added Curie-Generate BETA
This commit is contained in:
parent
61ce4e7b08
commit
9a253f896f
|
@ -1,6 +1,6 @@
|
|||
from flask_wtf import FlaskForm
|
||||
from flask_wtf.file import FileField, FileRequired, FileAllowed
|
||||
from wtforms import StringField, DecimalField
|
||||
from wtforms import StringField, DecimalField, IntegerField
|
||||
from wtforms.validators import DataRequired, Email
|
||||
|
||||
|
||||
|
@ -32,4 +32,7 @@ class curieForm(FlaskForm):
|
|||
email = StringField('Email', validators=[DataRequired(), Email()])
|
||||
|
||||
class statusForm(FlaskForm):
|
||||
jobID = StringField('Job ID',validators=[DataRequired()])
|
||||
jobID = StringField('Job ID',validators=[DataRequired()])
|
||||
|
||||
class generateSMILES(FlaskForm):
|
||||
n = IntegerField('Number of Molecules to Generate',default=1,validators=[DataRequired()])
|
|
@ -20,11 +20,11 @@
|
|||
"finetune_epochs": 12,
|
||||
"finetune_batch_size": 1,
|
||||
"finetune_data_filename": "./datasets/protease_inhibitors_for_fine-tune.txt",
|
||||
"config_file": "experiments/base_experiment/LSTM_Chem/config.json",
|
||||
"config_file": "app/prod/config.json",
|
||||
"exp_dir": "experiments/2020-07-13/LSTM_Chem",
|
||||
"tensorboard_log_dir": "experiments/2020-07-13/LSTM_Chem/logs/",
|
||||
"checkpoint_dir": "experiments/2020-07-13/LSTM_Chem/checkpoints/",
|
||||
"tensorboard_log_dir": "app/prod/logs/",
|
||||
"checkpoint_dir": "app/prod/checkpoints/",
|
||||
"train_smi_max_len": 128,
|
||||
"model_arch_filename": "experiments/2020-07-13/LSTM_Chem/model_arch.json",
|
||||
"model_weight_filename": "experiments/2020-07-13/LSTM_Chem/checkpoints/LSTM_Chem-42-0.23.hdf5"
|
||||
"model_arch_filename": "app/prod/model_arch.json",
|
||||
"model_weight_filename": "app/prod/checkpoints/LSTM_Chem-42-0.23.hdf5"
|
||||
}
|
30
app/views.py
30
app/views.py
|
@ -12,7 +12,7 @@ from string import digits, ascii_lowercase
|
|||
|
||||
# Note: that when using Flask-WTF we need to import the Form Class that we created
|
||||
# in forms.py
|
||||
from .forms import MyForm, curieForm, statusForm
|
||||
from .forms import MyForm, curieForm, statusForm, generateSMILES
|
||||
|
||||
def gen_word(N, min_N_dig, min_N_low):
|
||||
choose_from = [digits]*min_N_dig + [ascii_lowercase]*min_N_low
|
||||
|
@ -110,6 +110,34 @@ def wtform():
|
|||
flash_errors(myform)
|
||||
return render_template('wtform.html', form=myform)
|
||||
|
||||
try:
|
||||
from lstm_chem.utils.config import process_config
|
||||
from lstm_chem.model import LSTMChem
|
||||
from lstm_chem.generator import LSTMChemGenerator
|
||||
config = process_config("app/prod/config.json")
|
||||
modeler = LSTMChem(config, session="generate")
|
||||
gen = LSTMChemGenerator(modeler)
|
||||
print("Testing Model")
|
||||
gen.sample(1)
|
||||
except:
|
||||
print("ok")
|
||||
|
||||
|
||||
@app.route('/Generate', methods=['GET','POST'])
|
||||
def generate():
|
||||
"""Generate novel drugs"""
|
||||
form = generateSMILES()
|
||||
|
||||
with open("./app/prod/config.json") as config:
|
||||
import json
|
||||
j = json.loads(config.read())
|
||||
print(j["exp_name"])
|
||||
|
||||
if request.method == 'POST' and form.validate_on_submit():
|
||||
result = gen.sample(form.n.data)
|
||||
return render_template('generate.html',expName=j["exp_name"],epochs=j["num_epochs"],optimizer=j["optimizer"].capitalize(), form=form,result=result)
|
||||
|
||||
return render_template('generate.html',expName=j["exp_name"],epochs=j["num_epochs"],optimizer=j["optimizer"].capitalize(), form=form)
|
||||
|
||||
@app.route('/Dock', methods=['GET', 'POST'])
|
||||
def dock_upload():
|
||||
|
|
|
@ -0,0 +1 @@
|
|||
|
|
@ -0,0 +1,122 @@
|
|||
import json
|
||||
import os
|
||||
import numpy as np
|
||||
from tqdm import tqdm
|
||||
from tensorflow.keras.utils import Sequence
|
||||
from lstm_chem.utils.smiles_tokenizer import SmilesTokenizer
|
||||
|
||||
|
||||
class DataLoader(Sequence):
|
||||
def __init__(self, config, data_type='train'):
|
||||
self.config = config
|
||||
self.data_type = data_type
|
||||
assert self.data_type in ['train', 'valid', 'finetune']
|
||||
|
||||
self.max_len = 0
|
||||
|
||||
if self.data_type == 'train':
|
||||
self.smiles = self._load(self.config.data_filename)
|
||||
elif self.data_type == 'finetune':
|
||||
self.smiles = self._load(self.config.finetune_data_filename)
|
||||
else:
|
||||
pass
|
||||
|
||||
self.st = SmilesTokenizer()
|
||||
self.one_hot_dict = self.st.one_hot_dict
|
||||
|
||||
self.tokenized_smiles = self._tokenize(self.smiles)
|
||||
|
||||
if self.data_type in ['train', 'valid']:
|
||||
self.idx = np.arange(len(self.tokenized_smiles))
|
||||
self.valid_size = int(
|
||||
np.ceil(
|
||||
len(self.tokenized_smiles) * self.config.validation_split))
|
||||
np.random.seed(self.config.seed)
|
||||
np.random.shuffle(self.idx)
|
||||
|
||||
def _set_data(self):
|
||||
if self.data_type == 'train':
|
||||
ret = [
|
||||
self.tokenized_smiles[self.idx[i]]
|
||||
for i in self.idx[self.valid_size:]
|
||||
]
|
||||
elif self.data_type == 'valid':
|
||||
ret = [
|
||||
self.tokenized_smiles[self.idx[i]]
|
||||
for i in self.idx[:self.valid_size]
|
||||
]
|
||||
else:
|
||||
ret = self.tokenized_smiles
|
||||
return ret
|
||||
|
||||
def _load(self, data_filename):
|
||||
length = self.config.data_length
|
||||
print('loading SMILES...')
|
||||
with open(data_filename) as f:
|
||||
smiles = [s.rstrip() for s in f]
|
||||
if length != 0:
|
||||
smiles = smiles[:length]
|
||||
print('done.')
|
||||
return smiles
|
||||
|
||||
def _tokenize(self, smiles):
|
||||
assert isinstance(smiles, list)
|
||||
print('tokenizing SMILES...')
|
||||
tokenized_smiles = [self.st.tokenize(smi) for smi in tqdm(smiles)]
|
||||
|
||||
if self.data_type == 'train':
|
||||
for tokenized_smi in tokenized_smiles:
|
||||
length = len(tokenized_smi)
|
||||
if self.max_len < length:
|
||||
self.max_len = length
|
||||
self.config.train_smi_max_len = self.max_len
|
||||
print('done.')
|
||||
return tokenized_smiles
|
||||
|
||||
def __len__(self):
|
||||
target_tokenized_smiles = self._set_data()
|
||||
if self.data_type in ['train', 'valid']:
|
||||
ret = int(
|
||||
np.ceil(
|
||||
len(target_tokenized_smiles) /
|
||||
float(self.config.batch_size)))
|
||||
else:
|
||||
ret = int(
|
||||
np.ceil(
|
||||
len(target_tokenized_smiles) /
|
||||
float(self.config.finetune_batch_size)))
|
||||
return ret
|
||||
|
||||
def __getitem__(self, idx):
|
||||
target_tokenized_smiles = self._set_data()
|
||||
if self.data_type in ['train', 'valid']:
|
||||
data = target_tokenized_smiles[idx *
|
||||
self.config.batch_size:(idx + 1) *
|
||||
self.config.batch_size]
|
||||
else:
|
||||
data = target_tokenized_smiles[idx *
|
||||
self.config.finetune_batch_size:
|
||||
(idx + 1) *
|
||||
self.config.finetune_batch_size]
|
||||
data = self._padding(data)
|
||||
|
||||
self.X, self.y = [], []
|
||||
for tp_smi in data:
|
||||
X = [self.one_hot_dict[symbol] for symbol in tp_smi[:-1]]
|
||||
self.X.append(X)
|
||||
y = [self.one_hot_dict[symbol] for symbol in tp_smi[1:]]
|
||||
self.y.append(y)
|
||||
|
||||
self.X = np.array(self.X, dtype=np.float32)
|
||||
self.y = np.array(self.y, dtype=np.float32)
|
||||
|
||||
return self.X, self.y
|
||||
|
||||
def _pad(self, tokenized_smi):
|
||||
return ['G'] + tokenized_smi + ['E'] + [
|
||||
'A' for _ in range(self.max_len - len(tokenized_smi))
|
||||
]
|
||||
|
||||
def _padding(self, data):
|
||||
padded_smiles = [self._pad(t_smi) for t_smi in data]
|
||||
return padded_smiles
|
|
@ -0,0 +1,24 @@
|
|||
from lstm_chem.utils.smiles_tokenizer import SmilesTokenizer
|
||||
from lstm_chem.generator import LSTMChemGenerator
|
||||
|
||||
|
||||
class LSTMChemFinetuner(LSTMChemGenerator):
|
||||
def __init__(self, modeler, finetune_data_loader):
|
||||
self.session = modeler.session
|
||||
self.model = modeler.model
|
||||
self.config = modeler.config
|
||||
self.finetune_data_loader = finetune_data_loader
|
||||
self.st = SmilesTokenizer()
|
||||
|
||||
def finetune(self):
|
||||
self.model.compile(optimizer=self.config.optimizer,
|
||||
loss='categorical_crossentropy')
|
||||
|
||||
history = self.model.fit_generator(
|
||||
self.finetune_data_loader,
|
||||
steps_per_epoch=self.finetune_data_loader.__len__(),
|
||||
epochs=self.config.finetune_epochs,
|
||||
verbose=self.config.verbose_training,
|
||||
use_multiprocessing=True,
|
||||
shuffle=True)
|
||||
return history
|
|
@ -0,0 +1,44 @@
|
|||
from tqdm import tqdm
|
||||
import numpy as np
|
||||
from lstm_chem.utils.smiles_tokenizer import SmilesTokenizer
|
||||
|
||||
|
||||
class LSTMChemGenerator(object):
|
||||
def __init__(self, modeler):
|
||||
self.session = modeler.session
|
||||
self.model = modeler.model
|
||||
self.config = modeler.config
|
||||
self.st = SmilesTokenizer()
|
||||
|
||||
def _generate(self, sequence):
|
||||
while (sequence[-1] != 'E') and (len(self.st.tokenize(sequence)) <=
|
||||
self.config.smiles_max_length):
|
||||
x = self.st.one_hot_encode(self.st.tokenize(sequence))
|
||||
preds = self.model.predict_on_batch(x)[0][-1]
|
||||
next_idx = self.sample_with_temp(preds)
|
||||
sequence += self.st.table[next_idx]
|
||||
|
||||
sequence = sequence[1:].rstrip('E')
|
||||
return sequence
|
||||
|
||||
def sample_with_temp(self, preds):
|
||||
streched = np.log(preds) / self.config.sampling_temp
|
||||
streched_probs = np.exp(streched) / np.sum(np.exp(streched))
|
||||
return np.random.choice(range(len(streched)), p=streched_probs)
|
||||
|
||||
def sample(self, num=1, start='G'):
|
||||
sampled = []
|
||||
if self.session == 'generate':
|
||||
for _ in tqdm(range(num)):
|
||||
sampled.append(self._generate(start))
|
||||
return sampled
|
||||
else:
|
||||
from rdkit import Chem, RDLogger
|
||||
RDLogger.DisableLog('rdApp.*')
|
||||
while len(sampled) < num:
|
||||
sequence = self._generate(start)
|
||||
mol = Chem.MolFromSmiles(sequence)
|
||||
if mol is not None:
|
||||
canon_smiles = Chem.MolToSmiles(mol)
|
||||
sampled.append(canon_smiles)
|
||||
return sampled
|
|
@ -0,0 +1,73 @@
|
|||
import os
|
||||
import time
|
||||
from tensorflow.keras import Sequential
|
||||
from tensorflow.keras.models import model_from_json
|
||||
from tensorflow.keras.layers import LSTM, Dense
|
||||
from tensorflow.keras.initializers import RandomNormal
|
||||
from lstm_chem.utils.smiles_tokenizer import SmilesTokenizer
|
||||
|
||||
|
||||
class LSTMChem(object):
|
||||
def __init__(self, config, session='train'):
|
||||
assert session in ['train', 'generate', 'finetune'], \
|
||||
'one of {train, generate, finetune}'
|
||||
|
||||
self.config = config
|
||||
self.session = session
|
||||
self.model = None
|
||||
|
||||
if self.session == 'train':
|
||||
self.build_model()
|
||||
else:
|
||||
self.model = self.load(self.config.model_arch_filename,
|
||||
self.config.model_weight_filename)
|
||||
|
||||
def build_model(self):
|
||||
st = SmilesTokenizer()
|
||||
n_table = len(st.table)
|
||||
weight_init = RandomNormal(mean=0.0,
|
||||
stddev=0.05,
|
||||
seed=self.config.seed)
|
||||
|
||||
self.model = Sequential()
|
||||
self.model.add(
|
||||
LSTM(units=self.config.units,
|
||||
input_shape=(None, n_table),
|
||||
return_sequences=True,
|
||||
kernel_initializer=weight_init,
|
||||
dropout=0.3))
|
||||
self.model.add(
|
||||
LSTM(units=self.config.units,
|
||||
input_shape=(None, n_table),
|
||||
return_sequences=True,
|
||||
kernel_initializer=weight_init,
|
||||
dropout=0.5))
|
||||
self.model.add(
|
||||
Dense(units=n_table,
|
||||
activation='softmax',
|
||||
kernel_initializer=weight_init))
|
||||
|
||||
arch = self.model.to_json(indent=2)
|
||||
self.config.model_arch_filename = os.path.join(self.config.exp_dir,
|
||||
'model_arch.json')
|
||||
with open(self.config.model_arch_filename, 'w') as f:
|
||||
f.write(arch)
|
||||
|
||||
self.model.compile(optimizer=self.config.optimizer,
|
||||
loss='categorical_crossentropy')
|
||||
|
||||
def save(self, checkpoint_path):
|
||||
assert self.model, 'You have to build the model first.'
|
||||
|
||||
print('Saving model ...')
|
||||
self.model.save_weights(checkpoint_path)
|
||||
print('model saved.')
|
||||
|
||||
def load(self, model_arch_file, checkpoint_file):
|
||||
print(f'Loading model architecture from {model_arch_file} ...')
|
||||
with open(model_arch_file) as f:
|
||||
model = model_from_json(f.read())
|
||||
print(f'Loading model checkpoint from {checkpoint_file} ...')
|
||||
model.load_weights(checkpoint_file)
|
||||
print('Loaded the Model.')
|
||||
return model
|
|
@ -0,0 +1,56 @@
|
|||
from glob import glob
|
||||
import os
|
||||
from tensorflow.keras.callbacks import ModelCheckpoint, TensorBoard
|
||||
|
||||
|
||||
class LSTMChemTrainer(object):
|
||||
def __init__(self, modeler, train_data_loader, valid_data_loader):
|
||||
self.model = modeler.model
|
||||
self.config = modeler.config
|
||||
self.train_data_loader = train_data_loader
|
||||
self.valid_data_loader = valid_data_loader
|
||||
self.callbacks = []
|
||||
self.init_callbacks()
|
||||
|
||||
def init_callbacks(self):
|
||||
self.callbacks.append(
|
||||
ModelCheckpoint(
|
||||
filepath=os.path.join(
|
||||
self.config.checkpoint_dir,
|
||||
'%s-{epoch:02d}-{val_loss:.2f}.hdf5' %
|
||||
self.config.exp_name),
|
||||
monitor=self.config.checkpoint_monitor,
|
||||
mode=self.config.checkpoint_mode,
|
||||
save_best_only=self.config.checkpoint_save_best_only,
|
||||
save_weights_only=self.config.checkpoint_save_weights_only,
|
||||
verbose=self.config.checkpoint_verbose,
|
||||
))
|
||||
self.callbacks.append(
|
||||
TensorBoard(
|
||||
log_dir=self.config.tensorboard_log_dir,
|
||||
write_graph=self.config.tensorboard_write_graph,
|
||||
))
|
||||
|
||||
def train(self):
|
||||
history = self.model.fit_generator(
|
||||
self.train_data_loader,
|
||||
steps_per_epoch=self.train_data_loader.__len__(),
|
||||
epochs=self.config.num_epochs,
|
||||
verbose=self.config.verbose_training,
|
||||
validation_data=self.valid_data_loader,
|
||||
validation_steps=self.valid_data_loader.__len__(),
|
||||
use_multiprocessing=True,
|
||||
shuffle=True,
|
||||
callbacks=self.callbacks)
|
||||
|
||||
last_weight_file = glob(
|
||||
os.path.join(
|
||||
f'{self.config.checkpoint_dir}',
|
||||
f'{self.config.exp_name}-{self.config.num_epochs:02}*.hdf5')
|
||||
)[0]
|
||||
|
||||
assert os.path.exists(last_weight_file)
|
||||
self.config.model_weight_filename = last_weight_file
|
||||
|
||||
with open(os.path.join(self.config.exp_dir, 'config.json'), 'w') as f:
|
||||
f.write(self.config.toJSON(indent=2))
|
|
@ -0,0 +1,26 @@
|
|||
import os
|
||||
import time
|
||||
import json
|
||||
from bunch import Bunch
|
||||
|
||||
|
||||
def get_config_from_json(json_file):
|
||||
with open(json_file, 'r') as config_file:
|
||||
config_dict = json.load(config_file)
|
||||
config = Bunch(config_dict)
|
||||
return config
|
||||
|
||||
|
||||
def process_config(json_file):
|
||||
config = get_config_from_json(json_file)
|
||||
config.config_file = json_file
|
||||
config.exp_dir = os.path.join(
|
||||
'experiments', time.strftime('%Y-%m-%d/', time.localtime()),
|
||||
config.exp_name)
|
||||
config.tensorboard_log_dir = os.path.join(
|
||||
'experiments', time.strftime('%Y-%m-%d/', time.localtime()),
|
||||
config.exp_name, 'logs/')
|
||||
config.checkpoint_dir = os.path.join(
|
||||
'experiments', time.strftime('%Y-%m-%d/', time.localtime()),
|
||||
config.exp_name, 'checkpoints/')
|
||||
return config
|
|
@ -0,0 +1,12 @@
|
|||
import os
|
||||
import sys
|
||||
|
||||
|
||||
def create_dirs(dirs):
|
||||
try:
|
||||
for dir_ in dirs:
|
||||
if not os.path.exists(dir_):
|
||||
os.makedirs(dir_)
|
||||
except Exception as err:
|
||||
print(f'Creating directories error: {err}')
|
||||
sys.exit()
|
|
@ -0,0 +1,72 @@
|
|||
import copy
|
||||
import numpy as np
|
||||
|
||||
import time
|
||||
|
||||
|
||||
class SmilesTokenizer(object):
|
||||
def __init__(self):
|
||||
atoms = [
|
||||
'Li',
|
||||
'Na',
|
||||
'Al',
|
||||
'Si',
|
||||
'Cl',
|
||||
'Sc',
|
||||
'Zn',
|
||||
'As',
|
||||
'Se',
|
||||
'Br',
|
||||
'Sn',
|
||||
'Te',
|
||||
'Cn',
|
||||
'H',
|
||||
'B',
|
||||
'C',
|
||||
'N',
|
||||
'O',
|
||||
'F',
|
||||
'P',
|
||||
'S',
|
||||
'K',
|
||||
'V',
|
||||
'I',
|
||||
]
|
||||
special = [
|
||||
'(', ')', '[', ']', '=', '#', '%', '0', '1', '2', '3', '4', '5',
|
||||
'6', '7', '8', '9', '+', '-', 'se', 'te', 'c', 'n', 'o', 's'
|
||||
]
|
||||
padding = ['G', 'A', 'E']
|
||||
|
||||
self.table = sorted(atoms, key=len, reverse=True) + special + padding
|
||||
self.table_len = len(self.table)
|
||||
|
||||
self.one_hot_dict = {}
|
||||
for i, symbol in enumerate(self.table):
|
||||
vec = np.zeros(self.table_len, dtype=np.float32)
|
||||
vec[i] = 1
|
||||
self.one_hot_dict[symbol] = vec
|
||||
|
||||
def tokenize(self, smiles):
|
||||
N = len(smiles)
|
||||
i = 0
|
||||
token = []
|
||||
|
||||
timeout = time.time() + 5 # 5 seconds from now
|
||||
while (i < N):
|
||||
for j in range(self.table_len):
|
||||
symbol = self.table[j]
|
||||
if symbol == smiles[i:i + len(symbol)]:
|
||||
token.append(symbol)
|
||||
i += len(symbol)
|
||||
break
|
||||
if time.time() > timeout:
|
||||
break
|
||||
return token
|
||||
|
||||
def one_hot_encode(self, tokenized_smiles):
|
||||
result = np.array(
|
||||
[self.one_hot_dict[symbol] for symbol in tokenized_smiles],
|
||||
dtype=np.float32)
|
||||
result = result.reshape(1, result.shape[0], result.shape[1])
|
||||
return result
|
|
@ -0,0 +1,72 @@
|
|||
import copy
|
||||
import numpy as np
|
||||
|
||||
import time
|
||||
|
||||
|
||||
class SmilesTokenizer(object):
|
||||
def __init__(self):
|
||||
atoms = [
|
||||
'Li',
|
||||
'Na',
|
||||
'Al',
|
||||
'Si',
|
||||
'Cl',
|
||||
'Sc',
|
||||
'Zn',
|
||||
'As',
|
||||
'Se',
|
||||
'Br',
|
||||
'Sn',
|
||||
'Te',
|
||||
'Cn',
|
||||
'H',
|
||||
'B',
|
||||
'C',
|
||||
'N',
|
||||
'O',
|
||||
'F',
|
||||
'P',
|
||||
'S',
|
||||
'K',
|
||||
'V',
|
||||
'I',
|
||||
]
|
||||
special = [
|
||||
'(', ')', '[', ']', '=', '#', '%', '0', '1', '2', '3', '4', '5',
|
||||
'6', '7', '8', '9', '+', '-', 'se', 'te', 'c', 'n', 'o', 's'
|
||||
]
|
||||
padding = ['G', 'A', 'E']
|
||||
|
||||
self.table = sorted(atoms, key=len, reverse=True) + special + padding
|
||||
self.table_len = len(self.table)
|
||||
|
||||
self.one_hot_dict = {}
|
||||
for i, symbol in enumerate(self.table):
|
||||
vec = np.zeros(self.table_len, dtype=np.float32)
|
||||
vec[i] = 1
|
||||
self.one_hot_dict[symbol] = vec
|
||||
|
||||
def tokenize(self, smiles):
|
||||
N = len(smiles)
|
||||
i = 0
|
||||
token = []
|
||||
|
||||
timeout = time.time() + 5 # 5 seconds from now
|
||||
while (i < N):
|
||||
for j in range(self.table_len):
|
||||
symbol = self.table[j]
|
||||
if symbol == smiles[i:i + len(symbol)]:
|
||||
token.append(symbol)
|
||||
i += len(symbol)
|
||||
break
|
||||
if time.time() > timeout:
|
||||
break
|
||||
return token
|
||||
|
||||
def one_hot_encode(self, tokenized_smiles):
|
||||
result = np.array(
|
||||
[self.one_hot_dict[symbol] for symbol in tokenized_smiles],
|
||||
dtype=np.float32)
|
||||
result = result.reshape(1, result.shape[0], result.shape[1])
|
||||
return result
|
Loading…
Reference in New Issue