added Curie-Generate BETA

This commit is contained in:
Navan Chauhan 2020-07-31 22:19:38 +05:30
parent 61ce4e7b08
commit 9a253f896f
13 changed files with 541 additions and 8 deletions

View File

@ -1,6 +1,6 @@
from flask_wtf import FlaskForm from flask_wtf import FlaskForm
from flask_wtf.file import FileField, FileRequired, FileAllowed from flask_wtf.file import FileField, FileRequired, FileAllowed
from wtforms import StringField, DecimalField from wtforms import StringField, DecimalField, IntegerField
from wtforms.validators import DataRequired, Email from wtforms.validators import DataRequired, Email
@ -32,4 +32,7 @@ class curieForm(FlaskForm):
email = StringField('Email', validators=[DataRequired(), Email()]) email = StringField('Email', validators=[DataRequired(), Email()])
class statusForm(FlaskForm): class statusForm(FlaskForm):
jobID = StringField('Job ID',validators=[DataRequired()]) jobID = StringField('Job ID',validators=[DataRequired()])
class generateSMILES(FlaskForm):
n = IntegerField('Number of Molecules to Generate',default=1,validators=[DataRequired()])

View File

@ -20,11 +20,11 @@
"finetune_epochs": 12, "finetune_epochs": 12,
"finetune_batch_size": 1, "finetune_batch_size": 1,
"finetune_data_filename": "./datasets/protease_inhibitors_for_fine-tune.txt", "finetune_data_filename": "./datasets/protease_inhibitors_for_fine-tune.txt",
"config_file": "experiments/base_experiment/LSTM_Chem/config.json", "config_file": "app/prod/config.json",
"exp_dir": "experiments/2020-07-13/LSTM_Chem", "exp_dir": "experiments/2020-07-13/LSTM_Chem",
"tensorboard_log_dir": "experiments/2020-07-13/LSTM_Chem/logs/", "tensorboard_log_dir": "app/prod/logs/",
"checkpoint_dir": "experiments/2020-07-13/LSTM_Chem/checkpoints/", "checkpoint_dir": "app/prod/checkpoints/",
"train_smi_max_len": 128, "train_smi_max_len": 128,
"model_arch_filename": "experiments/2020-07-13/LSTM_Chem/model_arch.json", "model_arch_filename": "app/prod/model_arch.json",
"model_weight_filename": "experiments/2020-07-13/LSTM_Chem/checkpoints/LSTM_Chem-42-0.23.hdf5" "model_weight_filename": "app/prod/checkpoints/LSTM_Chem-42-0.23.hdf5"
} }

View File

@ -12,7 +12,7 @@ from string import digits, ascii_lowercase
# Note: that when using Flask-WTF we need to import the Form Class that we created # Note: that when using Flask-WTF we need to import the Form Class that we created
# in forms.py # in forms.py
from .forms import MyForm, curieForm, statusForm from .forms import MyForm, curieForm, statusForm, generateSMILES
def gen_word(N, min_N_dig, min_N_low): def gen_word(N, min_N_dig, min_N_low):
choose_from = [digits]*min_N_dig + [ascii_lowercase]*min_N_low choose_from = [digits]*min_N_dig + [ascii_lowercase]*min_N_low
@ -110,6 +110,34 @@ def wtform():
flash_errors(myform) flash_errors(myform)
return render_template('wtform.html', form=myform) return render_template('wtform.html', form=myform)
try:
from lstm_chem.utils.config import process_config
from lstm_chem.model import LSTMChem
from lstm_chem.generator import LSTMChemGenerator
config = process_config("app/prod/config.json")
modeler = LSTMChem(config, session="generate")
gen = LSTMChemGenerator(modeler)
print("Testing Model")
gen.sample(1)
except:
print("ok")
@app.route('/Generate', methods=['GET','POST'])
def generate():
"""Generate novel drugs"""
form = generateSMILES()
with open("./app/prod/config.json") as config:
import json
j = json.loads(config.read())
print(j["exp_name"])
if request.method == 'POST' and form.validate_on_submit():
result = gen.sample(form.n.data)
return render_template('generate.html',expName=j["exp_name"],epochs=j["num_epochs"],optimizer=j["optimizer"].capitalize(), form=form,result=result)
return render_template('generate.html',expName=j["exp_name"],epochs=j["num_epochs"],optimizer=j["optimizer"].capitalize(), form=form)
@app.route('/Dock', methods=['GET', 'POST']) @app.route('/Dock', methods=['GET', 'POST'])
def dock_upload(): def dock_upload():

1
lstm_chem/__init__.py Executable file
View File

@ -0,0 +1 @@

122
lstm_chem/data_loader.py Executable file
View File

@ -0,0 +1,122 @@
import json
import os
import numpy as np
from tqdm import tqdm
from tensorflow.keras.utils import Sequence
from lstm_chem.utils.smiles_tokenizer import SmilesTokenizer
class DataLoader(Sequence):
def __init__(self, config, data_type='train'):
self.config = config
self.data_type = data_type
assert self.data_type in ['train', 'valid', 'finetune']
self.max_len = 0
if self.data_type == 'train':
self.smiles = self._load(self.config.data_filename)
elif self.data_type == 'finetune':
self.smiles = self._load(self.config.finetune_data_filename)
else:
pass
self.st = SmilesTokenizer()
self.one_hot_dict = self.st.one_hot_dict
self.tokenized_smiles = self._tokenize(self.smiles)
if self.data_type in ['train', 'valid']:
self.idx = np.arange(len(self.tokenized_smiles))
self.valid_size = int(
np.ceil(
len(self.tokenized_smiles) * self.config.validation_split))
np.random.seed(self.config.seed)
np.random.shuffle(self.idx)
def _set_data(self):
if self.data_type == 'train':
ret = [
self.tokenized_smiles[self.idx[i]]
for i in self.idx[self.valid_size:]
]
elif self.data_type == 'valid':
ret = [
self.tokenized_smiles[self.idx[i]]
for i in self.idx[:self.valid_size]
]
else:
ret = self.tokenized_smiles
return ret
def _load(self, data_filename):
length = self.config.data_length
print('loading SMILES...')
with open(data_filename) as f:
smiles = [s.rstrip() for s in f]
if length != 0:
smiles = smiles[:length]
print('done.')
return smiles
def _tokenize(self, smiles):
assert isinstance(smiles, list)
print('tokenizing SMILES...')
tokenized_smiles = [self.st.tokenize(smi) for smi in tqdm(smiles)]
if self.data_type == 'train':
for tokenized_smi in tokenized_smiles:
length = len(tokenized_smi)
if self.max_len < length:
self.max_len = length
self.config.train_smi_max_len = self.max_len
print('done.')
return tokenized_smiles
def __len__(self):
target_tokenized_smiles = self._set_data()
if self.data_type in ['train', 'valid']:
ret = int(
np.ceil(
len(target_tokenized_smiles) /
float(self.config.batch_size)))
else:
ret = int(
np.ceil(
len(target_tokenized_smiles) /
float(self.config.finetune_batch_size)))
return ret
def __getitem__(self, idx):
target_tokenized_smiles = self._set_data()
if self.data_type in ['train', 'valid']:
data = target_tokenized_smiles[idx *
self.config.batch_size:(idx + 1) *
self.config.batch_size]
else:
data = target_tokenized_smiles[idx *
self.config.finetune_batch_size:
(idx + 1) *
self.config.finetune_batch_size]
data = self._padding(data)
self.X, self.y = [], []
for tp_smi in data:
X = [self.one_hot_dict[symbol] for symbol in tp_smi[:-1]]
self.X.append(X)
y = [self.one_hot_dict[symbol] for symbol in tp_smi[1:]]
self.y.append(y)
self.X = np.array(self.X, dtype=np.float32)
self.y = np.array(self.y, dtype=np.float32)
return self.X, self.y
def _pad(self, tokenized_smi):
return ['G'] + tokenized_smi + ['E'] + [
'A' for _ in range(self.max_len - len(tokenized_smi))
]
def _padding(self, data):
padded_smiles = [self._pad(t_smi) for t_smi in data]
return padded_smiles

24
lstm_chem/finetuner.py Executable file
View File

@ -0,0 +1,24 @@
from lstm_chem.utils.smiles_tokenizer import SmilesTokenizer
from lstm_chem.generator import LSTMChemGenerator
class LSTMChemFinetuner(LSTMChemGenerator):
def __init__(self, modeler, finetune_data_loader):
self.session = modeler.session
self.model = modeler.model
self.config = modeler.config
self.finetune_data_loader = finetune_data_loader
self.st = SmilesTokenizer()
def finetune(self):
self.model.compile(optimizer=self.config.optimizer,
loss='categorical_crossentropy')
history = self.model.fit_generator(
self.finetune_data_loader,
steps_per_epoch=self.finetune_data_loader.__len__(),
epochs=self.config.finetune_epochs,
verbose=self.config.verbose_training,
use_multiprocessing=True,
shuffle=True)
return history

44
lstm_chem/generator.py Executable file
View File

@ -0,0 +1,44 @@
from tqdm import tqdm
import numpy as np
from lstm_chem.utils.smiles_tokenizer import SmilesTokenizer
class LSTMChemGenerator(object):
def __init__(self, modeler):
self.session = modeler.session
self.model = modeler.model
self.config = modeler.config
self.st = SmilesTokenizer()
def _generate(self, sequence):
while (sequence[-1] != 'E') and (len(self.st.tokenize(sequence)) <=
self.config.smiles_max_length):
x = self.st.one_hot_encode(self.st.tokenize(sequence))
preds = self.model.predict_on_batch(x)[0][-1]
next_idx = self.sample_with_temp(preds)
sequence += self.st.table[next_idx]
sequence = sequence[1:].rstrip('E')
return sequence
def sample_with_temp(self, preds):
streched = np.log(preds) / self.config.sampling_temp
streched_probs = np.exp(streched) / np.sum(np.exp(streched))
return np.random.choice(range(len(streched)), p=streched_probs)
def sample(self, num=1, start='G'):
sampled = []
if self.session == 'generate':
for _ in tqdm(range(num)):
sampled.append(self._generate(start))
return sampled
else:
from rdkit import Chem, RDLogger
RDLogger.DisableLog('rdApp.*')
while len(sampled) < num:
sequence = self._generate(start)
mol = Chem.MolFromSmiles(sequence)
if mol is not None:
canon_smiles = Chem.MolToSmiles(mol)
sampled.append(canon_smiles)
return sampled

73
lstm_chem/model.py Executable file
View File

@ -0,0 +1,73 @@
import os
import time
from tensorflow.keras import Sequential
from tensorflow.keras.models import model_from_json
from tensorflow.keras.layers import LSTM, Dense
from tensorflow.keras.initializers import RandomNormal
from lstm_chem.utils.smiles_tokenizer import SmilesTokenizer
class LSTMChem(object):
def __init__(self, config, session='train'):
assert session in ['train', 'generate', 'finetune'], \
'one of {train, generate, finetune}'
self.config = config
self.session = session
self.model = None
if self.session == 'train':
self.build_model()
else:
self.model = self.load(self.config.model_arch_filename,
self.config.model_weight_filename)
def build_model(self):
st = SmilesTokenizer()
n_table = len(st.table)
weight_init = RandomNormal(mean=0.0,
stddev=0.05,
seed=self.config.seed)
self.model = Sequential()
self.model.add(
LSTM(units=self.config.units,
input_shape=(None, n_table),
return_sequences=True,
kernel_initializer=weight_init,
dropout=0.3))
self.model.add(
LSTM(units=self.config.units,
input_shape=(None, n_table),
return_sequences=True,
kernel_initializer=weight_init,
dropout=0.5))
self.model.add(
Dense(units=n_table,
activation='softmax',
kernel_initializer=weight_init))
arch = self.model.to_json(indent=2)
self.config.model_arch_filename = os.path.join(self.config.exp_dir,
'model_arch.json')
with open(self.config.model_arch_filename, 'w') as f:
f.write(arch)
self.model.compile(optimizer=self.config.optimizer,
loss='categorical_crossentropy')
def save(self, checkpoint_path):
assert self.model, 'You have to build the model first.'
print('Saving model ...')
self.model.save_weights(checkpoint_path)
print('model saved.')
def load(self, model_arch_file, checkpoint_file):
print(f'Loading model architecture from {model_arch_file} ...')
with open(model_arch_file) as f:
model = model_from_json(f.read())
print(f'Loading model checkpoint from {checkpoint_file} ...')
model.load_weights(checkpoint_file)
print('Loaded the Model.')
return model

56
lstm_chem/trainer.py Executable file
View File

@ -0,0 +1,56 @@
from glob import glob
import os
from tensorflow.keras.callbacks import ModelCheckpoint, TensorBoard
class LSTMChemTrainer(object):
def __init__(self, modeler, train_data_loader, valid_data_loader):
self.model = modeler.model
self.config = modeler.config
self.train_data_loader = train_data_loader
self.valid_data_loader = valid_data_loader
self.callbacks = []
self.init_callbacks()
def init_callbacks(self):
self.callbacks.append(
ModelCheckpoint(
filepath=os.path.join(
self.config.checkpoint_dir,
'%s-{epoch:02d}-{val_loss:.2f}.hdf5' %
self.config.exp_name),
monitor=self.config.checkpoint_monitor,
mode=self.config.checkpoint_mode,
save_best_only=self.config.checkpoint_save_best_only,
save_weights_only=self.config.checkpoint_save_weights_only,
verbose=self.config.checkpoint_verbose,
))
self.callbacks.append(
TensorBoard(
log_dir=self.config.tensorboard_log_dir,
write_graph=self.config.tensorboard_write_graph,
))
def train(self):
history = self.model.fit_generator(
self.train_data_loader,
steps_per_epoch=self.train_data_loader.__len__(),
epochs=self.config.num_epochs,
verbose=self.config.verbose_training,
validation_data=self.valid_data_loader,
validation_steps=self.valid_data_loader.__len__(),
use_multiprocessing=True,
shuffle=True,
callbacks=self.callbacks)
last_weight_file = glob(
os.path.join(
f'{self.config.checkpoint_dir}',
f'{self.config.exp_name}-{self.config.num_epochs:02}*.hdf5')
)[0]
assert os.path.exists(last_weight_file)
self.config.model_weight_filename = last_weight_file
with open(os.path.join(self.config.exp_dir, 'config.json'), 'w') as f:
f.write(self.config.toJSON(indent=2))

26
lstm_chem/utils/config.py Executable file
View File

@ -0,0 +1,26 @@
import os
import time
import json
from bunch import Bunch
def get_config_from_json(json_file):
with open(json_file, 'r') as config_file:
config_dict = json.load(config_file)
config = Bunch(config_dict)
return config
def process_config(json_file):
config = get_config_from_json(json_file)
config.config_file = json_file
config.exp_dir = os.path.join(
'experiments', time.strftime('%Y-%m-%d/', time.localtime()),
config.exp_name)
config.tensorboard_log_dir = os.path.join(
'experiments', time.strftime('%Y-%m-%d/', time.localtime()),
config.exp_name, 'logs/')
config.checkpoint_dir = os.path.join(
'experiments', time.strftime('%Y-%m-%d/', time.localtime()),
config.exp_name, 'checkpoints/')
return config

12
lstm_chem/utils/dirs.py Executable file
View File

@ -0,0 +1,12 @@
import os
import sys
def create_dirs(dirs):
try:
for dir_ in dirs:
if not os.path.exists(dir_):
os.makedirs(dir_)
except Exception as err:
print(f'Creating directories error: {err}')
sys.exit()

View File

@ -0,0 +1,72 @@
import copy
import numpy as np
import time
class SmilesTokenizer(object):
def __init__(self):
atoms = [
'Li',
'Na',
'Al',
'Si',
'Cl',
'Sc',
'Zn',
'As',
'Se',
'Br',
'Sn',
'Te',
'Cn',
'H',
'B',
'C',
'N',
'O',
'F',
'P',
'S',
'K',
'V',
'I',
]
special = [
'(', ')', '[', ']', '=', '#', '%', '0', '1', '2', '3', '4', '5',
'6', '7', '8', '9', '+', '-', 'se', 'te', 'c', 'n', 'o', 's'
]
padding = ['G', 'A', 'E']
self.table = sorted(atoms, key=len, reverse=True) + special + padding
self.table_len = len(self.table)
self.one_hot_dict = {}
for i, symbol in enumerate(self.table):
vec = np.zeros(self.table_len, dtype=np.float32)
vec[i] = 1
self.one_hot_dict[symbol] = vec
def tokenize(self, smiles):
N = len(smiles)
i = 0
token = []
timeout = time.time() + 5 # 5 seconds from now
while (i < N):
for j in range(self.table_len):
symbol = self.table[j]
if symbol == smiles[i:i + len(symbol)]:
token.append(symbol)
i += len(symbol)
break
if time.time() > timeout:
break
return token
def one_hot_encode(self, tokenized_smiles):
result = np.array(
[self.one_hot_dict[symbol] for symbol in tokenized_smiles],
dtype=np.float32)
result = result.reshape(1, result.shape[0], result.shape[1])
return result

View File

@ -0,0 +1,72 @@
import copy
import numpy as np
import time
class SmilesTokenizer(object):
def __init__(self):
atoms = [
'Li',
'Na',
'Al',
'Si',
'Cl',
'Sc',
'Zn',
'As',
'Se',
'Br',
'Sn',
'Te',
'Cn',
'H',
'B',
'C',
'N',
'O',
'F',
'P',
'S',
'K',
'V',
'I',
]
special = [
'(', ')', '[', ']', '=', '#', '%', '0', '1', '2', '3', '4', '5',
'6', '7', '8', '9', '+', '-', 'se', 'te', 'c', 'n', 'o', 's'
]
padding = ['G', 'A', 'E']
self.table = sorted(atoms, key=len, reverse=True) + special + padding
self.table_len = len(self.table)
self.one_hot_dict = {}
for i, symbol in enumerate(self.table):
vec = np.zeros(self.table_len, dtype=np.float32)
vec[i] = 1
self.one_hot_dict[symbol] = vec
def tokenize(self, smiles):
N = len(smiles)
i = 0
token = []
timeout = time.time() + 5 # 5 seconds from now
while (i < N):
for j in range(self.table_len):
symbol = self.table[j]
if symbol == smiles[i:i + len(symbol)]:
token.append(symbol)
i += len(symbol)
break
if time.time() > timeout:
break
return token
def one_hot_encode(self, tokenized_smiles):
result = np.array(
[self.one_hot_dict[symbol] for symbol in tokenized_smiles],
dtype=np.float32)
result = result.reshape(1, result.shape[0], result.shape[1])
return result