potential T cell epitopes with web-based analytic tools, and narrowed them down from several potential MHC I and MHC II epitopes by ELIspot and cytolytic assays to a conserved MHC I epitope. The epitope is highly conserved in current viral variants and compatible with presentation by most HLA alleles worldwide. In conclusion, we identified a CTL epitope suitable for evaluating the CD8+ T cell-mediated cellular response and potentially for addition into future COVID-19 vaccine candidates to maximize CTL responses against SARS- CoV-2.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2021.11.21.469172v1" target="_blank">Identification of a promiscuous conserved CTL epitope within the SARS-CoV-2 spike protein</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Preclinical efficacy, safety, and immunogenicity of PHH-1V, a second-generation COVID-19 vaccine candidate based on a novel recombinant RBD fusion heterodimer of SARS-CoV-2.</strong> -
|
|||
|
<div>
|
|||
|
Since the genetic sequence of SARS-CoV-2 became available in January 2020, new vaccines have been developed at an unprecedented speed. The current vaccines have been directly associated with a decline in new infection rates, prevention of severe disease and an outstanding decrease in mortality rates. However, the pandemic is still far from being over. New Variants of Concern (VoCs) are continuously evolving. Thus, it is essential to develop accessible second-generation COVID-19 vaccines against known and future VoCs to mitigate the current pandemic. Here, we provide preclinical data showing the immunogenicity, efficacy, and safety results in mice of a receptor-binding domain (RBD)-based recombinant protein vaccine candidate (PHH-1V) which consists of a novel RBD fusion heterodimer containing the B.1.1.7 (alpha) and B.1.351 (beta) variants of SARS-CoV-2, formulated with an oil-based adjuvant equivalent to MF59C.1. BALB/c and K18-hACE2 mice were immunized with different doses of recombinant RBD fusion heterodimer, following a two-dose prime-and-boost schedule. Upon 20 g RBD fusion heterodimer/dose immunization, BALB/c mice produced RBD- binding antibodies with neutralising activity against the alpha, beta, gamma, and delta variants. Furthermore, vaccination elicited robust activation of CD4+ and CD8+ T cells with early expression of Th1 cytokines upon in vitro restimulation, along with a good tolerability profile. Importantly, vaccination with 10 g or 20 g RBD fusion heterodimer/dose conferred 100% efficacy preventing mortality and bodyweight loss upon SARS-CoV-2 challenge in K18-hACE2 mice. These findings demonstrate the feasibility of this novel recombinant vaccine strategy, allowing the inclusion of up to 2 different RBD proteins in the same vaccine. Most importantly, this new platform is easy to adapt to future VoCs and has a good stability profile, thus ensuring its global distribution.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html- link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2021.11.22.469117v1" target="_blank">Preclinical efficacy, safety, and immunogenicity of PHH-1V, a second-generation COVID-19 vaccine candidate based on a novel recombinant RBD fusion heterodimer of SARS-CoV-2.</a>
|
|||
|
</div></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A multi-class gene classifier for SARS-CoV-2 variants based on convolutional neural network</strong> -
|
|||
|
<div>
|
|||
|
Surveillance of circulating variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is of great importance in controlling the coronavirus disease 2019 (COVID-19) pandemic. We propose an alignment-free in silico approach for classifying SARS-CoV-2 variants based on their genomic sequences. A deep learning model was constructed utilizing a stacked 1-D convolutional neural network and multilayer perceptron (MLP). The pre-processed genomic sequencing data of the four SARS-CoV-2 variants were first fed to three stacked convolution-pooling nets to extract local linkage patterns in the sequences. Then a 2-layer MLP was used to compute the correlations between the input and output. Finally, a logistic regression model transformed the output and returned the probability values. Learning curves and stratified 10-fold cross-validation showed that the proposed classifier enables robust variant classification. External validation of the classifier showed an accuracy of 0.9962, precision of 0.9963, recall of 0.9963 and F1 score of 0.9962, outperforming other machine learning methods, including logistic regression, K-nearest neighbor, support vector machine, and random forest. By comparing our model with an MLP model without the convolution-pooling network, we demonstrate the essential role of convolution in extracting viral variant features. Thus, our results indicate that the proposed convolution-based multi-class gene classifier is efficient for the variant classification of SARS-CoV-2.
|
|||
|
</div></li>
|
|||
|
</ul>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2021.11.22.469492v1" target="_blank">A multi-class gene classifier for SARS-CoV-2 variants based on convolutional neural network</a>
|
|||
|
</div>
|
|||
|
<ul>
|
|||
|
<li><strong>A metagenomic DNA sequencing assay that is robust against environmental DNA contamination</strong> -
|
|||
|
<div>
|
|||
|
Metagenomic DNA sequencing is a powerful tool to characterize microbial communities but is sensitive to environmental DNA contamination, in particular when applied to samples with low microbial biomass. Here, we present contamination-free metagenomic DNA sequencing (Coffee-seq), a metagenomic sequencing assay that is robust against environmental contamination. The core idea of Coffee-seq is to tag the DNA in the sample prior to DNA isolation and library preparation with a label that can be recorded by DNA sequencing. Any contaminating DNA that is introduced in the sample after tagging can then be bioinformatically identified and removed. We applied Coffee-seq to screen for infections from microorganisms with low burden in blood and urine, to identify COVID-19 co-infection, to characterize the urinary microbiome, and to identify microbial DNA signatures of inflammatory bowel disease in blood.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2021.11.22.469599v1" target="_blank">A metagenomic DNA sequencing assay that is robust against environmental DNA contamination</a>
|
|||
|
</div></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Airway epithelial interferon response to SARS-CoV-2 is inferior to rhinovirus and heterologous rhinovirus infection suppresses SARS-CoV-2 replication</strong> -
|
|||
|
<div>
|
|||
|
Introduction: Common alphacoronaviruses and human rhinoviruses (HRV) induce type I and III interferon (IFN) responses important to limiting viral replication in the airway epithelium. In contrast, highly pathogenic betacoronaviruses including SARS-CoV-2 may evade or antagonize RNA-induced IFN I/III responses. Methods: In airway epithelial cells (AECs) from children and older adults we compared IFN I/III responses to SARS-CoV-2 and HRV-16, and assessed whether pre-infection with HRV-16, or pretreatment with recombinant IFN-{beta} or IFN-{lambda}, modified SARS- CoV-2 replication. Bronchial AECs from children (ages 6-18 yrs.) and older adults (ages 60-75 yrs.) were differentiated ex vivo to generate organotypic cultures. In a biosafety level 3 (BSL-3) facility, cultures were infected with SARS- CoV-2 or HRV-16, and RNA and protein was harvested from cell lysates 96 hrs. following infection and supernatant was collected 48 and 96 hrs. following infection. In additional experiments cultures were pre-infected with HRV-16, or pre- treated with recombinant IFN-{beta}1 or IFN-{lambda}2 before SARS-CoV-2 infection. Results: Despite significant between- donor heterogeneity SARS-CoV-2 replicated 100 times more efficiently than HRV-16. IFNB1, INFL2, and CXCL10 gene expression and protein production following HRV-16 infection was significantly greater than following SARS-CoV-2. IFN gene expression and protein production were inversely correlated with SARS-CoV-2 replication. Treatment of cultures with recombinant IFN{beta}1 or IFN{lambda}2, or pre-infection of cultures with HRV-16, markedly reduced SARS-CoV-2 replication. Discussion: In addition to marked between-donor heterogeneity in IFN responses and viral replication, SARS- CoV-2 elicits a less robust IFN response in primary AEC cultures than does rhinovirus, and heterologous rhinovirus infection, or treatment with recombinant IFN-{beta}1 or IFN-{lambda}2, markedly reduces SARS-CoV-2 replication.
|
|||
|
</div></li>
|
|||
|
</ul>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.biorxiv.org/content/10.1101/2021.11.20.469409v1" target="_blank">Airway epithelial interferon response to SARS-CoV-2 is inferior to rhinovirus and heterologous rhinovirus infection suppresses SARS-CoV-2 replication</a>
|
|||
|
</div>
|
|||
|
<ul>
|
|||
|
<li><strong>Epidemiological characteristics of the B.1.526 SARS-CoV-2 variant</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
To characterize the epidemiological properties of the B.1.526 SARS-CoV-2 variant of interest, here we utilized nine epidemiological and population datasets and model-inference methods to reconstruct SARS-CoV-2 transmission dynamics in New York City, where B.1.526 emerged. We estimated that B.1.526 had a moderate increase (15-25%) in transmissibility and could escape immunity in 0-10% of previously infected individuals. In addition, B.1.526 substantially increased the infection-fatality risk (IFR) among adults 65 or older by >60% during Nov 2020 - Apr 2021, compared to baseline risk estimated for preexisting variants. Overall, findings suggest that new variants like B.1.526 likely spread in the population weeks prior to detection and that partial immune escape (e.g., resistance to therapeutic antibodies) could offset prior medical advances and increase IFR. Early preparedness for and close monitoring of SARS-CoV-2 variants, their epidemiological characteristics, and disease severity are thus crucial to COVID-19 response as it remains a global public health threat.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.08.04.21261596v2" target="_blank">Epidemiological characteristics of the B.1.526 SARS-CoV-2 variant</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>COVID-19 vaccination and menstrual cycle changes: A United Kingdom (UK) retrospective case-control study</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
<b>Objectives</b>. Our objectives were (1) to evaluate the prevalence of menstrual changes following vaccination against COVID-19, (2) to test potential risk factors for any such changes, and (3) to identify patterns of symptoms in participants9 written accounts. <b>Design</b>. A secondary analysis of a retrospective online survey titled <i> The Covid-19 Pandemic and Women9s Reproductive Health </i>, conducted in March 2021 in the UK before widespread media attention regarding potential impacts of SARS-CoV-2 vaccination on menstruation. <b>Setting</b>. Participants were recruited via a Facebook ad campaign in the UK. <b>Participants</b>. Eligibility criteria for survey completion were age greater than 18 years, having ever menstruated and currently living in the UK. In total, 26,710 people gave consent and completed the survey. For this analysis we selected 4,989 participants who were pre-menopausal and vaccinated. These participants were aged 28 to 43, predominantly from England (81%), of white background (95%) and not using hormonal contraception (58%). <b>Main outcome measure</b>. Reports of any menstrual changes (yes/no) following COVID-19 vaccination and words used to describe menstrual changes. <b>Results</b>. Among pre-menopausal vaccinated individuals (n=4,989), 80% did not report any menstrual cycle changes up to 4 months after their first COVID-19 vaccine injection. Current use of combined oral contraceptives was associated with lower odds of reporting any changes by 48% (OR = 0.52, 95CI = [0.34 to 0.78], P<0.001). Odds of reporting any menstrual changes were increased by 44% for current smokers (OR = 1.16, 95CI = [1.06 to 1.26], P<0.01) and by more than 50% for individuals with a positive COVID status [Long Covid (OR = 1.61, 95CI = [1.28 to 2.02], P<0.001), acute COVID (OR = 1.54, 95CI = [1.27 to 1.86], P<0.001)]. The effects remain after adjusting for self-reported magnitude of menstrual cycle changes over the year preceding the survey. Written accounts report diverse symptoms; the most common words include 9cramps9, 9late9, 9early9, 9spotting9, 9heavy9 and 9irregular9, with a low level of clustering among them. <b>Conclusions</b>. Following vaccination for COVID-19, menstrual disturbance occurred in 20% of individuals in a UK sample. Out of 33 variables investigated, smoking and a previous history of SARS-CoV-2 infection are found to be risk factors while using oestradiol-containing contraceptives was found to be a protective factor. Diverse experiences were reported, from menstrual bleeding cessation to heavy menstrual bleeding.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article- html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.11.23.21266709v1" target="_blank">COVID-19 vaccination and menstrual cycle changes: A United Kingdom (UK) retrospective case-control study</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Projecting the transition of COVID-19 burden towards the young population while vaccines are rolled out: a modelling study</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
Objectives. SARS-CoV-2 infection causes most cases of severe illness and fatality in older age groups. In China, over 99% of individuals aged ≥12 years have been fully vaccinated against COVID-19 (albeit with vaccines developed against historical lineages), while 65.0% children aged 3-11 years have been vaccinated their first doses (as of November 12, 2021). Here, we aimed to assess whether, in this vaccination landscape, the importation of Delta variant infections could shift the COVID-19 burden from adults to children. Methods. We developed an age-structured susceptible- infectious-removed model of SARS-CoV-2 transmission dynamics to simulate epidemics triggered by the importation of Delta variant infections and project the age-specific incidence of SARS-CoV-2 infections, cases, hospitalisations, intensive care unit (ICU) admissions, and deaths. Results. In the context of the vaccination programme targeting individuals aged ≥12 years (as it was the case until mid-October 2021), and in the absence of non-pharmaceutical interventions, the importation of Delta variant infections could have led to widespread transmission and substantial disease burden in mainland China, even with vaccination coverage as high as 97% across the eligible age groups. Extending the vaccination roll-out to include children aged 3-11 years (as it was the case since the end of October 2021) is estimated to dramatically decrease the burden of symptomatic infections and hospitalisations within this age group (54% and 81%, respectively, when considering a vaccination coverage of 99%), but would have a low impact on protecting infants (aged 0-2 years). Conclusions. Our findings highlight the importance of including children among the target population and the need to strengthen vaccination efforts by increasing vaccine effectiveness.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article- html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.10.14.21265032v2" target="_blank">Projecting the transition of COVID-19 burden towards the young population while vaccines are rolled out: a modelling study</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Test-trace-isolate-quarantine (TTIQ) intervention strategies after symptomatic COVID-19 case identification</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
The test-trace-isolate-quarantine (TTIQ) strategy, where confirmed-positive pathogen carriers are isolated from the community and their recent close contacts are identified and pre-emptively quarantined, is used to break chains of transmission during a disease outbreak. The protocol is frequently followed after an individual presents with disease symptoms, at which point they will be tested for the pathogen. This TTIQ strategy, along with hygiene and social distancing measures, make up the non-pharmaceutical interventions that are utilised to suppress the ongoing COVID-19 pandemic. Here we develop a tractable mathematical model of disease transmission and the TTIQ intervention to quantify how the probability of detecting and isolating a case following symptom onset, the fraction of contacts that are identified and quarantined, and the delays inherent to these processes impact epidemic growth. In the model, the timing of disease transmission and symptom onset, as well as the frequency of asymptomatic cases, is based on empirical distributions of SARS-CoV-2 infection dynamics, while the isolation of confirmed cases and quarantine of their contacts is implemented by truncating their respective infectious periods. We find that a successful TTIQ strategy requires intensive testing: the majority of transmission is prevented by isolating symptomatic individuals and doing so in a short amount of time. Despite the lesser impact, additional contact tracing and quarantine increases the parameter space in which an epidemic is controllable and is necessary to control epidemics with a high reproductive number. TTIQ could remain an important intervention for the foreseeable future of the COVID-19 pandemic due to slow vaccine rollout and highly-transmissible variants with the potential for vaccine escape. Our results can be used to assess how TTIQ can be improved and optimised, and the methodology represents an improvement over previous quantification methods that is applicable to future epidemic scenarios.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2020.12.04.20244004v3" target="_blank">Test-trace-isolate-quarantine (TTIQ) intervention strategies after symptomatic COVID-19 case identification</a>
|
|||
|
</div></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Pausing methotrexate improves immunogenicity of COVID-19 vaccination in patients with rheumatic diseases</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
Objective: To study the effect of methotrexate (MTX) and its discontinuation on the humoral immune response after COVID-19 vaccination in patients with autoimmune rheumatic diseases (AIRD). Methods: Neutralising SARS-CoV-2 antibodies were measured after second vaccination in 64 rheumatic patients on methotrexate therapy, 31 of whom temporarily paused medication without a fixed regimen. The control group consisted of 21 AIRD patients without immunosuppressive medication. Results: MTX patients showed a significantly lower median antibody response compared to AIRD patients without immunosuppressive therapy (p< 0.001). Young age (<60 years) and MTX-hold after vaccination were found to be the main factors influencing antibody response after vaccination, while BMI or MTX dose demonstrated no effect. For patients taking MTX, age correlated negatively with immune response (r=-0.49; p<0.001) and all patients with antibody levels (14 %) below the cut-off were older than 60 years. Patients who held MTX during at least one vaccination showed significantly higher median neutralising antibody levels after second vaccination, compared to patients who continued MTX therapy during both vaccinations (68.82 %, 92.73 %, p=<0.001). This effect was particularly pronounced in patients older than 60 years (p=0.0016). The impact of the time period after vaccination was greater than of the time before vaccination with the critical cut-off being 10 days. Conclusion: MTX reduces the immunogenicity of SARS-CoV-2 vaccination in an age-dependent manner. Our data further suggest that holding MTX for at least 10 days after vaccination significantly improves the antibody response in patients over 60 years of age.
|
|||
|
</p>
|
|||
|
</div></li>
|
|||
|
</ul>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.11.17.21266441v1" target="_blank">Pausing methotrexate improves immunogenicity of COVID-19 vaccination in patients with rheumatic diseases</a>
|
|||
|
</div>
|
|||
|
<ul>
|
|||
|
<li><strong>Space-time Classification Index for Assessing COVID-19 Hotspots</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
Objectives: To develop new methods to address problems associated with use of traditional measures of disease surveillance, including prevalence and positivity rates. Methods: We use data from the public New York Times Github repository to develop a space-time classification index of COVID-19 hotspots. The Local Indicator of Spatial Association (LISA) statistic is applied to identify daily clusters of COVID-19 cases, from July 4th to July 19th. Results: The classification index is a spatial and temporal assessment tool that seeks to incorporate temporal trends of the clusters that are “high-high” and “high-low”. Two classifications support the index: severity and temporal duration. We define severity as the number of times a county is statistically significant and temporal duration captures the number of consecutive days a county is a hotspot. Conclusions: The space-time classification index provides a statistically robust measure of the spatial patterns of COVID-19 hotspots. Spatial information is not captured through measures like the positivity rate, which merely divides the number of cases by tests conducted. The index proposed in this paper can guide intervention efforts by classifying counties with six-levels of importance.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article- html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.11.17.21266461v1" target="_blank">Space-time Classification Index for Assessing COVID-19 Hotspots</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Timeliness of U.S. mortality data releases during the COVID-19 pandemic: delays are associated with electronic death registration system and weekly mortality</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
All-cause mortality counts allow public health authorities to identify populations experiencing excess deaths from pandemics, natural disasters, and other emergencies. Delays in the completeness of mortality counts may contribute to misinformation because death counts take weeks to become accurate. We estimate the timeliness of all-cause mortality releases during the COVID-19 pandemic for the dates 3 April to 5 September 2020 by estimating the number of weekly data releases of the NCHS Fluview Mortality Surveillance System until mortality comes within 99% of the counts in the 19 March 19 2021 provisional mortality data release. States9 mortality counts take 5 weeks at median (interquartile range 4-7 weeks) to completion. The fastest states were Maine, New Hampshire, Vermont, New York, Utah, Idaho, and Hawaii. States that had not adopted the electronic death registration system (EDRS) were 4.8 weeks slower to achieve complete mortality counts, and each weekly death per 10^8 was associated with a 0.8 week delay. Emergency planning should improve the timeliness of mortality data by improving state vital statistics digital infrastructure.
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.01.07.21249401v3" target="_blank">Timeliness of U.S. mortality data releases during the COVID-19 pandemic: delays are associated with electronic death registration system and weekly mortality</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>Efficacy and safety of a novel antiviral preparation in ICU-admitted patients with COVID-19: a phase III randomized controlled trial</strong> -
|
|||
|
<div>
|
|||
|
<p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom">
|
|||
|
Introduction Despite an increasing number of studies, there is as yet no efficient antiviral treatment developed for the disease. In this clinical trial, we examined the efficacy of a novel herbal antiviral preparation comprising Zataria multiflora Boiss, Glycyrrhiza glabra, Cinnamomum Vermont, Allium sativuml, and Syzygium aromaticum in critically ill patients with COVID-19 patients. Methods A total number of 120 ICU-admitted patients requiring pulmonary support with a diagnosis of COVID-19 pneumonia were recruited to the trial. Participants were equally randomized to receive either the novel antiviral preparation sublingually, for up to two consecutive weeks or till discharge, or normal saline as the matching placebo. Clinical and laboratory parameters as well as survival rates were compared between the two groups at the study end. Results The cumulative incidence of death throughout the study period was 8.33% in the medication group and 60% in the placebo group (risk ratio: 0.14; 95% confidence interval [CI], 0.05 to 0.32; P<0.001). Survival rates were significantly higher in the treatment group. Additionally, on day 7, several laboratory factors including white blood cells (WBCs) count, C-reactive protein (CRP), and SpO2 were improved in patients treated with the novel antiviral preparation compared with the placebo group. Conclusion The novel antiviral preparation tested in this trial significantly improved the survival rate and reduced mortality in critically ill patients with COVID-19. Thus, this preparation might be suggested as a potentially promising COVID-19 treatment. Funded by Shimi Teb Salamat Co., Shiraz, Iran, and registered on the Iranian registry of clinical trials (registration No. IRCT20200509047373N2).
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://www.medrxiv.org/content/10.1101/2021.11.20.21266229v1" target="_blank">Efficacy and safety of a novel antiviral preparation in ICU-admitted patients with COVID-19: a phase III randomized controlled trial</a>
|
|||
|
</div></li>
|
|||
|
<li><strong>The AstraZeneca affair. A litmus test of information disorder in the Italian hybrid media ecosystem</strong> -
|
|||
|
<div>
|
|||
|
In this paper we seek to demonstrate how a variety of information disorder phenomena comes to be at the intersection of legacy and social media interaction. To do so, we collected more than 750.000 tweets and 30.000 news articles related to the adoption of AstraZeneca vaccine in Italy for a period of six months (1st January 2021 - 30th June 2021). Initially, using timestamps of publications and tweets, we tracked the pace of public debate. Then, using a mixed methods approach, we investigated Twitter reaction during the climax of attention toward AstraZeneca. Acting as a litmus test, our study reveals three different but intertwined information disorder phenomena: first, the vaccine debate exhibit a flat progression with few condensed peaks of attention (acceleration phenomenon); second, the two main peaks that involve both journalistic coverage and Twitter discussion generate from news of suspect deaths related to AstraZeneca (sensationalisation phenomenon); and finally, the report of suspect deaths news by mainstream media accounts on Twitter correlates with a polarized and ideological reaction of the connected publics (fragmentation phenomenon). These results highlight how a direct implication of the hybrid media ecosystem’s actual configuration could be a resistance in the formation of a public arena capable of sustaining a prolonged and effective debate, particularly with respect to controversial societal issues such as those related to the covid-19 vaccination campaign.
|
|||
|
</div>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://osf.io/cy2us/" target="_blank">The AstraZeneca affair. A litmus test of information disorder in the Italian hybrid media ecosystem</a>
|
|||
|
</div></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>The role of personality, conspiracy mentality, REBT irrational beliefs, and adult attachment in COVID-19 related health behaviors</strong> -
|
|||
|
<div>
|
|||
|
There is evidence that different types of irrational thinking and beliefs are significant predictors of questionable and maladaptive COVID-19 related health practices. In this study, we investigated the role of two under- researched types of irrational thinking, more typical for a clinical setting: irrational beliefs defined in rational- emotive cognitive-behavior therapy (REBT) and attachment anxiety and avoidance. We investigated whether REBT irrational beliefs, attachment dimensions, and conspiracy mentality mediated the relationship between personality traits, on the one side, and COVID-19 health behaviors, on the other. We proposed that HEXACO personality traits, and especially Disintegration (proneness to psychotic-like experiences) predicted irrational thinking and beliefs, which in turn predicted higher susceptibility to questionable health practices. Structural equation modeling on a sample of 287 participants from the general population, showed that Disintegration was related to REBT irrational beliefs, attachment dimensions, and conspiracy mentality, highlighting the important effect of Disintegration on irrational thinking and beliefs. Conspiracy mentality mediated the effects of Disintegration to low adherence to recommended health behaviors - RHB , and greater use of pseudoscientific practices - PSP . Attachment anxiety mediated the relationship between high Disintegration, high Emotionality (E), and low Honesty (H), and lower adherence to RHB. REBT irrational beliefs and attachment avoidance did not mediate the relationship between personality traits and COVID-19 health behaviors.
|
|||
|
</div></li>
|
|||
|
</ul>
|
|||
|
<div class="article-link article-html-link">
|
|||
|
🖺 Full Text HTML: <a href="https://psyarxiv.com/q2nye/" target="_blank">The role of personality, conspiracy mentality, REBT irrational beliefs, and adult attachment in COVID-19 related health behaviors</a>
|
|||
|
</div>
|
|||
|
<h1 data-aos="fade-right" id="from-clinical-trials">From Clinical Trials</h1>
|
|||
|
<ul>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Study to Evaluate the Effects of RO7496998 (AT-527) in Non-Hospitalized Adult and Adolescent Participants With Mild or Moderate COVID-19</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Drug: RO7496998; Drug: Placebo<br/><b>Sponsor</b>: <br/>
|
|||
|
Hoffmann-La Roche<br/><b>Suspended</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Mesenchymal Stem Cell Secretome In Severe Cases of COVID-19</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Biological: Injection of secretome - mesenchymal stem cell; Other: Placebo; Drug: Standard treatment of Covid-19<br/><b>Sponsor</b>: Indonesia University<br/><b>Completed</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Bone Marrow Mesenchymal Stem Cell Derived Extracellular Vesicles Infusion Treatment for Mild-to-Moderate COVID-19: A Phase II Clinical Trial</strong> - <b>Condition</b>: COVID-19<br/><b>Intervention</b>: Drug: ExoFlo<br/><b>Sponsor</b>: Direct Biologics, LLC<br/><b>Recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>The South Proxa-Rescue AndroCoV Trial Against COVID-19</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Drug: Proxalutamide; Drug: Placebo<br/><b>Sponsors</b>: Corpometria Institute; Hospital da Brigada Militar de Porto Alegre, Porto Alegre, Brazil; Hospital Arcanjo Sao Miguel, Gramado, Brazil; Hospital Unimed Chapeco, Chapeco, Brazil<br/><b>Completed</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Vitamin D Supplementation and Clinical Improvement in COVID-19</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Dietary Supplement: Vitamin D3 10000 IU; Dietary Supplement: Vitamin D3 1000 IU<br/><b>Sponsor</b>: Bumi Herman<br/><b>Completed</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Feasibility Pilot Clinical Trial of Omega-3 Supplement vs. Placebo for Post Covid-19 Recovery Among Health Care Workers</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Drug: Omega-3 (EPA+DHA); Drug: Placebo<br/><b>Sponsor</b>: Hackensack Meridian Health<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Adding Colchicine to Tocilizumab in Patients With Severe COVID-19 Pneumonia.</strong> - <b>Condition</b>: COVID-19 Pneumonia<br/><b>Intervention</b>: Drug: Colchicine<br/><b>Sponsor</b>: <br/>
|
|||
|
Hamad Medical Corporation<br/><b>Recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Controlled Trial of Angiotensin Receptor Blocker (ARB) & Chemokine Receptor Type 2 (CCR2) Antagonist for the Treatment of COVID-19</strong> - <b>Conditions</b>: COVID-19; SARS-CoV2 Infection<br/><b>Interventions</b>: Drug: Candesartan Cilexetil; Drug: Repagermanium; Drug: Candesartan Placebo; Drug: Repagermanium Placebo<br/><b>Sponsors</b>: <br/>
|
|||
|
University of Sydney; The George Institute for Global Health, India<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Partnerships to Address COVID-19 Inequities</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Behavioral: Crowdsourced campaign package; Behavioral: Standard information<br/><b>Sponsor</b>: Duke University<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Study to Evaluate the inHaled Recombinant COVID-19 Vaccine (Adenovirus Type 5 Vector) On the Protective-Efficacy in Adults (SeiHOPE)</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Biological: Recombinant COVID-19 vaccine (adenovirus type 5 vector) for Inhalation (Ad5-nCoV-IH); Biological: Placebo<br/><b>Sponsors</b>: CanSino Biologics Inc.; Beijing Institute of Biotechnology<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Pharmacokinetics, Pharmacodynamics, and Safety of Single-dose Sotrovimab in High-risk Pediatric Participants With Mild to Moderate COVID-19</strong> - <b>Condition</b>: COVID-19<br/><b>Intervention</b>: Biological: Sotrovimab<br/><b>Sponsors</b>: <br/>
|
|||
|
GlaxoSmithKline; Vir Biotechnology, Inc.<br/><b>Not yet recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>PREVENT-COVID-19: A Q-Griffithsin Intranasal Spray</strong> - <b>Condition</b>: COVID-19 Prevention<br/><b>Interventions</b>: Drug: Q-Griffithsin; Other: Placebo<br/><b>Sponsors</b>: Kenneth Palmer; United States Department of Defense<br/><b>Recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Nutritional Supplementation of Vitamin D, Quercetin and Curcumin With Standard of Care for Managing Mild Early Symptoms of COVID-19</strong> - <b>Condition</b>: COVID-19<br/><b>Interventions</b>: Drug: Standard of care; Dietary Supplement: Investigational treatment<br/><b>Sponsor</b>: King Edward Medical University<br/><b>Recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Covid-19 Pandemic and Use of Video Laryngoscopy</strong> - <b>Condition</b>: COVID-19 Pneumonia<br/><b>Interventions</b>: Device: Videolaryngoscope; Device: Macintosh Laryngoscope<br/><b>Sponsor</b>: Van Bölge Eğitim ve Araştırma Hastanesi<br/><b>Recruiting</b></p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Anti-COVID19 VaccinaTion AKS-452 BOOSTER (ACT-BOOSTER Study)</strong> - <b>Conditions</b>: COVID-19; Booster Vaccine<br/><b>Intervention</b>: Biological: AKS-452X<br/><b>Sponsors</b>: University Medical Center Groningen; Akston Biosciences Corp; TRACER Europe BV; PRA Health Sciences<br/><b>Not yet recruiting</b></p></li>
|
|||
|
</ul>
|
|||
|
<h1 data-aos="fade-right" id="from-pubmed">From PubMed</h1>
|
|||
|
<ul>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>ACE2-like carboxypeptidase B38-CAP protects from SARS-CoV-2-induced lung injury</strong> - Angiotensin-converting enzyme 2 (ACE2) is a receptor for cell entry of SARS-CoV-2, and recombinant soluble ACE2 protein inhibits SARS-CoV-2 infection as a decoy. ACE2 is a carboxypeptidase that degrades angiotensin II, thereby improving the pathologies of cardiovascular disease or acute lung injury. Here we show that B38-CAP, an ACE2-like enzyme, is protective against SARS-CoV-2-induced lung injury. Endogenous ACE2 expression is downregulated in the lungs of SARS- CoV-2-infected hamsters, leading…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Heparin interacts with the main protease of SARS-CoV-2 and inhibits its activity</strong> - The ability of SARS-CoV-2 to replicate in host cells is dependent on its main protease (M^(pro), also called 3CLpro) that cut the viral precursor polyproteins and is a major target for antiviral drug design. Here, we showed that heparin interacts with the M^(pro) of SARS-CoV-2 and inhibits its activity. Protein fluorescence quenching showed that heparin strongly binds to the M^(pro) protein with dissociation constants K(D) of 16.66 and 31.60 μM at 25 and 35 °C, respectively. From thermodynamic…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Resolvin T-series Reduce Neutrophil Extracellular Traps</strong> - The newly identified thirteen-series Resolvins (RvTs) regulate phagocyte functions and accelerate resolution of infectious inflammation. Since SARS-CoV-2 elicits uncontrolled inflammation involving neutrophil extracellular traps (NETs), we tested whether stereochemically defined RvTs regulate NET formation. Using microfluidic devices capturing NETs in PMA-stimulated human whole blood, the RvTs, RvT1-RvT4, 2.5 nM each, potently reduced NETs. With IL-1b-stimulated human neutrophils, each RvT dose-…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Host cell-intrinsic innate immune recognition of SARS-CoV-2</strong> - Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) emerged at the end of 2019 and caused the pandemic of coronavirus disease 2019 (COVID-19). Basic and clinical investigations indicate that severe forms of COVID-19 are due in part to dysregulated immune responses to virus infection. The innate immune system is the first line of host defense against most virus infections, with pathogen recognition receptors detecting SARS-CoV-2 RNA and protein components and initiating pro-inflammatory…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Deubiquitinases: From mechanisms to their inhibition by small molecules</strong> - Deubiquitinases (DUBs) are specialized proteases that remove ubiquitin from substrates or cleave within ubiquitin chains to regulate ubiquitylation and therefore play important roles in eukaryotic biology. Dysregulation of DUBs is implicated in several human diseases, highlighting the importance of DUB function. In addition, many pathogenic bacteria and viruses encode and deploy DUBs to manipulate host immune responses and establish infectious diseases in humans and animals. Hence, therapeutic…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>SARS-CoV-2 N Protein Induces Acute Kidney Injury via Smad3-Dependent G1 Cell Cycle Arrest Mechanism</strong> - COVID-19 is infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and can cause severe multiple organ injury and death. Kidney is one of major target organs of COVID-19 and acute kidney injury (AKI) is common in critically ill COVID-19 patients. However, mechanisms through which COVID-19 causes AKI remain largely unknown and treatment remains unspecific and ineffective. Here, the authors report that normal kidney-specifically overexpressing SARS-CoV-2 N develops AKI, which…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Intestinal Collinsella may mitigate infection and exacerbation of COVID-19 by producing ursodeoxycholate</strong> - The mortality rates of COVID-19 vary widely across countries, but the underlying mechanisms remain unelucidated. We aimed at the elucidation of relationship between gut microbiota and the mortality rates of COVID-19 across countries. Raw sequencing data of 16S rRNA V3-V5 regions of gut microbiota in 953 healthy subjects in ten countries were obtained from the public database. We made a generalized linear model (GLM) to predict the COVID-19 mortality rates using gut microbiota. GLM revealed that…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Computational prediction of the potential target of SARS-CoV-2 inhibitor plitidepsin via molecular docking, dynamic simulations and MM-PBSA calculations</strong> - Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication depends on the interaction between the viral proteins and the human translation machinery. The cytotoxic peptide plitidepsin was found to inhibit CoV-2 up to 90% at a concentration of 0.88 nM. In vitro studies suggest that this activity may be attributed to the inhibition of the eukaryotic translation elongation factor 1A (eEF1A). However, recent reports raised the potential for other cellular targets which plitidepsin may…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A Genetic Trap in Yeast for Inhibitors of SARS-CoV-2 Main Protease</strong> - The ongoing COVID-19 pandemic urges searches for antiviral agents that can block infection or ameliorate its symptoms. Using dissimilar search strategies for new antivirals will improve our overall chances of finding effective treatments. Here, we have established an experimental platform for screening of small molecule inhibitors of the SARS-CoV-2 main protease in Saccharomyces cerevisiae cells, genetically engineered to enhance cellular uptake of small molecules in the environment. The system…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Fluvastatin mitigates SARS-CoV-2 infection in human lung cells</strong> - Clinical data of patients suffering from COVID-19 indicates that statin therapy, used to treat hypercholesterolemia, is associated with a better disease outcome. Whether statins directly affect virus replication or influence the clinical outcome through modulation of immune responses is unknown. We therefore investigated the effect of statins on SARS-CoV-2 infection in human lung cells and found that only fluvastatin inhibited low and high pathogenic coronaviruses in vitro and ex vivo in a…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Study on an SIHRS Model of COVID-19 Pandemic With Impulse and Time Delay Under Media Coverage</strong> - Media coverage plays an important role in prevention and control the spread of COVID-19 during the pandemic. In this paper, an SIHRS model of COVID-19 pandemic with impulse and time delay under media coverage is established. The positive and negative emotions of public are considered by the impact of confirmed cases and medical resources. In order to restrain the negative information of public, the factor of policies and regulations with impulse and time delay is introduced. Furthermore, the…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Effectiveness and Safety of Ivermectin in COVID-19 Patients: A Prospective Study at A Safety-Net Hospital</strong> - CONCLUSION: No differences were found between groups regarding the length of hospital stay, ICU admission, intubation rate, and in-hospital mortality. This article is protected by copyright. All rights reserved.</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Design of modular autoproteolytic gene switches responsive to anti-coronavirus drug candidates</strong> - The main (Mpro) and papain-like (PLpro) proteases encoded by SARS-CoV-2 are essential to process viral polyproteins into functional units, thus representing key targets for anti-viral drug development. There is a need for an efficient inhibitor screening system that can identify drug candidates in a cellular context. Here we describe modular, tunable autoproteolytic gene switches (TAGS) relying on synthetic transcription factors that self-inactivate, unless in the presence of coronavirus…</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>The Potential Use of Cyclosporine Ultrafine Solution Pressurised Metered-Dose Inhaler in the Treatment of COVID-19 Patients</strong> - CONCLUSION: Ultrafine pMDI formulation of cyclosporine or Debio 025 should be investigated for the inhalation therapy of COVID-19.</p></li>
|
|||
|
<li data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Immunomodulatory effects of Allium Sativum L. and its constituents against viral infections and metabolic diseases</strong> - CONCLUSION: Garlic is a fundamental part of a well-balanced diet which helps maintain general good health. The reported information regarding garlic’s ability to beneficially modulate inflammation and the immune system is encouraging. Nonetheless, more efforts must be made to understand the actual medicinal properties and mechanisms of action of the compounds found in this plant to inhibit or diminish viral infections, particularly SARS-CoV-2. Based on our findings, we propose a series of…</p></li>
|
|||
|
</ul>
|
|||
|
<h1 data-aos="fade-right" id="from-patent-search">From Patent Search</h1>
|
|||
|
<ul>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A DOORBELL SYSTEM FOR MONITORING AND RECORDING A PHYSIOLOGICAL DATA OF A PERSON</strong> - AbstractTitle: A doorbell system for monitoring and recording a physiological data of a person The present invention provides a doorbell system 500 for monitoring and recording a physiological data of a person. The doorbell system 500 having a transmitter module 100 and a receiving module 200. The transmitter module 100 is having a TOF sensor module 110, an ultrasound detector 120, and an infrared detector 130. Further, a speech recognition system 150, a facial recognition system 160, and a temperature detector 190 are provided for recognizing speech, face, and temperature of the person by comparing pre-stored data. A controlling module 180 is set with a predefined commands for communicating with the transmitter module 100 and receiving module 200. The collected facial and speech data is compared and matched with the pre-stored data then the temperature detector 190 triggers and the door opens when the captured body temperature of the person is matched within the predefined range of temperature.Figure 1 - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=IN340503637">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>A study of contemporary trends in investing patterns, household savings, and economic investment.</strong> - Because household savings and household investments are intertwined and interdependent, they are discussed briefly in this paper. Household savings account for more than half of a country’s capital formation, which fluctuates due to a variety of economic factors such as inflation and interest rates. Households should gradually shift their savings and investments from physical assets to financial assets to avoid a sudden change in wealth. They should also save and invest using a variety of platforms. Trends in investing and saving will be easier to track and measure this way. This year’s domestic saving rate in India is 2.3 percent lower than last year’s and 1.2 percent lower than the year before. Since 2011, general domestic savings have been steadily declining, with the trend continuing into the following year. According to official data, the GDP in 2020 shrank by 23.9%, the least in previous years and the least since the Covid-19 pandemic in previous years. As a result, the information presented in this paper is drawn from and evaluated from other sources - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=IN340502149">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>PROLIPOSOMAL DRY POWDER INHALER OF REMDESIVIR</strong> - The present invention is related to Proliposomal Dry Powder Inhaler of Remdesivir and its method thereof for the treatment of viral infections such Coronaviridae (including COVID-19 infection). - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=IN342291904">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Use of Diminazene Aceturate, Xanthenone, ACE 2 activators or analogs for the Treatment and therapeutic use of COVID-19 on human patients.</strong> - - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=AU340325322">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>ACTIVE RIDER SAFETY SYSTEM FOR TWO WHEELERS</strong> - The present invention relates to an active rider safety system for two wheelers comprising, a protective case equipped by a user for riding, where the case is integrated with multiple piezoelectric sensor that determines fastening of the case by user, a processing unit linked to the sensor, where the unit detects absence of case upon fetching data from the sensor below a threshold value and thereby terminates operation of ignition by stopping a coupled motor operated via a radio frequency module, an alcohol detection sensor that detects presence of alcohol and send data to processing unit, a temperature sensor that measures temperature of the user, an accelerometer sensor that activates upon ignition us tuned on to determine presence of a crash and a navigation module that via communication module sends location of user to pre saved users and concerned authorities. - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=IN340503361">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Anti-SARS-CoV-2 antibodies and uses thereof I</strong> - - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=AU339290405">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Anti-SARS-CoV-2 antibodies and uses thereof II</strong> - - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=AU339290406">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Secured Health monitoring system using cloud computing</strong> - As used in public health surveillance, the invention generally relates to remote health monitoring systems with cloud computing. This is particularly relevant about a multi-user remote health monitoring system that can detect and gather data from healthcare professionals on the ground and systems in laboratories and hospitals to help the public health sector. It is possible to utilize the system for tracking, monitoring, and collecting patient data and for querying and collecting more information on the health of the people. - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=IN340500672">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>Bst DNA聚合酶重组突变体、其编码DNA及超快磁珠LAMP检测方法</strong> - 本发明在野生型Bst DNA聚合酶序列上进行了Ser358Asp、Thr480Asn、Asp533Glu、Ala539Gly几个点位的突变,然后将进行点突变后的Bst DNA聚合酶的292‑305的氨基酸EGLLKVVRPDTKKV替换成DPLPDLIHPRTLRL,在突变后Bst DNA聚合酶序列的C端融合了一个DNA结合蛋白,在突变后Bst DNA聚合酶序列的N端融合了一个HP47多肽序列(SEQ ID No.17),在HP47多肽序列前面融合了一个CL7‑SUMO‑Tag,得到一种具有高活性和热稳定性的Bst DNA聚合酶重组突变体Super‑Bst(SEQ ID No.16)。Super‑Bst在热稳定性、特异性、链置换能力、延伸能力和逆转录酶活性上得到了显著地提升,能够耐受高盐和各类抑制剂,且可以通过原核表达和亲和纯化大量获得。本发明还公开了其编码DNA,以及一种超快磁珠LAMP检测方法。 - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=CN341345614">link</a></p></li>
|
|||
|
<li><p data-aos="fade-left" data-aos-anchor-placement="bottom-bottom"><strong>一种新型冠状病毒及其德尔塔突变株检测试剂盒及其检测方法</strong> - 本发明提供了一种新型冠状病毒及其德尔塔突变株检测试剂盒及其检测方法,属于分子生物学检测技术领域。本发明重新设计了一系列引物探针组,增加检测靶点,从而有效区分新型冠状病毒野生型和德尔塔突变株。可用于体外定性检测新型冠状病毒或德尔塔突变株感染的肺炎疑似病例、疑似聚集性病例患者、其他需要进行新型冠状病毒感染诊断或鉴别诊断者的鼻咽拭子、痰液等样本中的新型冠状病毒基因。 - <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=CN341345646">link</a></p></li>
|
|||
|
</ul>
|
|||
|
|
|||
|
|
|||
|
<script>AOS.init();</script></body></html>
|